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A phase transition between states of a nematic liquid crystal in a spherical drop was detected 
experimentally and described theoretically. This transition took place between states which 
differed solely in respect of the symmetry of a topological point defect (hedgehog) at the 
center of the drop. The transition occurred as a result of a change in temperature (when the 
boundary conditions on the surface of the drop and the phase state of the nematic itself did not 
change) and involved transformation of a radial hedgehog to a hyperbolic one, accompanied 
by a simultaneous formation of a nonsingular ring disclination. This transition was the result 
of the temperature-induced changes in the Frank elastic constants. 

41. INTRODUCTION 

An equilibrium state of an ordered medium in a con- 
fined volume is usually characterized by an inhomogeneous 
distribution of the order parameter and by the presence of 
topologically stable defects (see, for example, Ref. 1). The 
nature of these defects is governed, firstly, by the nature of 
the order in the medium, secondly, by the nature of bound- 
ary conditions and, thirdly, by the balance between the ener- 
gy parameters describing the deformation of the order pa- 
rameter (these parameters can be, for example, the elastic 
moduli ) . 

A change in one of these three factors alters the struc- 
ture of defects. In the case of liquid crystals the examples of 
such a change are a transition from a monopole to a hedge- 
hog because of a smectic-smectic A phase transition (due to 
the first factor)' and processes of topological dynamics of 
defects in a nematic drop with variable boundary conditions 
(second factor).' However, it is particularly interesting to 
search for possible transformations of defects under the in- 
fluence of the third factor when temperature, pressure, or 
some other external parameter is varied. Such transforma- 
tions are in fact phase transitions between two states of a 
system belonging to the same topological class and differing 
from one another only in the state of the geometry of defects, 
but not associated with a, phase transition in the medium 
itself nor with changes in the conditions at the boundary of 
the medium. 

The existence of such phase transitions has been pre- 
dicted recently for linear defects, such as vortices in a super- 
fluid 3He (Refs. 3 and 4) and disclinations in nema t i~s .~  
Experimental confirmation is available only for vortices in 
3He (Ref. 3).  In the case of liquid crystals, such transforma- 
tions have not been reported in spite of the fact that disclina- 
tions have been observed in liquid crystals a century ago. 

Clearly, this is due to the weak dependences of the Frank 
elastic constants on external parameters in the case of tradi- 
tioval nematics of the MBBA (4-methoxybenzylidene- 
butylaniline) or PAA (paraazoxyanisole) type, and also be- 
cause of some special features (associated mainly with the 
conditions at a boundary) of the most typical nematic tex- 
tures which hinder manifestation of such defects. 

Point defects known as hedgehogs are more promising 
from the point of view of experimental observation of this 
effect in liquid crystals. On the one hand, there is a simple 
method for creating them in a controlled and reproducible 
manner: it involves formation of spherical drops of a nematic 
with normal orientation of the molecules at the surface.',' 
On the other hand, this experimental geometry makes it pos- 
sible to use a polarizing microscope to study in detail the 
distribution of the order parameter, the case of a nematic 
represented by a director n which sets the orientation of the 
long axes of the molecules and which coincides with the local 
direction of the optic axis of a liquid crystal. 

The possibility, in principle, of phase transitions involv- 
ing hedgehogs is supported by some preliminary results ob- 
tained for similar objects such as boojums6 and monopoles.' 
Since hedgehogs in a nematic have many analogs in other 
systems (not only in the case of condensed media, but also in 
force fields), the problem is also of purely theoretical inter- 
est. 

Our aim was to investigate both experimentally and 
theoretically the possibility of phase transitions between two 
states of a nematic in a drop differing only in respect of the 
structure of point defects (hedgehogs) and not associated 
with changes in the boundary conditions. 

A general description of point defects in the interior of a 
nematic, which may be of interest to the problem under dis- 
cussion, can be found in 92; 993 and 4 report the results of, 
respectively, experimental and theoretical studies of a spe- 
cific example of such a phase transition. 
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$2. HEDGEHOGS IN A CLOSED VOLUME OF A NEMATIC 

It follows from the homotopic classification of Ref. 8 
that an infinite number of different hedgehogs with a topo- 
logical charge N, which is an integer, can exist in the interior 
of a nematic liquid crystal and the charge is given by 

where 9 and e, are arbitrary coordinates on a closed surface a 
surrounding a defect. If a nematic is located in a closed vol- 
ume with normal boundary conditions, the total topological 
charge of the hedgehogs is limited by the condition' 

where E is the Euler characteristic of the bounding surface 
(for a sphere, we have E = 2). 

Since the formation of each hedgehog requires a definite 
energy, it is physically clear that the minimum possible num- 
ber of defects will form in the interior of a nematic. For 
example, in the case of a spherical drop the condition ( 2 )  is 
satisfied by just one hedgehog with a charge N = 1. More- 
over, since hedgehogs with large values of N require corre- 
spondingly higher energies, we shall confine our study of 
defects to one homotopic class with N = 1. 

In the case of the class with N = 1 the problem of classi- 
fication of hedgehogs with different structures reduces to the 
familiar problem of classification of nondegenerate singular- 
ities of vector fields in the theory of differential  equation^.^ 
According to this theory, all the sets of hedgehogs with 
N = 1 can be divided into two main classes, which we shall 
call radial (R)  and hyperbolic (H) hedgehogs. The former 
correspond to singularities such as nodes and foci, the sec- 
ond correspond to saddles. We can regard the director n as a 
vector, which is justified in the absence of topologically sta- 
ble disclinations in the interior of a nematic. The difference 
between the two types of hedgehog is illustrated in Fig. 1. 

Among all the structures in each of the classes there are 
defects with the maximum symmetry, which are of the great- 

FIG. 1. Hedgehogs with the maximum symmetry in a vector field of n: a )  
radial; b) hyperbolic. 

est interest from the point of view of phase transitions (see 
Ref. 5) .  They are, respectively, an "ideal" R hedgehog with 
the distribution 

nR(x, y, z) = {x, y, z) (x%y2+z2)-'" ( 3 )  

and with the symmetry of the complete orthogonal group 
K, , and an "ideal" H hedgehog 

(with the symmetry D,, ). In principle, phase transitions 
accompanied by symmetry changes K, +Dm, may take 
place between these states when the external parameters are 
varied. We shall confirm this by energy estimates. 

The energy of both ideal structures of defects can be 
found using an expression for the density of the elastic defor- 
mation energy in a nematic: 

f=1/2KII(di~ n)2+1/2K22(n rot n)Z+1/2K33[n rot nIZ, ( 5 )  

where K, ,, K,,, and K,, are the Frank elastic constants for 
the deformation in the form of transverse bending, torsion, 
and longitudinal bending, respectively. The result is 

(R is a characteristic dimension of the system). The ratio of 
their energies is (see Ref. 10) 

It follows from Eq. (6)  that, depending on the balance of the 
elastic constants K, ,  and K,,, either a radial (for 
K,, > 6K,, ) or a hyperbolic (for K,, < 6K,, ) structure is 
preferred from the energy point of view. 

A realistic possibility of altering the ratios of the elastic 
constants is provided by variation of the temperature of a 
nematic sample which is close to its transition to the smectic 
phase: it is well known that in this region the modulus K,, 
rises critically, whereas the modulus K,  , is practically unaf- 
fected." In particular, in the case of CBOOA (N-n-cyano- 
benzylidene-n-octyloxyaniline) the H-R hedgehog transi- 
tion can occur as a result of cooling of a nematic to a 
temperature exceeding the nematic-smectic A transition by 
0.2 "C. It follows from the experimental results reported in 
Ref. 1 1 that at this temperature we have K,, -- 6K,, . We shall 
show that the conditions for a transition in a spherical drop 
of a nematic with the normal boundary orientation of the 
molecules are less stringent than the condition (6) ,  because 
the appearance of an H hedgehog in a drop is accompanied 
by the creation of an additional defect which is a nonsingular 
ring disclination ensuring a smooth matching of the director 
distributions near the surface of the drop and near the center 
of the hedgehog. 

It therefore follows that drops of a nematic liquid crys- 
tal which also has a smectic phase represent the most suit- 
able objects in the search for phase transitions involving the 
structure of defects. We shall now consider a specific experi- 
mental situation. 
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$3. EXPERIMENTAL INVESTIGATION OF THE STRUCTURE 
OF HEDGEHOGS IN A DROP OF A NEMATIC 

Spherical drops were created by dispersing a liquid 
crystal in an isotropic matrix consisting of glycerin and a 
10% (by weight) addition of a solution of lecithin. The radi- 
us of these drops was 5-40 p. A sample inside a quartz or 
glasscell was placed in a heater where temperatures were 
kept constant within 0.1 "C. The temperature was varied at 
the rate of 1-0.2 "C/min. The drop textures were examined 
using a Peraval Interphaco microscope (made by Karl Zeiss, 
Jena, East Germany) modified by attachments for observa- 
tions in polarized light. 

Two substances were investigated: butoxyphenyl ester 
of nonyloxybenzoic acid (substance I )  and heptyloxyphenyl 
ester of octyloxybenzoic acid (substance 11). The parts of 
the phase diagrams of interest to us can be described as fol- 
lows: 

76°C 87 'C 

I: smectic A - nematic - isotropic liquid, 

69 'C 88.5'C 

11: smectic C - nematic - isotropic liquid. 

We shall first consider the experimental results ob- 
tained for substance I (Figs. 2 and 3). When observations 
were made with a polarizing microscope fitted with crossed 
Nicols, it was found that in the case of the forward rays a 
feature of each spherical drop of substance I in the smectic A 
phase was the presence of four extinction branches originat- 

FIG. 2. Textures and structure of spherical drops in a nematic with point 
defects (radial hedgehogs) at the center. The cores of the defects are 
identified by black dots. The diameters of the drops are 54 and 48 p. 
Crossed Nicols. Forward ray paths. Temperature of the sample 76.1 "C. 
a) Photomicrographs of the texture; b) distribution of the field of the 
director n. 

ing from the center of the drop and oriented along the direc- 
tions of polarization of the Nicols (Fig. 2a). The behavior of 
the texture on rotation of the sample and on introduction of a 
quartz wedge between the sample and polarizer agreed ex- 
actly with that described earlier2 for drops of a smectic A 
with normal boundary conditions and allowed us to con- 
clude that smectic layers in drops have a spherical concen- 
tric packing. In other words, the field of the director n con- 
tained an ideal radial hedgehog with the distribution (3)  
over the whole volume of the drop, with the possible excep- 
tion of the core region of the defect with a diameter less than 
0.5 y (Fig. 2). 

The radial structure was retained on increase in the 
temperature of the drop to about 76.8 "C, when a transfor- 
mation took place to a new structure with more complex 
textures shown in Fig. 3a. The new structure was axisym- 
metric and it was manifested in different ways, depending on 
the orientation of the drop in the matrix. The photomicro- 
graph in Fig. 3a represents the textures of two corresponding 
drops, in one of which (on the left) the symmetry axis lies 
along the optic axis of a microscope, whereas in the other 
(on the right) it lies in a horizontal plane at an angle of about 
45" relative to the direction of polarization of the Nicols. 

We shall consider the first of these structures. Its char- 
acteristic feature was the twisting of all the extinction 
branches and each branch was rotated by 180". Near the 
surface of the drop and also at its center (Fig. 3a) the extinc- 
tion branches were oriented along the directions of polariza- 
tion of the Nicols. When a cpartiwedge was forced-(with its 
thin end first) into the horizontal plane between the polariz- 
er and the sample, the interference color of the drop was 
enhanced in those quadrants of the investigated regions 
which were located along the direction of motion of the 
wedge and weakening of the color was observed in the per- 
pendicular direction. In the intermediate annular region 
where rotation of the extinction branches by 180" took place, 
the change in the color due to interaction of the wedge was 
opposite. These observations, together with the familiar fact 
that the extinction branches were always localized in those 
parts of the structure where the optic axis was parallel to one 
of the directions of polarization of the crossed Nicols," led 
us to the conclusion that the distribution of the long axis to 
molecules in this projection was of the form shown in Fig. 3b 
(on the left) : near the center of the drop and at its surface the 
molecules were distributed along radial directions, whereas 
in the intermediate region they were distributed in the per- 
pendicular direction along a circle with its center at the drop. 
The transition between the two regions occurred as a result 
of continuous reorientation of the molecules. It should also 
be pointed out that rotation ofa sample in a horizontal plane 
did not change at all the texture of the drop in this projec- 
tion, i.e., the distribution of the director field had a symme- 
try which was vertical relative to the plane of the figure, in 
agreement with the scheme shown in Fig. 3b (on the left). 

1We shall now consider the other projection of the drop 
(Fig. 3a, on the right). In this case at the periphery of the 
drop the distribution of the molecules was still radial. How- 
ever, in the central part there were three dark spots along the 
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FIG. 3. Textures and structure of the same pair of drops as in Fig. 2, but 
after transformation of a radial hedgehog into a hyperbolic one surround- 
ed by a disclination ring. Temperature of the sample 80 "C. a )  Texture of 
the drops; b )  distribution of the field of the director n (for the drop on the 
right the distribution of the molecules is represented by nail-like symbols; 
the head of the nail gives the direction of inclination of the molecule away 
from the observer); c )  general appearance of the structure in a drop with a 
hyperbolic hedgehog and a disclination ring. 

same diameter and one of them was located at the center of 
the drop. Rotation of the sample in a horizontal plane rotat- 
ed these spots together with a drop and the spots remained 
dark. Consequently, the optic axis near the spots was vertical 
and coincided with the optic axis of the microscope. On the 
whole, the structure of the drop in this projection had the 
form shown on the right-hand side of Fig. 3b. This was con- 
firmed also by observation in which a wedge was used. 

As already pointed out, the two drops shown in Fig. 3a 
had the same structure, but were rotated in different ways 
relative to the observer. When temperature was constant, it 
was possible to observe slow rotation of the nematic material 
in the drops in the course of which the texturzs described 
transformed into one another without any additional 
changes in the director field. The reason for such rotation 
could be, for example, the motion of the matrix or of foreign 
particles on the surfaces of the drops. Figure 3a in fact was 
luckily recorded at a moment when two neighboring drops 
were oriented in positions most convenient for analysis of 
the structure as a whole. 

The two projections described above set uniquely the 
general distribution of the director field in a drop (Fig. 3c),  
which was a characteristic combination of H (at  the center 
of the drop) and R (at the periphery) hedgehogs. The transi- 
tion between them occurred because of a nonsingular dis- 
clination ring of strength m = 1 with a core that "leaked 
away" and in which the molecules were oriented along a 
circle. For simplicity, we shall describe this structure as hy- 
perbolic. It follows from the experimental results that ~ t s  
symmetry is C,, . 

A few comments are due on the characteristic dimen- 
sions of hyperbolic structures. The radius of a disclination 
ring from 3 to 8 p for drops of 15-30 ,u radius at a tempera- 
ture of 80 "C. For example, the drops shown in Fig. 3a were 
characterized by radii of 27 and 24p, whereas the radii of the 
rings were 6 and 3p, respectively. As far as it was possible to 
judge by optical microscopy, the size of the cores of the H 
hedgehogs did not differ significantly from the size of the 
cores of the R hedgehogs and did not exceed 0.5 p ,  whereas 
the size of the core of a nonsingular disclination was approxi- 
mately 2 p. The disclination core was understood to be the 
region where the director could be regarded as parallel to the 
defect axis. It should also be pointed out that transformation 
of a hyperbolic into a radial structure reduced the size of the 
disclination ring compressing it to the center of the drop, 
whereas the reverse transition expanded the ring; the small 
dimensions of the disclination unfortunately prevented us 
from investigating this process in detail. 

As already pointed out, changes in the structure of 
hedgehogs in a drop occurred at 76.8 "C; the transition was 
reversible. Although this value differed from the smectic A -  
nematic transition temperature deduced from the phase dia- 
gram of substance I (76 "C), we could not assume that in this 
case we did separate unambiguously the R-H hedgehog 
phase transition point from the smectic A-nematic transition 
point. This was because the radial structure was the same in 
the smectic A and nematic phases and it was difficult to de- 
termine the moment of transition of one phase to the other in 
the specific case of a drop with an R hedgehog. 

This problem was avoided in the case of substance 11, in 
which case the nematic phase adjoined the smectic C phase. 
It was then possible to separate the radial structure of the 
nematic phase from the corresponding structure in the smec- 
tic phase without any serious difficulty, because the radial 
distribution of the field of the normal to the smectic layers in 
the C phase was accompanied unavoidably by the appear- 
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ance of one or two linear disclinations, originating from the 
center of the drop and clearly visible under a microscope 
(these are known as monopole structures, discussed in detail 
in Ref. 2). 

The H-R hedgehog transition and its reverse occurred 
also in substance 11. The transition point 71 "C was located 
in the range of existence of the nematic phase, because cool- 
ing to 69 "C (which was the point of transition of the nematic 
to the smectic C phase, in accordance with the phase dia- 
gram of substance 11) transformed a radial hedgehog into a 
monopole, a feature related uniquely to the nematic-smectic 
C phase. 

The transition accompanied by a change in the symme- 
try of the hedgehogs in the nematic phase of substance I1 was 
in all respects analogous to the transition in substance I de- 
scribed above. For this reason we did not reproduce addi- 
tional photomicrographs. 

Before undertaking a theoretical interpretation of the 
experimental results described above, we must point out that 
both substances did not exhibit just one hyperbolic structure 
but also others. In drops of small radius (down to 15p)  the 
extinction branches were rotated not by 180 "C, but by 90"; in 
drops of radius exceeding 30p,  such rotation could be 360" 
or more. In both cases these changes could be the result of 
slight modifications of the hyperbolic structure: in small " - - 
drops because of the small radius of the disclination ring it 
was difficult to detect the additional rotation of the director 
by 90" between the ring and the center of the drop, whereas in 
large drops the leaking away of the disclination was accom- 
panied by the formation of a double twist configuration. l 3  

One could not exclude, however, the possibility of appear- 
ance of structures fundamentally different from the hyper- 
bolic one, for example, in large drops it could be an R hedge- 
hog at the center and two disclination rings of strength 
m = 1 and m = - 1 around it. 

94. THEORETICAL DESCRIPTION OF THE TRANSITION 
BETWEEN RAND H HEDGEHOGS 

It is shown in $3 that in spherical drops of a nematic a 
change in temperature transforms the defect structure. We 
shall interpret this as a phase transition accompanied by 
lowering ofthe symmetry K ,  - C , ,  (in accordance with the 
pseudovector representation). In view of the degeneracy in 
respect of the orientations of the pseudovector order param- 
eter $ (i.e., the symmetry axis of the group C, ,  ), the free 
energy depends only on the terms with / $ I 2  and the transi- 
tion can be of the second order. This makes it possible to 
describe theoretically the effect on the basis of an expansion 
of F as a power series in I$l, which is small near the transi- 
tion point. 

The observed phase transition involves the macrostruc- 
ture of a nematic drop, so that the explicit forms of the ex- 
pressions for the order parameter $ and the free energy F ( $ )  
are governed by the distribution of the director n ( r )  of the 
low-symmetry structure. The construction of n ( r )  is the 
main task (and the principal difficulty) of a theoretical de- 
scription of the effect under discussion. Naturally, it is not 
possible to solve the equations describing the equilibrium of 

the director in such a geometrically complex system (in par- 
ticular when Frank constants K, can be arbitrary). We shall 
try to construct a test function no(r),  which depends on 
some "fitting" parameters and reflects qualitatively the 
main features of the structure. Then, minimization ofF(no) 
in terms of free parameters yields a more precise distribution 
of n. This approach can provide only a qualitative descrip- 
tion of the behavior of the system; it should be noted that 
since the free energy of the true distribution of the director is 
at the absolute minimum, the phase transition detected using 
the n( r )  ansatz will definitely occur in reality. 

Construction of the test function n,(r) will be carried 
out in two stages. We shall first obtain a "planar" distribu- 
tion representing the cross section of a drop by a vertical 
plane (Fig. 2b on the right) and then multiply it by the 
"leakage function" of a ring disclination (see Ref. 14). We 
shall consider the specific case when this plane is xz (z is the 
axis of the C, ,  group). Near each of these singularities in 
this cross section the director n is governed only by the char- 
acteristics of a given point, so that we can write down 

where a, b, a ,  and 0 are the fitting parameters mentioned 
above and lxo\ = po is the radius of a ring disclination. 

The requirement of the normal boundary conditions at 
r = R yields a = 1 - 2a and b = 1 - 20, whereas an 
allowance for the fact that the central hedgehog has the hy- 
perbolic structure with N = 1 yields an additional condition 
O < a < 1 / 2 < 0 .  

We shall adopt a cylindrical coordinate system and al- 
low for the leaking of the director along the disclination ring: 

noz=nr(P"sin LC (r) = ny ' )v  (r) [i+u2 (r) 1-'h, 

noQ=r~"sin  LL (r) =n:"u (r) [I+u2(r) I-'", (8) 

n,,=cos 12 (r)  =[1+v2(r) ] - I h ,  

where u ( r )  = tanP'u(r). The function v(r) should have 
the following properties: v - 0 near disclination lines 
[z2 + (p - po)2-+0] and v- co forp -0, r+ R, and also for 
po-0. 

The distribution (8)  can be substituted into the expres- 
sion for the order parameter 

The symmetry of the order parameter is such that (for the 
fixed z axis), we have $p = $p = 0. This imposes additional 
conditions on the nature of the function v(r). Omitting 
lengthy intermediate steps, we shall write down the simplest 
expression for u(r) satisfying the above requirements: 

where y is a new fitting parameter governing the radius of 
the effective leakage region. Substituting Eq. (9)  into Eq. 
(8) ,  we obtain the components of no(r) with three free pa- 
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FIG. 4. Dependence of the order parameter ~, on the radius of a disclina- 
tion ring (represented by the dimensionless parameter p,,/yR ) .  

rameters a,p, and y. Clearly, the physical quantity associat- 
ed with the phase transition is the radius of the disclination 
ring or the dimensionless parameter p,,/R. The dependence 
of the order parameter $, onp,/R (for a fixed orientation) 
obtained by numerical integration for values a = 0.45, 
p = 0.55, y = 10W3 is shown in Fig. 4; in the case of low 
values of p,/yR, we have 

v2% (513~)  (poIR) +O (polyR) 3. (10) 

The linear relationship (10) which applies near the 
phase transition makes it possible to replace the Landau the- 
ory expansion 

F=Fo+AI$12+BI$14+. . . 
with the expansion of the free energy in powers ofp,/R: 

F=F,+Cl(p,/R)2+C,(po/R)'+ . . . , (11) 

where C, = ( 5 / 3 ~ ) ~ A .  We can see that the transition point 
(if such exists) is not shifted by this replacement; moreover, 
it is the parameter p,/R which is the observed quantity. 
Therefore, we shall use Eq. ( 11 ) bearing in mind the above 
comments on the symmetry of the order parameter I). 

Before listing the values of the coefficients F,,, C,, and 
C2 obtained on integration of F{n,), we must mention an- 
other point. It is known that the distributions of the director 
around the points occupied by an R or H hedgehog have an 
integrable singularity. Near this singularity the "melting" of 
a nematic takes place (see Ref. 15 for a similar effect in a 
dislocation core), so that the quantity Q in the orientational 
order parameter QaB = Q(n,na - Sa0/3) tends to zero at 
the singularity. The relevant estimates are obtained in the 
Appendix, where it is shown that, for example, in the case of 
an R hedgehog at  the point r = 0, we have Q o: r for r < E  

(E is the characteristic radius of the defect core and 
Q = const when r k E ) .  The need to allow for this cutoff ap- 
pears on expansion of the density of the free energy as a series 
inp,/R and integration term by term. An estimate of E [see 
Eq. (A.4) ] gives E- 100 A. 

Subject to these qualifications, the free energy ( 11 ) of 
the low-symmetry phase is characterized by the following 
coefficients: 

Pn=8nXllR=FR, 

C,= (16n/3y2) R('/lK33+K22-2K,l), (12) 

C~=(~/~4)~{"/loI~11-'113K23-32/i5K33 

It should be pointed out that the coefficient C ,  in front 
of (po/R)' is independent of the fitting parameters; in our 
opinion, this is an advantage of the selected test function 
no( r ) .  It should be mentioned also that Fo is equal to F , ,  
which is the energy of a purely radial hedgehog. 

The expressions ( 11 ) and ( 12) represent a Landau-the- 
ory expansion for second-order phase transitions. The coef- 
ficient in front of (p,,/R )' changes sign at the point A = K,,/ 
2 + K,, - 2Kl ,  = 0. I t  should be stressed that well inside 
the nematic phase most substances are characterized by 
A<O: in the case of MBBA at 22°C we have 
A = - 4.5X dyn, for PAA at 125 "C, we find that 
A = - 1.3 X l o p 7  dyn, etc. Therefore, as expected (see 992 
and 3) ,  the structural phase transition for an R hedgehog to 
the low-symmetry ( C * ,  ) phase occurs when temperature is 
increased from the nematic-smectic transition point. The 
temperature dependence of the Frank elastic constants have 
been analyzed in detail in several theoretical16." and experi- 
mental' ' 9 ' X  investigations. The results of these investigations 
show that near the nematic-smectic transition the smectic 
fluctuations give rise to a critical divergence of the moduli of 
K,, and K,, in accordance with the law 

where d is the interlayer distance in the smectic phase, and 
j and j, are the correlation radii of fluctuations along and 
across the normal to the layer, respectively, both exhibiting a 
similar temperature dependence: j a T " ( v  = 0.5). The ra- 
tio g i l /{, depends on the molecular parameters of the sub- 
stance; in the case of the usual low-molecular liquid crystals, 
we have j ,  /{, -4 - 5. 

It therefore follows that near the transition to the smec- 
tic phase the parameter A can be described by 

and it vanishes (and then reverses its sign) at the point 
SK2, =: - 0.1 A". 

At this stage for the sake of clarity we have to obtain 
some estimates using specific values of KJJ . Unfortunately, 
we found no published data on the Frank elastic constants of 
the investigated substances I and 11. For this reason we shall 
obtain estimates using the data on a mixture of cyano- 
biphenyls, which also has a smectic A phase: 
K y ,  = 0.8 x 10Wxdyn, K y, = 0.6 x loWh dyn, and Kc:, 
= 1 . 3 ~  loW6 dyn. In the case of the parameter A, we find 

that A" = - 0.4X 10-'dyn. The phase transition point cor- 
responds to SK22=:3 x l o W X  dyn and SK3,=6.4x lo-' dyn. 
Therefore, near the transition point the renormalized con- 
stants of the nematic have the following values (dyn):  
K , ,  = 0.8X loWh,  K22=:0.63X K33=: 1.94X lo-'. US- 
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ing the thermodynamic parameters of cyanobiphenyls, lR we 
can now estimate the shift of the temperature of this transi- 
tion from the nematic-smectic A transition: if 
SK,,/K :, 2 0.5, we find that AT- 1 - 5 T. 

An important aspect is the nature of the transition, i.e., 
the sign of the coefficient C, in Eq. ( 11 ) . Substituting into 
Eq. ( 12) the Frank elastic constants K# corresponding to 
the transition point, we obtain 

We shall minimize the free energy in respect of the param- 
eters a, fl, and y (in general, these parameters depend on the 
ratios K,,/K,, and K,,/K, ,, but for the sake of simplicity we 
have substituted here the numerical values of the constants). 
The optimal parameters of the test function n,(r) of Eq. (8)  
are a*z0.5,  f l*z0.5,  y*--,O.l(&/R), whereas the coeffi- 
cient C, is described by 

It therefore follows that the phase transition between 
defect structures in a drop of a nematic liquid crystal is of the 
second order. The order parameter of the low-symmetry 
phase is described by 

It should be stressed that the conclusion on the nature 
of the transition and Eqs. (14)-(16) are valid for specific 
values of the Frank constants of a specific substance. In gen- 
eral, the problem of the nature of the transition requires con- 
struction of the phase diagram in terms of the variables 
K2,/Kl, and K,,/K, ,. The A = 0 transitions are represented 
by the straight line K,,/K, , + 0.5K3,/K,, = 2, and the con- 
dition C, > 0 corresponds approximately to K2,/ 
K,,  + 0.58K3,/K,, < 2.43. We can easily show that the last 
condition is always satisfied on the A = 0 line, i.e., in our 
approximations the phase transition under discussion is al- 
ways of the second order. 

We can estimate the range of validity of the Landau 
theory for the description of the transition by determining 
the average value of the square of fluctuations of the order 
parameter ( (A$) ' ) .  This is known to be governed by the 
susceptibility of the systemx = V(8 2F /d$') - I .  In our case, 
below the transition point, we have 

<(A$)2>-T/24R(AI. 
The square of the order parameter ( 16) can be represented 
in the form (t,h)'z 18 (Al/K, I. Hence, the condition of valid- 
ity of the Landau theory when ( $ ) 2 ~  ((A$)2) is the in- 
equality 

I A 1 > (KllT/400R)'~-10-1~ynn. (17) 

We can see that there is a fairly wide range of values of A 
in which the above expansions are justified and, therefore, 
we can use the description of the phase transition developed 
above. 

45. CONCLUSIONS 

We have described above an experimentally detected 
phase transition between the states of topological defects in a 
drop of a nematic, which occurs because of a change in the 
Frank elastic constants caused by temperature variation. In 
spite of the great complexity of the distribution of the direc- 
tor in the structures, the majority of the observed effects can 
be described qualitatively. The most interesting feature is 
that in a thermodynamically stable system there may be 
transitions between inhomogeneous states and these are 
analogous to ordinary second-order phase transitions. The 
range of validity of this analogy is yet to be decided. It may 
be that transitions of the kind described above play an im- 
portant role also in the formation of blue liquid crystal 
phases. lo  

The transition discussed by us in 993 and 4 is accompa- 
nied by the K, +Cmh change in the symmetry and is de- 
scribed by an order parameter of the pseudovector type. 
However, we have not considered all the possible transitions 
involving R and H hedgehogs. Examples of other transitions 
can be mentioned conveniently in conclusions. 

For example, a transition from an R to an H hedgehog, 
considered briefly in 92, is accompanied by the symmetry 
change K, +Dm, and is analogous to the isotropic liquid- 
nematic transition, i.e., it is a first-order phase transition 
with the order parameter in the form of the second-rank 
tensor Qap . 

In the case of continuous transformations of R hedge- 
hogs, the principle of maximum symmetry5 makes it possible 
to restrict the analysis to structures of the limiting symmetry 
classes based on an H hedgehog. A group-theoretic analy- 
sisI9 shows that second-order phase transitions can occur 
not only in accordance with the pseudovector, but also in 
accordance with the pseudoscalar and vector representa- 
tions; as a result, structures with the symmetry groups D, 
(chiral phase) and C,, (polar phase) are formed. We can- 
not exclude the possibility that the transition to the phase 
with the D, symmetry is realized also in large nematic 
drops (see 92) in which clearly the leakage of a disclination 
ring to the third dimension is accompanied by distortions of 
the double twist type. A detailed study of this and other 
structures would be of considerable interest. 

APPENDIX 

Characteristics of the core region of a point defect 

An analysis given below of the core region of a point 
defect (hedgehog) is only schematic and approximate, and 
in particular we shall ignore the critical behavior of the con- 
stants K,, and K,,, which underlies the effect considered 
above. The density of the free energy of a nematic with the 
order parameter Qap = Q(n, np - Sap/3) is 

f=MQa~"+NQaeQelQart-L(Qaa") '+ Pl (drQae)  z + P z ( & Q a ~ ) 2 -  
(A.1) 

Here, the parameters M, N, and L describe a homogeneous 
nematic order, whereas P, and P, describe the elasticity of a 
nematic [K,, z 2 Q  2(2P1 + P2), K,,zK3,=4Q 2P, 1. 

Since far from the transition to an isotropic liquid we 
have IMQ '1 - LQ $ NQ ,, it follows that theequilibriumval- 
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ue is Q * - ( 3  IM l/4L) ' I 2 -  1. However, near a singularity in 
the equilibrium equation S F  /SQ = 0, the main role begins to 
be played by the gradient terms 

-'/,(Pi+P2) V2Q+ ( 4 P i f  5//JP2)Q (d iv  n )  ' 
+4PiQ(rot n)2-'/sP2Qn,~,(div n )  =O, (A.2) 

which in fact determine the equilibrium dependence Q( r ) .  
Substituting in Eq. (A.2) the distribution of the director of 
the investigated hedgehog, we can find the asymptote of Q in 
the limit r-0. For example, for an R hedgehog we have 
n,  = 1, no  = n ,  =OandhenceweobtainQccQ*rp\where 

6 (6-1)=(12P,+11Pz)/2(P,+Pz), 6-2.8. (-4.3) 
An important aspect in our case is an estimate of the 

dimensions of the region where Q decreases significantly, 
i.e., of the radius E of the defect core (see Ref. 15). The order 
of magnitude of E corresponds to the distance at which the 
contributions made to the free energy of Eq. (A . l )  by the 
gradient terms become comparable with those of the spatial- 
ly homogeneous terms. Assuming that Q = Q * applies out- 
side this radius and Q = Q * r p s  inside the region, we obtain 
the condition 

11111 ~"12P,+6.5P,-6 (6-1) (P,S-P,) , 
and hence for 6 - 3, Q * - 1, K,, - K , ,  the required estimate 
of E for R and H hedgehogs is 

E - ( ~ K / ~ I M / ) ' " .  (A.4) 

Far from the transition to the isotropic liquid we have 
lM I - lo7 erg/cm3 so that E -  100 A. 
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