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The development of turbulence on the surface of a liquid when it is parametrically excited is 
investigated experimentally and theoretically. It is shown that modulation in the form of 
quasiperiodic "focusing" appears with increase of the supercriticality E on the background of 
the Faraday ripple, and with further increase of E this focusing goes over (via intermittency ) 
into spatiotemporal chaos. The dynamical nature of the observed chaos is established and a 
theory that gives a satisfactory description of the observed phenomena is constructed. 

1. INTRODUCTION 

The problem of the parmetric generation of waves by a 
uniform oscillating field is interesting for many areas of 
physics-the generation of Langmuir waves in a plasma, of 
spin waves in ferromagnets, and of waves on the surface of a 
dropping liquid, a liquid dielectric in an electric field, or a 
ferromagnetic liquid in an alternating magnetic field. One 
unexpected manifestation of the parametric instability is the 
appearance of wave formations on the surface of a molten 
metal heated by modulated ion beams5 

The parametric excitation of surface waves on water in 
a varying gravitational-force field was investigated long ago 
and is the most visualizable of the phenomena mentioned 
(the first observation was made by Faraday in 1831). On this 
subject there is now a large number of theoretical papers, 
which are mainly devoted to determining the threshold for 
generation and to finding the amplitudes of the stationary 
standing waves in different  approximation^.^ It is obvious 
that such a formulation of the problem is justified only for 
parametric excitation of not-too-high modes of a high-Q res- 
onator. In a sufficiently long system spatially nonuniform 
nonstationary distributions of wave fields should be ob- 
served. Such distributions and the onset of capillary-wave 
turbulence have been detected on the surface of silicone.' 
Below, this phenomenon is investigated in detail, and a the- 
ory of it is constructed. 

We draw attention to the fact that the capillary-ripple 
parametric turbulence investigted here is not described by 
the familiary S-theory of Ref. 2, since even for extremely 
large supercriticalities, when the capillary ripple is already 
"random," the spatial spectra in the experiments are not 
continuous but have the form of a set of smeared peaks. 
Thus, in the experiments a situation is realized in which it is 
necessary to describe the development of spatiotemporal 
chaos in the ensemble of capillary waves in the framework of 
a purely dynamical model, without apriori hypotheses con- 
cerning, say, the absence of correlation of the phases of pairs 
of parametrically excited waves. For this, in the present pa- 
per, we use parabolic equations for the plane capillary 
waves. 

2. EXPERIMENT 

A description of the apparatus and the results of the 
first series of experiments are given in Ref. 7. In this series of 
experiments we used silicone with the following parameters: 
density p = 0.9 g/cm3, surface-tension coefficient a = 23 
dyne/cm, and kinematic-viscosity coefficient v = 0.04 cm2/ 
sec. A capillary ripple was excited on the surface of a thin 
layer (of thickness - 10 mm) of the oil, deposited onto a 
vibrating metal plate. The boundary of the layer was a ring 
with inner diameter 18 cm. At a pumping frequency - 140 
Hz capillary waves with frequency f= 70 Hz were excited. 
Here the wavelength was A G 3.2 mm, and this guaranteed 
fulfillment of the deep-water condition. 

Allowance for the vibrations of the liquid layer can re- 
duce to the introduction of an oscillatory correction to the 
acceleration of free fall. When the amplitude G of this cor- 
rection exceeded a certain threshold value G, (G, ~ 4 . 2 g  at 
the pumping frequency 140 Hz), there appeared in the cen- 
ter of the cuvette" a Faraday ripple which, in the reflected 
light of the pumping lamp, gave an image in the form of a 
network with square cells. The calculations give good agree- 
ment of the threshold G, with the results of theory for the 
spatially uniform excitation of a standing wave (Ref. 8).2' 
For supercriticalities E = G/G, - 1 ~ 0 . 2  the Faraday rip- 
ple filled the whole surface of the layer. However, even for 
E < 0.2 modulation appeared in the contrast of the image of 
the primary cell structure, in the form of bands stretched 
along the principal axes of the network (Fig. 1 ) . With strong 
illumination of the surface, the principal observed features 
were troughs (dark bands) in the distribution of the con- 
trast.' The system of dark bands was in continuous motion, 
which became faster and more complicated with increase of 
the supercriticality. Thus, we observed displacement of the 
bands, parallel to themselves and with unchanged orienta- 
tion, mainly through distances of the order of the size of a 
band, changes of brightness, the creation and disappearance 
of troughs, and also rotations, discontinuities, etc. At low 
supercriticalities the almost one-dimensional modulation 
along one of the principal directions of the network could be 
replaced spontaneously, after a time of the order of 10 sec, by 
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FIG. 1. Structures of the capillary ripple on the surface of a vibrating layer 
of silicone upon increase of the supercriticality E: a )  E = 0.4; b )  E = 0.53; 
c )  E = 1.13. 

modulation along another direction. By visual estimation, 
the characteristic times of the enumerated changes in the 
system of bands decreased from values - 1 sec at  low super- 
criticalities to tenths of a second at  E = 1. With increase of the 
supercriticality the spatial pattern of the modulation became 
more and more two-dimensional and disordered; see Fig. lc. 
For E z 1.7 drops began to break away from the surface of the 
layer. 

As is well known, the appearance of a Faraday ripple is 
due to the parametric generation of pairs of oppositely mov- 
ing waves. In the case of excitation of two wave pairs with 
orthogonal fronts the cells of the surface relief have the form 
of squares. I t  is natural to postulate that the observed modu- 
lation of the image contrast is due to spatiotemporal modula- 
tion of the amplitudes of the parametrically excited  wave^.^' 

FIG. 2. Transverse modulation of a standing ripple wave outside the re- 
gion with square cells (supercriticality E = 0.1 ). 

Analysis of the periods of the modulation suggests that for 
the complex amplitude a of the waves the conditions for 
smooth variation in space are fulfilled: 

where x and y are the directions of propagation of the wave 
pairs, and k is the wave number. In particular, for a typical 
modulation with period 3R the left-hand side in ( 1 )  is - 0.33. The narrowness (used here) of the spatial spectra of 
the wave packets is confirmed by the results of an optical 
spectral analysis of images of the surface.' The spectral anal- 
ysis also makes it possible to conclude that there was no 
breakdown instability, the threshold of which (when every- 
thing is taken int account) was not exceeded in our experi- 
ments. 

For the construction of a theoretical model of the ob- 
served phenomenon the question of which of the modulation 
mechanisms is realized in the case under investigation is fun- 
damental. The answer to this question was obtained by 
means of a direct experiment, the results of which are pre- 
sented in Fig. 2. The contrast distribution shown in Fig. 2 
was observed for E < 0.2, when the cellular network has not 
yet filled the whole surface of the layer. I t  can be seen that on 
the periphery of the square network there is a region filled by 
linear bands ("rolls"), which, obviously, is a visualization of 
a standing wave with plane fronts. On the background of 
these fronts one can see contrast bands,which are arranged 
at right angles to the plane-wave fronts. In  other words, the 
modulation arises as a result of an instability of the trans- 
verse type (analogous to focusing), when the corrections to 
the wave vectors are strictly orthogonal to the wave vectors 
of the original waves. The dark bands visible in Fig. 2 moved 
practically without noticing the boundary between the 
squares and the rolls. I t  follows from this that the presence of 
an orthogonal pair of waves does not hinder the onset of 
focusing modulation of the original standing wave. There- 
fore, we can expect an explanation of the observed effects in 
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the framework of a comparatively simple model that takes 
into account the excitation of only one wave pair and the 
modulation of the amplitudes of the waves in the direction 
transverse to their front. The appropriateness of this model 
is also confirmed by the facts that a )  regimes with practically 
plane modulation fronts were observed (Fig. l a ) ,  and b )  the 
two-dimensional modulation at  not-too-large supercriticali- 
ties was a superposition of regimes with one-dimensional 
modulation (Fig. lb) .  

The results presented in Fig. 1 suggest that the depen- 
dence of the observed pattern on the bend of the boundaries 
of the layer is weak. Taking into account also the qualitative 
agreement of the results for complete and partial filling of 
the surface of the layer by the capillary ripple, we can con- 
clude that reflection from the boundaries has only a weak 
effect on the dynamics of the wave field. This fact is ex- 
plained by the absolute character of the parametric instabil- 
ity. The nature of the feedback that leads to the absolute 
instability in the given case is similar to that which obtains in 
the capture of parametrically excited waves by pumped 
 pulse^.^ Namely, the absolute instability guarantees the ob- 
served preservation of the cells when extra walls, extraneous 
bodies, etc., are placed in the cuvette. The presence of the 
absolute instability in the medium is what makes the effect 
under consideration fundamentally different from the classi- 
cal self-focusing of wave beams: In the present case, the mod- 
ulation of the wave field has a self-oscillatory character (en- 
ergy losses due to viscosity are compensated by the pumping 
source). 

3. THEORETICAL MODEL 

The results cited in Sec. 1 suggest the possibility of using 
averaged equations for the analysis of the dynamics of the 
wave field. Here, the principal part <(x,y) of the deviation of 
the level of the surface is represented in the form of a sum of 
four waves: 

where a ,  and b . are the complex amplitudes of the waves, 
and w = (a /p) ' I2k3l2  is the capillary-wave frequency, 
which is assumed to be equal to w, /2 (w, is the pumping 
frequency). To realize the averaging procedure we need not 
only conditions of the type ( 1 ) and analogous conditions on 
a a l a t  but also the condition that the nonlinearity should be 
small, which, in the case of surface waves, imposes a restric- 
tion on the slope of the surface: IV< I 1. Measurements of 
the slope performed using a narrow laser beam at E s 1 gave a 
value I Vf / ~ 0 . 6  that does not rule out the possibility of using 
averaged equations. 

Using the expression y = 2vk for the damping con- 
stant y of a weak capillary wave," we find for the relative 
absorption the value y/w ~ 0 . 0 7  < 1. The spatial damping is 
characterized by the parameter vg /yA s 3.4 (u, is the group 
velocity of the capillary waves). An essential role in this 
problem is played by the magnitude of the parameter a/<, , 
where S = ( 2 v / ~ ) " ~  is the thickness of the viscous bound- 
ary layer, and <, is the characteristic value of <. When 
a/[, $1, the boundary conditions at the surface z = < (x,y ) 

can be reduced to conditions at  the unperturbed level z = 0 
both for the nonviscous component and for the viscous com- 
ponent of the velocity field of the medium in the surface 
wave. Because of the weak deformation of the boundary lay- 
er the nonlinear corrections to the absorption are small, but 
they are important at low supercriticalities.' ' In the limiting 
case of a thin boundary layer (S/<, 4 1 ) , allowance for the 
damping reduces to the introduction of linear absorption 
with damping constant y (Ref. 10) into the reduced equa- 
tions for the ideal medium. For our experiment, setting 
IV[ I ~ 2 k  la 1 and [, =4/ a 1, we obtain, at supercriticality 
E E  1, the estimate a/<, ~ 0 . 2 2 .  Since we intend to describe 
the chaotic regimes at not-too-low supercriticalities, we 
shall use the approximation of a thin boundary layer. 

For the derivation of the reduced equations we shall 
make use of the results of the Hamiltonian description of the 
nonlinear interaction of gravitational-capillary waves." In 
contrast to Ref. 12, when we go over to the approximation of 
narrow wave packets it is necessary to retain four packets, 
which correspond to the two pairs of oppositely moving 
waves (2 ) .  In the limit of capillary waves these reduced 
equations take the form 

da, da, 1 . u, a2a, i u, aka, 
-*u&,--- L------ 

d t  ax 4 k dx2 2 k dy2 
+ ya* 

where 

We note that the slope of the surface, the scale of the 
spatial modulation, and the thickness of the viscous bound- 
ary layer in the experiments performed were such that the 
approximations used in the derivation of ( 3 )  were close to 
their limits of applicability. Taking into account also both 
the absence in (3 )  of radial nonuniformity of the pumping 
and difficulties with the formulation of boundary conditions 
at  the edges of the layer, we must regard the system ( 3 )  as 
only a model. However, even in the framework of this model 
one can succeed in explaining the principal observed effects. 

In the initial stage of the excitation of waves from the 
noise ( la,  1-0, Ib, I -0 ) ,  the system of equations (3 )  de- 
composes into two independent systems of equations for a ,  
and b . . To the excitation of an elementary wave pair, prop- 
agating along the x axis, there corresponds a solution of the 
form a. (x,t) =a0, (t)exp( f iAkx), where Ak<k  is the 
shift (from k )  of the wave number of the waves of the pair. 
The detuning from resonance for the frequency of each of the 
waves of the pair in the linear approximation is equal to 
p= w ( k + Ak) - a,,, z v g  Ak. Since the excitation of wave 
pairs begins when the pumping exceeds the threshold value 
H = y, the supercriticality E can be represented in the form 
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E = H / y  - 1. To go over to real amplitudes and phases we 
must set a$ = A  + exp(ip, ). In the regime of stationary 
generation of an elementary wave pair (d  /at = 0)  the ampli- 
tudes of the waves are equal, and the phase difference 
p+ - p- is arbitrary. The two regimes of stationary genera- 
tion are determined by the relations 

where @ = p+ + p-. Only the regime with parameters A ,  
and @, turns out to be stable against spatially uniform dis- 
turbances. Because the phase difference is arbitrary, it is pos- 
sible that it can build up the action of the intrinsic noise of 
the medium. Below we shall assume that this drift of the 
phase proceeds substantially more slowly than the dynami- 
cal processes under c~nsideration.~' 

The excitation of one pair of waves, modulated at right 
angles to the front (i.e., along they axis), is described by 
solutions of (3)  of the form 

Omitting the tilde over the amplitudes a ,  , we obtain for 
them the equations 

The detuningfl plays in (5)  a fundamental role, since in the 
absence of dependence of a ,  on x it enables us to describe 
frontal modulation with different wave numbers of the capil- 
lary wave. The simplest stationary (d  /at = 0) states of the 
system (5) (solitons and periodic beats) were found in Ref. 
13. However, in Ref. 13 it was proved that these states are 
unstable "in the small", and so we cannot invoke them to 
explain the experiments described in Sec. 1. 

We shall show that the problem of the one-dimensional 
modulation of the square cells can also be reduced to the 
solution of a system of the form (5).  We make in (3)  the 
replacement5' 

Considering the distributions ii , (y) and 6. (y), which os- 
cillate repeatedly over the length 1, of the system, we intro- 
duce the operation: (...) = 1/12$$ ( ... )dy, application of 
which makes it possible to eliminate derivatives with respect 
toy from the equation for ii , and 6 + . Since the operator 
ugd/dy appearing in the equation for 8, is considerably 
more sensitive than the operator (vg/2k)d 2/dy2 to the small 
width of the wave packet, the deviations 
b ; = b * - (8 , ) of 6 + from its average value turn out to 
be small. In fact, taking into account the condition 
lb ', 14 1 ( h  , )), we obtain for b '+ - an equation of the form 

where (ii + 1 :  = /ii , l 2  - ( ( 5  + I*). Application of the aver- 
aging operation to the system of equations for ii * and 6 + 

makes it possible to relate (6, ) to the average (5 * ) and to 

averages of nonlinear combinations of ii , . For the ampli- 
tudes ii + themselves we obtain a system of equations of the 
form ( 5 ) ,  but with different values of the detuning and 
pumping: 

$+~+R(l<F+>12+l<F_>(') ,  H-+H+F(b+><b-). 

Denoting the scale of the modulation along y by Ay and 
assuming that la + I ,  ( b  , ), and ( ( a  , ( 5  ) ' I2  are quantities 
of the same order, we obtain the estimates 

Then for a narrow wave packet (kAy % 1 ) we obtain from 
(6)  the estimate 

Thus, within the limits of applicability of the system ( 3 )  
there exists an analogy between the processes of the one- 
dimensional modulation of the square cells and the trans- 
verse modulation of the rolls. 

Before moving on to study the system (5) ,  we shall dis- 
cuss the question of the existence of uniform (in the direc- 
tion of propagation) regimes in a bounded system. In the 
case of one wave pair, distributions that are nonuniform in x 
are described by the system of equations 

We shall consider first the stationary solutions of ( 7 )  in the 
case of complete absence of reflection of waves from the 
boundary:~, = Oatx =Oanda- = Oatx = /,.Goingover 
to real amplitudes and phases, we obtain the equations 

v,dA+/dx=HA- sin 0-yA+,  v,dA-/dx=-HA+ sin @+ yA-. 

(8)  

In addition, the stationary problem has an integral of the 
form 

A+A- cos (D+(T-S)A+2A-Z/2H=C=~on~t. ( 9 )  

For complete absence of reflection at the edges, C = 0. As a 
result, the systems (8 )  and (9)  are transformed to the form 

~,~A+/~X=~HA-(~--IZA+~A-~)"-~A+, (10) 
v , d A - / d x = ~  HA- ( i-?A+'A-') "'+yA-, 

where r = ( T - S ) / 2 H .  The equations ( 10) have the inte- 
gral 

A+2+A-2=* (2ylrH) arcsin ( rA+A- )  + const 

and can be integrated in quadratures. However, a qualitative 
investigation of them appears to be more visualizable. The 
phase space of ( 10) is two-sheeted, and the splicing of the 
sheets correspoding to the different signs in ( 10) is along the 
hyperbolas IA+A-I = r. The phase plane for the system 
( 10) with the first sign in front of the square root is shown in 
Fig. 3. The phase portrait of the second sheet is the mirror 
image, about the axis A -, of the phase portrait shown in Fig. 
3. The trajectories corresponding to the solution of the sta- 
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FIG. 3. Phase portrait of the system (10). 

tionary boundary-value problem pass from the line A + = 0 
to the line A -  = 0 over an interval in x equal to the length I, 
of the system. If the length of the system is considerably 
greater than one-quarter of a period of revolution about cen- 
ter, i.e., if I, ) 1/2av, ( H  - y 2 )  -'I2, the phase trajectory 
corresponding to the simplest (principal) mode of station- 
ary generation passes near the saddle-point separatrix. At 
not-too-low supercriticality this condition is fulfilled in the 
experiments (Sec. 1 ), since many scales of linear damping of 
waves are accommodated over the length of the system: yl,/ 
v, 9 1. The distribution of amplitudes in the principal mode 
for yl,/v, = 10 and& = 1 is shown in Fig. 4. The fact that the 
phase trajectory stays near the saddle point for a long time 
implies that in the larger part of the layer the field is close to 
being a uniform standing wave: 

In this region the wave number of the capillary wave ac- 
quires a correction Ak = + v,dp * /dx = const, to which 
corresponds the frequency detuning 

In a long layer there is a finite number of stationary-genera- 
tion modes, to which correspond phase trajectories execut- 
ing one or more revolutions about the center. To answer the 
question of the stability of the different stationary regimes 
we integrated the partial differential equations (7 )  numeri- 
cally,@ It was found that, even in the case of initial sources 
oscillating rapidly in space, a distribution in the form of the 
principal mode is established (Fig. 4 ) .  Thus, in a long layer 

FIG. 4. Structure of the stationary-generation field, corresponding to the 
principal mode in the complete absence of reflection from the boundaries 
of the layer (2. = A .  [ ( T + S ) / y ] ' i 2 ,  .i = yx/v , ) .  

there is a tendency toward the formation of a distribution 
which is uniform over the larger part of the length of the 
layer and to which corresponds a definite value of the fre- 
quency detuning fl. The "roughness" of this state makes it 
possible to disregard in ( 7 )  the dispersion for the envelope 
curves. 

We note that an analogous analysis (with allowance for 
finite reflection from the boundaries) gives a value of f l  
which, depending on the sign of the constant C in ( 9 ) ,  can 
differ from ( 11) in either direction." In addition, as shown 
by the numerical integration of (7) ,  from a given initial dis- 
turbance a profile of the type shown in Fig. 4 is rapidly 
formed, with a uniform central part within which the expres- 
sions (4 )  are valid. However, the value offl within the uni- 
form region was smaller by a factor of 2-2.5 than that given, 
and reached the level ( 1 1 ) only after a long time ( yt - 200- 
300). Finally, in the presence of modulation of a * along the 
transverse coordinate y, we can expect other effective values 
of8,  since the stability condition should now be satisfied by 
an a * profile with modulation along y. For the reasons enu- 
merated, in the investigation of the steady-state regimes of 
focused modulation in the framework of the one-dimension- 
a1 model (Eqs. (5 )  the value of the detuning fl remains an 
undetermined parameter. In choosing it we must be guided 
by comparison with the results of experiment, regarding 
( 11) only as an estimate of the quantity 8 .  

4. THE FOCUSING INSTABILITY. THE ONSET AND 
DEVELOPMENT OF SPATIOTEMPORAL CHAOS 

Confining ourselves to an investigation of the modula- 
tion of standing waves, in (5 )  we set 
a, = a(y,t)  Xexp( + tip,), where p, is the constant phase 
difference of the waves in the pair. After changing to dimen- 
sionless variables u = a [ (S + T)/y] 'I2, 7 = y (u, / 
2yk)-'I2, and .r = yt, we obtain the following equation for 
u: 

whereu = fl /y and h = H /y are the dimensionless detuning 
and pumping parameters. Because of the phenomenon of 
synchronization of the phases of wave pairs (see below), 
passing from (5 )  to one equation does not lead to loss of 
generality when we are considering steady-state processes.*' 

Equation ( 12), which contains the dependence of the 
energy source on the phase of the field, may be called the 
parametric analog of the Ginzburg-Landau equation. To in- 
vestigate the focusing instability of the stationary uniform 
state u = u, we set u = u, + $ and make use of Eq. ( 12) 
linearized with respect to $: 

For u, we use the value of the field in the stable (against 
uniform perturbations) stationary state [see the expressions 
( 4 )  for A ,  and @ , I .  Substitution into ( 13) of the solution in 
the form 

( C , , ,  = const) leads to the following expression for the 
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modulation frequency: 

For a> 0, instability arises in the interval 

for - ( h  - 1 ) < a < 0 the boundaries of this interval are 
exchanged. The maximum growth constant is reached at 
(x, ( = [a + 2(h - 1)'12 ] ' I2  and is equal to (Im a),,, 
= (2  + 1)'12 - 1. With decrease of a the value of Ix, I 

decreases monotonically, and at the boundary of the exis- 
tence of the stationary regime (a = - (h - 1 ) ' I2 )  becomes 
equal to (x, I = (h - 1 ) 'I4. If we assume that the period of 
the steady-state modulation is determined by the most rapid- 
ly growing disturbance, the characteristic period of the mod- 
ulation along y should not exceed the quantity 

For the conditions of the experiments described in Sec. 1, at 
supercriticality E = 0.2 we obtain A,,, =4A, and at& = 1 we 
have A,,, ~ 2 . 4 i l .  These estimates agree well with the fact 
that in the experiment modulation with periods greater than 
4A was practically not observed. 

To investigate the steady-state regimes of focused mod- 
ulation we integrated Eq. ( 12) numerically. After introduc- 
tion of the variable n = VQ - ' I 2  (Q = const) and replace- 
ment of d 2/an2 by the second difference, Eq. ( 12) goes over 
into the discrete analog of the parametric Ginzburg-Landau 
equation (in analogy with Ref. 15) : 

If we introduce the parameterp, equal to the number of dis- 
cretization steps in the wavelength il of the capillary wave, 
we obtain Q = (v, /yil )p2/471. 

The system ( 14) replaces the active medium by a chain 
of coupled parametric generators, each of which is equiva- 
lent to an elementary block of the medium, with lengthil /p. 
The coupling between the generators vanishes in spatially 

uniform oscillations of the chain (in which u, does not de- 
pend on n ) .  The indicated analogy makes it possible to intro- 
duce an element of physical modeling into the numerical 
solution of ( 13). However, it should be remembered that the 
representation ( 14) approximates to the original partial dif- 
ferential equation only when Re u, and Im u, change little 
over one link of the chain (the coupling builds up smoothly). 
Another, not unimportant advantage of using ( 14) rather 
than the formal network procedures is that the original par- 
tial differential equation reduces to a finite-dimensional dy- 
namical system. This makes it possible to use for the analysis 
the well-developed apparatus of the theory of dynamical sys- 
tems. 

The system of equations (14), written for Re u, and 
Im u, , was solved on a computer. The calculations were per- 
foremd for the case with N = 175 links and Q = 10. In this 
case, p r 6.1, i.e., the condition that the field vary little over 
one link coincides with the condition for applicability of the 
original equations ( 1 ), and the length of the layer is equal to 
N /p GZ 30 wavelengths of the capillary wave. The boundary 
conditions at the ends of the chain were specified in the form 
u, = u, and u, + , = u,, which, for the distributed model, 
coincides with the free-ends conditions (au/ay = 0 at the 
edges of the layer). To realize the different modulation re- 
gimes we specified initial conditions of two types: 1) small 
deviations on the background of the uniform equilibrium 
state u,, and 2 )  large-amplitude distributions u, , oscillating 
rapidly along the chain. We studied the steady-state modula- 
tion regimes that arise upon increase of h (the degree of 
nonequilibrium of the system). Here, in accordance with the 
considerations presented in Sec. 2, we chose the law of vari- 
ation of the detuning in the form a = (h - 1 ) ' I 2 .  We also 
carried out sampling integration of ( 14) with other values 
of a. 

At low supercriticalities, complicated stationary states 
with a large number of oscillations on the (u, ( profile arose 
in the chain (Fig. 5) .  In the case of initial conditions of the 
type I ) ,  the emergence into the stationary regime occurred 
via a secondary instability, with periodic spatial modulation 

1.5 

/. 0 

0.5 

FIG. 5. Examples of stationary amplitude and phase distribu- 

0 40 80 120 I60 0 40 80 120 160 tions established with the same parameter values ( E  = 0.2, 
B= 0.66) but different initial conditions: a )  in the form of 

b smooth small deviations from the regime of uniform generation; 
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FIG. 6. Steady-state oscillations of the amplitude of the field u ,  at the 
center of the chain: a )  near the threshold for the onset of chaos ( E  = 0.85, 
p = 1.58); b )  for developed chaos ( E  = 1.2, f i  = 1.92). 

associated with the development of the focused instability. 
The phase p ,  = arg u,  oscillated relatively weakly along 
the chain (Fig. 5a). Stationary regimes of another type were 
obtained with the initial conditions 2).  Their structure re- 
sembled the product of a complex function, rapidly oscillat- 
ing in modulus and with relatively small changes of phase, 
with a real alternating function. Correspondingly, at the 
nodes of the amplitude profile the phase of the field changed 
by approximately n- (Fig. 5b). With increse of h the troughs 
between the beats on the ( u ,  1 profile contracted. At a value 
h r 1.85 the stationary state became unstable-weak oscilla- 
tions of /u ,  1 in time appeared (Fig. 6a).  The character of the 

oscillations indicates the realization of a transition to chaos 
via intermittency.I6 The results obtained by solving ( 14) for 
the developed chaotic regime (h = 2.2) are presented in Fig. 
7. The spatial distributions of lu, / and p ,  retained proper- 
ties characteristic of the stationary regimes. For example, 
for the initial conditions 2)  groups of peaks of ju, / appeared, 
separated by nodes to which corresponded discontinuous 
changes of phase by n- (Fig. 7a). The change of the spatial 
structure of lu, I in the steady-state regime included the fol- 
lowing elements: 1 ) rapid (with characteristic time T ,  -4) 
processes of growth or decay of the amplitudes of the peaks, 
shift of the peaks through a distance of the order of their 
width, and the appearance or disappearance of peaks within 
a group bounded by nodes on the 1 u ,  I profile; 2 )  substantial 
drops in the amplitude lu, I over one link in a timer, - 20; 3)  
a slow drift of the points of dicontinuous phase change by n- 
(and of the nodes on the lu, I profile) with characteristic 
time r3 - 200-300. The times 7 ,  and T ,  can be seen clearly on 
the realization shown in Fig. 6b. Depending on the intensity 
of the initial source, spatial distributions with different 
numbers of discontinuous phase changes by .rr arose, but 
after a number of coalescences of phase-discontinuity points 
a regime with a constant number of such points, executing a 
slow random walk, was established. Limiting regimes with 
different numbers of phase-discontinuity points were ob- 
tained, indicating the presence of several stochastic attract- 
ing sets (strange attractors) in the phase space of the system 
(14). The fact that the limit set is stochastic was verified by a 
calculation of the first Lyapounov exponent of a trajectory 
on the attractor": 

where the bar denotes a time average, and 

'I, + (Re u:" - Re ui" )'I 

FIG. 7. Characteristics of developed spatioternporal chaos for 
E = 1.2 and f i  = 1.92; a )  instantaneous distributions of the am- 
plitude and phase; b )  spatial spectrum and cross correlation 
function (0  is the phase shift per link of the chain). 
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is the distance in the phase space of ( 14) between two infini- 
tesimally close realizations determined by integration of the 
linearized system ( 14). For the regime shown in Fig. 7, for 
averaging times r > 30, it was found that A ,  approaches a 
constant value A ,  ~ 0 . 2 7 3 .  

Figure 7b shows the spatial spectrum of u,  and the 
(spatial) cross correlation function about the center of the 
chain: 

The modulation of the average (over the period of the spatial 
oscillations) gives discrete peaks in the long-wavelength re- 
gion of the spatial spectrum (the zeroth harmonic has been 
discarded in Fig. 7b). It can also be seen that the correlation 
of the random pulsations along the chain decreases signifi- 
cantly over a distance of the order of the width of a peak. 

In the case of initial conditions of the type 1 ), discontin- 
uous changes of phase by .rr were absent and the spatial spec- 
trum of the modulation did not contain sharply pronounced 
long-wavelength peaks. The temporal changes contained all 
the elements that appeared in the regimes that arise under 
initial conditions of the type 2). In contrast to Fig. 7b, the 
time correlation function did not have in the negative region 
a spike associated with a discontinuous change of phase by T.  

Integration of the system (14) for h = 2.2 and detun- 
ings a > 0 showed that there exists a threshold detuning 
az2 .4 ,  above which the regimes described above are de- 
stroyed: Almost stationary distributions in the form of small 
peaks of / u 1, separated by deep troughs with (u ( + 0, appear. 
In this region of detunings lies the value@= 2.83 determined 
by (11). 

With the aim of ascertaining the possibility of going 
over from the system (5) to the homogeneous equation ( 12) 
we integrated (5)  numerically, using the scheme described 
above. To explain the results of the calculation it is useful to 
change in (5)  from the real amplitudes A * and phases p + 

to the variables 

A,, d= (A+* A - ) / 2 ,  rpl, d=(rp+* rp-112. 

When A, = 0 and p, = 0, the system of equations for A, 
and ps is equivalent to Eq. ( 12). The difference between 
them will be small when the difference in the amplitudes is 
small (A, <A, ) and the derivatives of the phase difference 
p, with respect to t and y are small. Thus, it is sufficient to 
detect synchronization of rapid changes of the phases p + in 
space and in time. Precisely such synchronization was ob- 
served in the numerical ~olut ion.~ '  

The pattern obtained above for the chaotic dynamics of 
the modulation peaks is in good qualitative accord with the 
results of the experiments. The results of the calculation for 
low supercriticalities predict the formation of large troughs 
on the odulation profile, and these can be observed in the 
experiments (see Fig. 2). The earlier (at h < 1.85) appear- 
ance of nonstationary modulation in the experiment can be 
attributed to the two-dimensional character of the real mod- 
ulation, i.e., to the not entirely suitable choice of dependence 
of a on h.  In addition, the drift times of the dark bands are in 
agreement with the rearrangement times in the establish- 

ment of the stationary states in the numerical calculation. 
For example, for h = 1.4 ( E  = 0.4) these are times 
t -  100y-' - 3 sec. The proposed model makes it possible to 
explain the establishment of a developed chaotic regime 
whose elements are in good cpalitati~ea~reement with the 
pattern of rearrangements that is observed experimentally 
(see Sec. 1) .  In real time the fastest rearrangements for 
h = 2.2 have a timescale t ,  -0.12 sec, which agrees 
with visual estimates for the regime of developed chaos. 

5. CONCLUSION 

The presently investigated onset of parametric turbu- 
lence of capillary waves is an example of the creation, in a 
real nonequilibrium medium, of spatiotemporal chaos that is 
dynamical in nature and does not require for its explanation 
any prior hypotheses or assumptions. The transition to cha- 
os and its finite-dimensional description are determined by 
the resonance character of the parametric excitation of 
waves and do not depend on the boundary conditions on the 
periphery of the medium. 

To describe the turbulence, we have derived here a par- 
ametric variant of the well-known Ginzburg-Landau equa- 
tion-a variant that is evidently just as universal for parame- 
tric media as its analog for, say, thermal convection or 
surface waves excited by wind, in cases when the instability 
threshold is slightly exceeded. 

We shall stress here two further circumstances. The ex- 
perimentally observed two-dimensional chaos on a back- 
ground of elementary cells near the threshold for the onset of 
turbulence is almost a superposition of one-dimensional mu- 
tually orthogonal structures with random modulation, and 
it is this which justifies the construction of a one-dimension- 
a1 theory on the basis of Eq. ( 12). As the numerical experi- 
ments have shown, Eq. ( 12) with the same parameter values 
can describe different steady state chaotic regimes. This im- 
plies that in its phase space several different stochastic attra- 
tors exist simultaneously, and which one of these is eventual- 
ly reached is determined by the initial conditions. Visually, 
in the experiment, a set of spatial forms (structures), estab- 
lished on the background of the capillary ripple at the same 
supercriticality, corresponds to this set of attractors. 

"The amplitude profile of the vibrations had at the center of the cuvette a 
weakly expressed maximum. 

"It can be shown that as soon as the size of the pumping region becomes 
greater than 1 cm the value of the threshold practically coincides with 
the threshold for uniform excitation. 

3'The appearance of the modulation is not due to nonstationarity of the 
amplitude and phase of the pumping, since the relative width of the 
pumping spectrum did not exceed lo r5 .  

4'Application of the S-theory to one wave pair requires that the opposite 
condition be fulfilled.' 

='The results can also be generalized to the case when ci , and 6, depend 
on t .  

6'After introduction of the dimensionless variables ii * = a ,  [ ( S  + T)/ 
y ]  ' I 2 ,  T = yt, and.? = yx/u,, only the one parameter T/S = 10 remains 
in the equations. 

"The quantity C in this case is found from the condition that the total 
advance of the phase along the resonator be a multiple of 27. 

"The problem of the longitudinal modulation in the parametric excitation 
of n--oscillations in periodic structures leads to an analogous equation. l4 

9'0nly very smooth changes of q, along the chain (changes with a length 
scale of the order of the length of the layer) were found to be relatively 
long-lived. 
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