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The dynamics of formation of a soliton in supersonic expansion of a cluster of Langmuir waves 
is investigated. It is shown that the plasma-density perturbation produced by the expanding 
cluster can be regarded from the standpoint of quantum mechanics as a shallow potential well. 
This makes it possible to obtain analytically the dependence of the energy trapped in the well 
on the width and initial energy of the cluster. Plasmon capture causes the well to become 
deeper, to emit sound waves, and be transformed ultimately into a soliton. During this stage 
the number of plasmons in the well is preserved, and this determines the amplitude of the 
produced soliton. The analytic model constructed is in good agreement with results of 
corroborative numerical calculations. 

1. STATEMENT OF PROBLEM distribution is a cluster whose width" /l meets the condition 

One of the characteristic features of strong Langmuir 
turbulence is the tendency of the waves to become self-local- 
ized. This tendency is clearly revealed, in particular, by 
results of one-dimensional numerical calculations that dem- 
onstrate the onset of solitons.'-' Soliton creation is qualita- 
tively attributed to deformation of the plasma-density pro- 
file by the pressure of the Langmuir waves, and to trapping 
of some fraction of the waves into a region of lower density, 
with ultimate formation of a self-sustaining bound state. 
This process is quantitatively described by the following sys- 
tem of equations for the complex amplitude of a high-fre- 
quency electric field E and for the perturbation of the plasma 
density n (Ref. 4) :  

I t  follows from this condition, in particular, that the cluster 
consists predominantly of supersonic plasmons. 

Bearing inequality ( 3  ) in mind, it is useful to separate in 
Eqs. ( 1 ), ( 2 )  from the very outset the corresponding small 
parameter 

I t  is convenient for this purpose to reduce the system ( 1  ), 
( 2 )  to dimensionless form 

Here w, = (4rn,,e2/m) "' is the electron plasma frequency 
corresponding to an unperturbed density no; r ,  r [ T /  
(4rn,e2) ] ' I 2  is the Debye radius; T is the electron tempera- 
ture; M is the ion mass; c, is the ion-sound velocity. 

If the characteristic group velocity v, of the Langmuir 
waves is low compared with c, , Eq. (2 )  can be approximate- 
ly replaced at not too high energy by the relation 
n = - JE 21/(16rT), which means that the density pertur- 
bation adjusts itself instantaneously to the distribution of the 
high-frequency pressure. In this limiting case we have an 
exhaustive answer to the question of how the soliton param- 
eters are connected with the initial distribution of the elec- 
tric field, since the system ( 1 ), ( 2 )  reduces to a nonlinear 
Schrodinger equation that can be integrated by the inverse 
scattering transform method."hings are not as definite 
when the system ( I ) ,  (2 )  cannot be integrated in general 
form. We attempt here to make this situation clearer. 

Let us illustrate how a soliton is formed if the initial 
values of n and dn/dt are zero, and the initial electric field 

by making the substitutions 

Before we proceed to the formal solution of the problem 
of interest, we demonstrate qualitatively the simplifications 
brought about by the smallness of g. 

At g< 1 the density perturbation produced by the plas- 
mons during their free spreading is relatively small, so that 
the reaction of this perturbation to the plasmons can be de- 
scribed in terms of the quantum-mechanical problem of a 
particle in a shallow potential well. Since the density profile 
is nonstationary, some of the plasmons are trapped by the 
well and go over into a bound state. The trapping continues 
until the energy level corresponding to the bound state is not 
too far from the limit of the continuous spectrum. With in- 
creasing depth of the well, this level is gradually lowered and 
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the trapping ceases, since the time dependence of the well 
parameters becomes ultimately adiabatically slow. The plas- 
mons trapped in the well comprise, as we shall see, only a 
small fraction of the initial cluster, whereas the entire cluster 
participates in the creation of the well. This allows us to 
distinguish in the trapping problem between two relatively 
independent parts: description of a well produced by a freely 
spreading cluster, and determination of the number of plas- 
mons trapped in a well that varies in accordance wtih a 
known law. 

After the end of the trapping, the well continues to 
deepen by inertia for some time, and is then gradually re- 
structured under the influence of the trapped plasmons. In 
the course of this restructuring the well emits sound and is 
transformed into a soliton. It is important that since the en- 
tire concluding stage of the process is adiabatic, the number 
of the plasmons in the well is conserved during this stage. 
This conservation law, together with energy and momentum 
conservation, enable us to find the amplitude of the pro- 
duced soliton and the energy of the emitted sound. 

Following the indicated procedure, we begin the analy- 
sis by determining the potential well produced by the spread- 
ing cluster; this is the subject of Sec. 2 of the article. In Sec. 3 
we solve the problem of plasmon capture by the well. The 
conditions under which the results of Secs. 2 and 3 are valid 
are made more precise in Sec. 4, where the subsequent soli- 
ton-formation dynamics is discussed. The last (fifth) section 
contains the results of corroborative numerical calculations 
and a comparison with the analytical results. 

2. DENSITY PERTURBATION AND EFFECTIVE POTENTIAL 

The shallow-well approximation used below requires 
that the amplitude n and the spatial scale 1 of the density 
perturbation satisfy the inequality 

We emphasize that at g <  1 this requirement is easily met. 
Indeed, the spreading time of a plasmon cluster with initial 
width of order unity can be estimated at g, and the growth 
rate of the perturbation produced by this cluster is tentative- 
ly equal to [see Eq. (6)  ] an/& -glA 1 2, whereA is the ampli- 
tude of the electric field in the cluster. The spatial scale of 
this perturbation is equal to the initial size of the cluster, i.e., 
we must put 1 = 1 in inequality (8) .  

After the spreading of the cluster, the density perturba- 
tion continues, by inertia, to increase linearly with time up to 
t -  1 (by that instant its growth stops on account of spread- 
ing at the speed of sound). Thus, the perturbation is bound- 
ed from above by n -glA I '. It can be seen from this prelimi- 
nary estimate that condition (8)  allows us to consider quite 
high plasmon-energy densities. The corresponding bound 
will be formulated more accurately in Sec. 4. 

Inequality (8)  means that the characteristic wave- 
lengths of the plasmons trapped in the well are large com- 
pared with the dimensions of the well itself. The well can be 
regarded as pointlike relative to such plasmons, and a corre- 
sponding transition can be made from Eq. (5) to an equation 
with a S-function potential 

The S function is taken to be localized here at the maximum 
of the initial plasmon bunch. Since the well velocity does at 
any rate not exceed that of sound, and the trapped plasmons 
are assumed to be supersonic, we have neglected in (9 )  the 
possible displacement of the well in the course of the trap- 
ping. 

The coefficient 7 preceding the S function is chosen to 
satisfy the condition that the first derivative of the electric 
field with respect to x experience the same jump as in the real 
well. Since 7 is equal to - S T ,"n dx,  it vanishes in first or- 
der in the parameter n12 by virtue of the conservation of the 
total number of ions. In the next (second) order, the stan- 
dard successive-approximation procedure yields 

The function 

in Eq. ( 10) satisfies an equation 

that follows directly from (6) .  In the problem of interest to 
us, the initial values ofp(x;t) and p(x;t) are zero. The corre- 
sponding solution of ( 1 1 ) is then 

L 

Assuming the plasmons that produce the well to disperse 
freely, we put 

I E (x ;  t )  1 '  = 9 %,&E,,. e~p[i(k~-k,)x-it(k~~-k~~)/g]dk~ dk2, 

(13) 

where E, are the Fourier components of the initial field. I t  is 
convenient to replace k ,  and k, in the integral ( 13 ) by new 
variablesq = k ,  - k, andp = (k ,  + k,)/g. Integratingnext 
with respect to time in ( 12), we can write (x;t) in the form 

einx 

+ B j d p d q  2 (P sin qt - sin pqt)  G- (gp;  q )  , ( 14) 
(?(I--p2) 

where G+ and G-  are the even and odd (in p)  parts of the 
function 

Since the parameterg is small and the characteristic scales of 
the variation of the function G with respect top  are I/g and 
unity, respectively, it is possible to replace, if t>g, the func- 
tion G+ (gp;q) in ( 14) by G+ (0 ;q) .  This cannot be done in 
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the case of G-, since the remaining integral with respect top  
diverges asp- m .  The integral that contains G -  is there- 
fore governed by the large values ofp, so that the term sin pqt 
can be left out of the integrand, and unity in the denominator 
can be neglected compared with p'. In the upshot, {(x;t) 
takes the form 

where 

This equation for { is valid in the entire range oft ,  with 
the exception of very short times comparable with time re- 
quired to double the width of the initial plasmon cluster 
({- t 'for such time intervals). Since such short times can be 
neglected if the cluster energy is not too high, Eq. ( 15 ) can 
be treated in this problem as exact. Substituting now {(x;t) 
in ( l o ) ,  we get 

We present also approximte expressions for ?;I at t <  1 and 
t> 1 (recall that the time unit here is the travel duration of 
the sound wave through the localization region of the initial 
plasma cluster) : 

The factor 1R (0 )  I%n ( 18) can be understood as the value of 
lR (q)  1 '  at / q /  - l / t  < 1. Although the function R (q )  has 
generally speaking a discontinuity when the sign of q is re- 
versed [see Eq. ( 15a) ], its absolute value is continuous if E 
is smooth, and it is this which permits the quantity JR (0 )  1' 
to be introduced. 

It follows at first glance from ( 18) that as t- cc the 
function ~ ( t )  (and with it the bound-state energy) increases 
without limit. It is clear, on the other hand, that the binding 
energy cannot exceed the depth of the density well produced 
after the spreading of the plasmons, and the well depth is 
certainly finite. This contradiction indicates that the shal- 
low-well model is untenable at sufficiently large valuesz' of t. 
Indeed, the potential connected with any one of the sound 
waves of the solution (12),  which propagates in one direc- 
tion, can be shown to be by itself not shallow. The well pro- 
duced by the two waves traveling in opposite directions is 
shallow because these waves cancel each other to a consider- 
able degree, so that the resultant density perturbation de- 
creases more rapidly than the perturbation due to each of the 
waves taken separately. In other words, the well remains 
shallow only up to a certain limiting distance between them. 
It is important that the maximum permissible wave separa- 
tion is large compared with the width of the initial plasmon 
cluster. This is in fact why there exists a certain range o f t  in 
which ~ ( t )  is given by Eq. ( 18). 

3. PLASMON TRAPPING 

3.1. Fundamental relations 

We take the number N of trapped plasmons to be equal 
to lA,,12, where A ,  is the amplitude of the bound state in the 
expansion of the electric field over the entire set of those 
eigenfunctions of Eq. (9 )  which correspond to the instanta- 
neous value of 7 ( t )  : 

E (2; t )  =Ao (q/2)1he-1xq/21+ J ah ( 2 )  ( I ;  t )  dli. 

Here a,  are the amplitudes of the continuum states charac- 
terized by the wave functions $, . 

After the spreading of the initial cluster and the onset of 
the adiabatic stage, in which transitions from the continuum 
to the bound state and back are forbidden, the amplitude A,, 
should obviously be equal, accurate to a factor (2/?;1) ' I 2 ,  to 
the value of the electric field at x = 0, since all the free plas- 
mons ultimately leave the well-localization region. Thus, the 
problem reduces in fact to finding the asymptotic of the 
function E(0;t)  at large values o f t .  

An equation for E(0; t )  can be easily obtained from (9) .  
Note that according to (9 )  the coefficients of the Fourier- 
integral expansion of the function E(x ; t )  satisfy the equa- 
tion 

where E-E(0;t). Integration of this equation yields 

Eh ( t )  =jjhe-ik2t/t + &I q ( r )  e ( T )  e'k'(T-t) /g d 7, (19) 

where E, are the initial values of the Fourier coefficients. 
The function E, ( t )  is connected with ~ ( t )  by the relation 
E = SE,dk. Integration of both halves of (19) with respect 
to k yields therefore the following integral equation for ~ ( t ) :  

t 

By virtue of the linearity of (201, the function E can be writ- 
ten as a superposition of the functions E, satisfying Eq. (20) 
with a right-hand side in the form exp( - ik 't /g .  In the adia- 
batic stage, where N is independent of time, we have 

If the well depth has a power-law variation 

q=Qtm (22) 

the equation for E, reduces, by the natural substitutions 

to the universal form 
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This universal property enables us to determine directly the 
dependence of N, defined by (21), on the parameters Q and 
g. Recognizing that at g< 1 the well traps mainly long-wave 
plasmons, we replace the function E, in (2  1 ) by its value at 
k = 0. Using in addition relations (22)-(24) we get 

where 

Equation (25) gives the sought dependence of N on Q 
and g accurate to an as yet unknown numerical factor C, 
determined by the asymptotic solution of Eq. (24).  For 
m = 1 and m = 2 [it can be seen from (17) and (18) that it 
is just these two cases which are of primary interest] the 
factor C ,  can be obtained analytically. The result of the 
corresponding calculations (which are given in the second 
half of the section) is 

where l- is the Euler gamma function. Combining (17), 
(18),  (22), and (25)-(28) we find ultimately that 

for the well's quadratic growth described by ( 17), and 

for linear growth [see Eq. ( 18 ) 1. 

3.2. Calculation of capture coefficient 

Proceeding to solve Eq. (24), we start out from the case 
m = 1. Taking the Laplace transform of the function E, (7)  

and applying Eq. (24) to this transform, we find that E ( U )  
satisfies the equation 

All the functions are defined here in the upper half-plane of 
the complex variable w (0  < arg w < T )  . Therefore, in partic- 
ular, Re wli2 > 0. The solution of ( 32) is 

i 
E=-- exp ( ) J i exp (-4ot"/3) 

0-x2 ( 0 1 - ~ 2 ) ~  
dot, (33) 

0 

where the integration is over any contour located in the up- 

per half-plane and going off to infinity in the sector 
0 < arg w , < r/3,  thereby ensuring a decrease of the inte- 
grand as w ,  -+ rn.  This choice of the integration constant is 
governed by the initial condition for the function E,, (7): 

ex(r) =1, t=+O, 

8. (T)  =0, z=-0. 

We shall find it convenient to assume that the integration 
contour in (33) goes off to infinity along the real axis. 

Equation (33) allows us to represent the solution of 
(24) in the form 

do j e~p(-4o. '~/3) 
dwt. (35) 

0 (ot-x2)2 

To determine the coefficient C, it suffices here to retain only 
the second term. Its asymptotic form at r-+ cc is determined 
by a saddle point located at large negative values of 
w ( w  = - ~ ' / 4 ) .  This allows us to replace in (35) the lower 
limit of the integration with respect to w ,  by - a, after 
which evaluation of the integral by the saddle-point method 
yields 

+m+iO 

l+i ( ;a ) exp(-4wtq1/3) 
ex(r) = - - 7" exp - .doi. 

2 (2n) " -,+<a (ot-x2)2 

It follows hence that 

Integrating here with respect tow and substituting the result 
in (25), we obtain ultimately Eq. (28) for C,. 

In the case m = 2, a Laplace transformation converts 
Eq. (24) into the second-order differential equation 

Replacements of the independent variable 

and of the unknown function f = E / W " ~  reduces (36) to an 
inhomogeneous Bessel equation whose solution is best ex- 
pressed in 'terms of the Hankel functions H ::: and H :::. 
The resultant expression for E is 

Just as in (33), the integration here is along contours located 
in the upper w ,  half-plane and going off to inifinity along the 
real axis. This leads to satisfaction of the initial condition 
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(34). It is easy to verify that the solution (38) is unique: 
addition to it of any solution of the homogeneous equation 
(36) leads inevitably to violation of the condition (34).  

An examination of (38) shows that to find the asympto- 
tic form of the function E,  ( r )  it suffices to retain in (38) 
only the last term, forjust as in the case m = 1 the asympto- 
tic E, ( 7 )  is determined by the behavior of E at large negative 
values ofw. Using the asymptotic expression for the function 
H:):  ( z )  

(see, e.g., Ref. 6 )  and replacing the lower limit of integration 
with respect to w , by - cc , we find that for the frequencies 
of interest to us we have 

(n/5) "2"< 4 
&(a) = , e x p  [- ( l + i )  w " 4 - % n i l  

5 40 

On going from &(a) to E,, (T) the integral with respect tow 
can be evaluated by the saddle-point method (the saddle 
point is located at o = - ~ ~ / 4 ) .  The result takes the form 

Integration of this expression with respect to x yields 

Evaluation of the integral with respect to w , (for which it is 
expedient to change from w, to the variablez,) and substitu- 
tion of the result in (26) yields ultimately Eq. (27) for C,. 

4. DYNAMICS OF SOLITON FORMATION 

We consider, on the basis of the contents of Secs. 2 and 
3, various soliton-formation situations and indicate the con- 
ditions for realizing each. 

It can be seen from (29) and (30) that two different 
regimes of plasmon trapping in a potential well are possible. 
The first is realized at g < t < 1 and corresponds to deepening 
of the well by inertia, while the second (called acoustic be- 
low) is realized at t > 1, when the well width becomes larger 
than the width of the initial plasmon cluster. 

We turn first to the inertial trapping regime. The time 
t, during which plasmons are trapped on a discrete level 
characterized by an eigenfrequency 

can be estimated from the uncertainty relation 

or, which is the same, from the condition T- 1, where r is 

have 7 -g"Nt ', where No is the number of plasmons in the 
initial cluster, we get 

-&IS 
tN - g-Bf6No . (42) 

The estimate (42) implies that the adiabaticity condition 
begins to be satisfied prior to the transition from the inertial 
to the acoustic regime, i.e., t, < 1. This imposes a lower 
bound on N,,: 

For the well to remain shallow at t = t,, its size, equal 
in the inertial regime to the initial size of the plasmon cluster, 
should be smaller than the spatial scale of the bound-state 
wave function 7,- ' ( t ,  ). This leads to an upper bound on NO: 

This inequality is equivalent to the condition t ,  > g  that en- 
sures smallness, compared with N,,, of the number of plas- 
mons trapped in the well. Note that since the parameter g is 
small there exists a large interval of N,, in which the inequal- 
ities (43) and (44) can be satisfied simultaneously. 

We estimate next the influence of the trapped plasmons 
on the shape of the well. Let Sn (x;t)  be the density perturba- 
tion produced by these plasmons. It follows from (6)  that at 
the instant of trapping we have 

16nl -Nq3t,'. (45) 

It is taken into account here that the spatial scale of the 
function Sn(x;t) is equal to the width 7- ' of the bound-state 
wave function. The excess pressure of the trapped plasmons 
on the well is significant in the case when the bound-state- 
energy correction necessitated by the perturbation Sn turns 
out to be comparable with the energy itself. The latter takes 
place at 

If, however, 

6n<q2, 

the pressure of the trapped plasmons can be neglected. The 
condition (47) means also that the perturbation leaves the 
potential well shallow. Using expression (29) for N, we can 
easily verify that the restriction imposed on N,, by relations 
(45) and (47) coincides with the inequality (44) .  

In the situation considered by us, when the plasmon 
pressure and the gas kinetic pressure are negligibly small at 
the instant of trapping, the well continues to deepen by iner- 
tia for some time after trapping the plasmons. The trapped 
plasmons are then adiabatically compressed and their pres- 
sure increases. The well deformation 6n increases corre- 
sponding. The time t, starting with which the deformation 
becomes substantial is estimated with the aid of relations 
(17),  (29),  (45),  and (46): 

t n - g - ! 4 / Z O N  - i7120 
0 .  (48) 

If the inequality 

defined in (23 ). Recognizing that in the inertial regime we N o > g - 1 4 / 1 7  (49 

1214 Sov. Phys. JETP 64 (6), December 1986 Astrelin etal. 1214 



is satisfied, this time precedes the transition from the inertial 
to the acoustic regime. 

In the region t > f, , the main process is supersonic com- 
pression of the well by the plasmons it contains. The com- 
pression dynamics is described by the self-similar law 

(see, e.g., Ref. 3 ) .  In the course of this compression the gas- 
kinetic pressure increases more rapidly than the plasmon 
pressure, so that the compression ultimately stops, the well 
is transformed into a soliton, and the matter forced out of it 
is carried away by the sound waves that go off to infinity. 

We return now to relation (43). If it is violated, plas- 
mon trapping is determined not by the inertial but by the 
acoustic stage of the well evolution, during which 

[see Eq. ( 18) 1. It can be seen from ( 40 )  and (5 1 ) that trap- 
ping terminates at 

In the acoustic regime, the well dimension is estimated at t .  
For the well to become shallow at the instant of trapping, the 
condition qt < 1 must be met at t = t,; with allowance for 
the estimates ( 51 )  and ( 5 2 ) ,  this condition reduces to the 
inequality No> 1. It can be easily shown that this inequality 
permits at the same time to describe the trapping process 
without allowance for the reverse influence of the plasmons 
on the well shape. The motion of the trapped plasmons be- 
comes significant only after they are additionally com- 
pressed adiabatically. The corresponding time t, is estimat- 
ed at g- ' N ,  and exceeds t,. From the instant of time 
t = t ,  the behavior of the energy level in the potential well is 
governed not by the restructuring of the plasma-density pro- 
file but by the density perturbation Sn produced by the 
trapped plasmons. The perturbation Sn itself and the plas- 
mon energy density lE 1 '  evolve in accordance with the self- 
similar law (5 ) ,  followed by decay into a soliton and sound. 

To determine the possible parameters of the produced 
solitons, we use the conservation laws for the number of the 
plasmons N, the energy H ,  and the momentum P, excluding 
from them the contribution of the freely spreading plas- 
mons. The considered integrals of motion of Eqs. ( 5 )  and 
(6) are of the form 

N = S  IE12dx, 

where u is the hydrodynamic velocity of the plasma, defined 
by the equation 

In this case N is the number of plasmons trapped in the shal- 
low well. Since the processes that follow the trapping are 

adiabatic, the number of plasmons in the soliton is also N. 
The energy and momentum of a soliton moving with velocity 
Vsatisfy then the expressions (see, e.g., Ref. 7 )  

N3 (5V2-1)  
H ( N ;  V )  = g2VZN/4 + - 

48 ( i - V 2 ) 3  

NS V 
P ( N ;  V )  = g2VN/2 + - 

12 (I-vZl3 
NS v 

W -  
12 ( i - V 2 ) s  

Simple estimates show that since the parameter g is small, 
the values of H and P directly after the plasmon capture are 
negligibly small compared with H(N;  V) and P(N;  V). This 
allows us to write the conservation laws in the form 

where E +  and E -  are the energies of the sound waves that go 
off to the right ( + ) and to the left ( - ) from the soliton. 
Since E+ and E -  are positive, it follows that IH(N;V)I 
> ( P ( N ,  V) 1 ,  meaning that in the regimes considered by us 
the soliton velocity is bounded from above by the inequality 
VG 1/5. The numerical smallness of Vallows us to find, with 
high accuracy, the amplitude of the electric field in the soli- 
ton, E, = ~fi, the soliton width A = 4/N,  and the total 
energy of the emitted sound waves, E+ i- E -  = N"48. The 
quantity N in these equations is given by relations (29) and 
(30). Determination of the soliton velocity calls for a more 
thorough investigation of the process of its formation, which 
is outside the scope of the present paper. 

Our estimates allow us to demarcate, on the plane of the 
parameters g and N, (see Fig. l ) ,  three regions (A, B, C )  
with different soliton-formation dynamics. These regions 
correspond to the following situations: 
~ e ~ i o n  ~ ( g - ' ~ " '  <No  <g- ' ) .  

1 .  Plasma trapping in the inertial regime (N-N:'5 
g4'5). 

2. Adibatic compression of the plasmons in the inertial 
regime. 

3. Self-similar well compression by the trapped plas- 
mons. 

FIG. 1. Regions with different soliton-formation situations. 

121 5 Sov. Phys. JETP 64 (6), December 1986 Astrelin eta/. 121 5 



4. End of compression, emission of sound, and forma- 
tion of soliton. 

~ e ~ i o n  B ( ~ - ~ ~ ~  < N, < g 1 4 1 ' 7 ) .  
1 .  The same as in region A.  
2.  Adiabatic compression of the plasmons, first in the 

inertial and next in the acoustic regime. 
3,4. The same as in region A.  

Region C ( l  < N o  < g - 3 1 4 ) .  
0. Inertial deepening of the well without substantial 

plasmon trapping. 
1. Plasmon trapping in the acoustic regime 

( N - N  i I 3 g ) .  
2. Adiabatic compression of plasmon in acoustic re- 

gime. 
3,4. The same as in regions A and B. 

Besides the regions A, B,  and C, Fig. 1 shows also re- 
gions D and E, to which our analysis is inapplicable. These 
regions are partially described by a nonlinear Schrodinger 
equation. Typical of region E is an almost complete transi- 
tion of the plasmons into a bound state, and the possibility of 
formation of not only one but also several solitons. On the 
contrary, region D is characterized by almost free dispersal 
of the plasmons and a low probability of their combining to 
form a soliton. 

5. CORROBORATIVE NUMERICAL CALCULATIONS 

To illustrate the results and assess the accuracy of the 
considered analytic model of soliton formation, we have nu- 
merically integrated Eqs. ( 5 )  and ( 6 )  with the aid of the 
program used earlier in Ref. 8. The parameter g in Eq. ( 5 )  
was set equal to 0.125, the initial values of n and an /& were 
assumed equal to zero, and the initial distribution of the elec- 
tric field was taken to be Gaussian: 

E (x; 0) =Ae-"'. ( 5 3 )  

FIG. 2. Spreading, and contraction into a soliton, of plasmons having the 
Gaussian initial distribution (53),  at g = 0.125 and A = 5. The dashed 
lines show for comparison the trajectories corresponding to motion at the 
speed of sound. 

FIG. 3. Evolution ofplasma density profile in the regime corresponding to 
Fig. 2. The dashed lines mark the sound waves going off from the soliton. 

The amplitude of the field A  was varied in the range from 2.5 
to 7.5. 

Figures 2  and 3 show the profiles of the squared modu- 
lus of the electric field and of the perturbation of the plasma 
density at various instants of time in the case A  = 5. To dem- 
onstrate the initial dispersal of the plasmons," the initial 
time intervals in Fig. 2 are closely spaced, whereas the time 
spacing in Fig. 3 is uniform. It can be seen from Fig. 2 that 
after the dispersal of the free plasmons the remainder of the 
cluster is compressed and assumes ultimately the soliton 
form. The propagation of the sound waves emitted by the 
soliton can be distinctly tracked in Fig. 3. 

In the course of the calculations we obtained also the 
dependence of the number N of plasmons in the soliton on 
the number No = ( r r / 2 )  "'A ' of plasmons in the initial clus- 
ter. This dependence is shown in Fig. 4 by points through 
which a dashed line is drawn. The lower solid line in the 
same figure shows the analytically obtained plot for the iner- 
tial trapping regime [see Eq. ( 2 9 )  1 ,  while the upper solid 
line is the plot for the acoustic regime [Eq. ( 3 0 )  1. Note that 
the upper curve is actually incorrectly drawn in Fig. 4, since 
the same values of the parameters with which the calcula- 
tions were made correspond, according to the estimates, to 

FIG. 4. Comparison of the results of numerical and analytic calculations 
of plasmon capture into a soliton (g  = 0.125). 
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the inertial regime. Nonetheless, even this curve does not 
deviate too strongly from the calculated points. As expected, 
the disparity between them increases with No. As for the line 
describing the inertial trapping, it agrees in the entire consid- 
ered range with the numerical results with accuracy not 
worse than 20%. This agreement can be regarded as quite 
satisfactory, since at the chosen calculation parameters the 
soliton traps already a rather large (up to 40%) fraction of 
the energy of the inital cluster, i.e., the comparison is made 
here in fact at the borderline of the validity of the theory. 

We note in conclusion that the elementary soliton-cre- 
ation process discussed by us constitutes a substantial part of 
a more complicated picture observed in numerical simula- 
tion of the evolution of intense supersonic Langmuir waves 
with random initial phases.' A number of laws revealed by 
this simulation agree qualitatively with the dependences ob- 
tained in the present paper. 

"In these and subsequent estimates it is implied for simplicity that the 
cluster has no additional internal scale, i.e., the characteristic wave- 

length of the plasmons is estimated to be equal to 1. 
''In the limit as t- m the assumption that the well is produced predomi- 
nantly by supersonic plasmons is also violated. 

"The presence of a stage of free dispersal of the plasmons makes Fig. 2 
qualitatively different from the corresponding figure shown in Ref. 1. 
The cause of the difference is that the calculations of Ref. 1 were carried 
out at large values of the parameterg. 
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