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Kinetic equations are derived for the description of the intramolecular relaxation of the 
individual vibrational modes of a polyatomic molecule at energies higher than the 
stochastization threshold. The conditions under which the purely phase relaxation processes 
( T,) can be separated from the vibrational mode energy relaxation processes ( TI  ), i.e., when 
the processes TI and T, are additive, are investigated. It is shown that, in the Markovian 
approximation, the relaxation of the energy to the equilibrium value occurs not according to 
an exponential law, and that the absorption line contour for a highly excited molecule is non- 
Lorentzian as a result of the effect of the high-order anharmonic interactions. The dependence 
of the longitudinal and transverse relaxation rates on the molecular parameters is investigated. 
It is shown that when the energy of the molecule is raised above a certain critical value the 
relaxation in the molecule is largely due to resonances of a high order m* > 3, and that the 
resonance order varies with varying molecular energy E and can attain values 2 10 at energies 
of the order of the molecule dissociation energy. It is shown that the approximation that has 
been used to derive similar kinetic equations by other authors does not take account of 
important coherent effects of the damping of the off-diagonal elements of the vibrational-mode 
density matrix, and that this leads to a more than an order of magnitude error in the computed 
width of the IR transition spectrum. 

1. INTRODUCTION 

1. At high vibrational excitation levels of polyatomic 
molecules (of energy E - D, where D is the dissociation ener- 
gy) the intramolecular motion is well described by statistical 
theories of the RRKM type.' The physical reason for the 
possibility of such a description is the fairly rapid intramole- 
cular vibrational exchange2 among the various modes in the 
molecule as a result of the presence of a chain of Fermi reson- 
a n c e ~ . ~ - ~  The existence of such a sequence of resonances 
leads to the stochastization of the vibrations,"" process 
which begins for molecules of the type CF,I, SF,, etc., at 
energies E, ranging from -3 X lo3 to lo4 cm-' (Refs. 9- 
11 ). The statistical behavior of molecules with energy 
E > E, implies the equipartition of the energy among the 
modes on the average over the period of time t $  w - I ,  where 
w is the characteristic freauencv of the molecule. If one of the 
molecular modes is brought out of the state of equilibrium, 
i.e., the state of equipartition of the energy over the modes, 
then relaxation to a new state of equilibrium begins as a re- 
sult of the anharmonic interactions. Such nonequilibrium 
states arise in, for example, multiphoton molecule excita- 
tionI2 in which one of the molecular modes is continuously 
pumped by laser radiation, or in experiments on the selective 
excitation of individual highly excited states by picosecond 
laser radiation pulses. I 3 . l 4  

A discussion of the sense in which we should under- 
stand a relaxation that occurs in a finite quantum system and 
implies irreversibility, can be found in Refs. 6 and 8. Here we 
only note that we are taking about the behavior of the system 
over a finite, but very long interval of time t, - f i p ,  wherep is 
the density of the mixed states of the system. For polyatomic 

molecules at high energies the density p attains such huge 
values' that there is no need at all to make any stipulation in 
connection with the finiteness oft,. 

A quantitative intramolecular vibrational relaxation 
theory based on the quasiharmonic approximation, and de- 
scribing, in particular, the transition to the stochastic region, 
i.e., the appearance of intramolecular exchange in the region 
above the limit E,, is developed in Ref. 5. The rate of relaxa- 
tion of each of the molecular modes can be found from the 
self-consistent system of nonlinear algebraic equations 
wi=fLi(yI. . .ys;w ,... o , )  and y i = T i ( y  ,... y,;w ,... w,), 
where wi and yi are respectively the self-consistent relaxa- 
tion frequencies and constants for the vibrational modes in 
the molecule. This system possesses nontrivial solutions y, if 
the molecular energy is higher than some critical energy E,. 
Characteristic of the subsystem yi = Ti (y,w) is the fact 
that, for E 3  E,, the dependence of the right-hand sides r, on 
the variables yi ,. .., y, is very weak, the correlations among 
the various solutions y, disappear, and each of the y, can be 
found independently of the others with the aid of the "gold- 
en-rule" type of formulas yi = 2 n - ~ f ( ~ ) p ' ~ " ( w , ) ,  where - c. ( B )  is the effective interaction, which depends on the en- 
ergy of the molecule, and p"' is the density of the Fermi 
resonances. This implies that, for such energies, we can, 
when describing the vibrational relaxation of some mode i, 
treat the remaining modes as an energy reservoir, the corre- 
lation characteristics of which can be found independently 
of the state of the mode i (under the assumption that the 
deviation from equilibrium of the mode i is small). In this 
paper we consider just such a situation. 

The validity of this approach at high energies can also 
be demonstrated by the more conventional meth~d,~,'".e., 
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by comparing the relaxation times y ,  ' of the mode of inter- 
est to us and the damping time 7, of the correlations of the 
corresponding variables of the reservoir. For the separation 
of the selected mode and the dissipative reservoir, it is neces- 
sary that y ,  > 7,. We shall show (see Appendix 1 ) that this 
condition is indeed fulfilled at high energies for polyatomic 
molecules (a discussion of this criterion is given also in Ref. 
16). 

2. Usually, we consider the relaxation of a vibrational 
molecular mode that had been excited beforehand by a laser. 
Therefore, we shall call the mode of interest to us an excited 
mode. We shall consider a vibrationally excited molecule to 
be a combination of the mode of interest to us and a vibra- 
tional energy reservoir formed by the remaining molecular 
modes that are inactive in the IR  absorption. The state of the 
molecule in such an approach'"23 is specified by the density 
matrix a of the excited mode and the vibrational tempera- 
ture T of the reservoir. The multiphoton excitation dynam- 
ics in the field of the laser radiation is described by a system 
of closed equations for a and T (these variables are coupled 
as a result of the possible exchange of energy between the 
excited mode and the reservoir).16-l8 On the other hand, the 
linear weak-radiation absorption spectrum, as well as the 
relaxation of the near-equilibrium states can be studied at a 
fixed reservoir temperature. The interaction of the excited 
mode with the reservoir as a result of the cross anharmonic 
terms in the Hamiltonian of the molecule gives rise to the 
processes of dephasingI9 and relaxation of the energy from 
the excited mode, and this is described by the corresponding 
relaxation operator I, in the equation for a. Furthermore, 
the anharmonic interaction leads to a change in the dynami- 
cal part of the equation for a, a situation which can, in cer- 
tain cases, be described as a redefinition of the Hamiltonian 
of the excited mode. 

In a number of papers dealing with the multiphoton 
excitation of polyatomic molecules, and based on a similar 
approach, 1X,20-24 the above-discussed kinetic equation for a 
is actually used. But in the majority of the papers this equa- 
tion is written down phenomenologically and contains a 
large number of undetermined constants, which makes it 
unsuitable for quantitative analy~is.~'.~' Furthermore, in 
those papers in which the kinetic equations are de- 
rived, 1x.20.2 I and formal expressions are obtained for the ki- 

netic coefficients, the derivations are carried out with the use 
of an approximation that, as it turns out, does not work for 
the case of an excited polyatomic molecule. We are thus talk- 
ing about a common error (an exception is Ref. 24), which 
consists in the following. 

3. It is well known15 that the simplest situation in the 
derivation of the kinetic equation pertains to the case when: 
1 ) the Markovian approximation is valid, i.e., when the re- 
laxation time T of the system is much longer than the correla- 
tion time 7, for the reservoir and 2) there is no frequency 
degeneracy in the system, i.e., if the pairs of levels m, n and 
m', n' do not coincide, then Iw,, - w,.,. I >> 7- (see Appen- 
dix 2). The first condition is a necessary condition for the 
kinetic equation to be a differential equation (and not an 
integro-differential equation, as in the case ofa system with a 

memoryz5). The second condition leads to a situation in 
which the off-diagonal elements of the system's density ma- 
trix attenuate independently of each other, i.e., the off-diag- 
onal part of the kinetic equation has the form 

where T2 is the phase relaxation time, there being such a time 
for each pair of levels m, n. This is none other than the ran- 
dom phase approximation (see Appendix 2) .  In the case 
when the condition 2) is fulfilled, the system relaxes like a 
set of uncoupled two-level subsystems. In the case of a sys- 
tem that is frequency degenerate, as is the case of, for exam- 
ple, the harmonic o~cillator, '~ the relaxation of the off-diag- 
onal elements urn, occurs much more slowly. The various 
matrix elements are coupled, and in the general case the 
equation has the form 

where R,,,,, are certain coefficients. Thus, there arises dis- 
tinctive coherence in the damping of the off-diagonal ele- 
ments, and the system relaxes as a whole. 

Since the relaxation of the off-diagonal elements deter- 
mines the absorption spectrum of the system, the question 
how this relaxation occurs is a fundamental one. For polya- 
tomic molecules, we are talking about the linear-absorption 
spectrum of the highly excited molecule, a spectrum which is 
being measured experimentally at present,"." and which, 
moreover, is a quantity that enters into the kinetic equations 
for multiphoton excitation.I2 References 29 and 30 are de- 
voted to the direct computation of the spectrum of the excit- 
ed molecule. It is pointed out in Ref. 24 that allowance for 
the coherence effects discussed above can lead to a signifi- 
cant narrowing of the absorption spectrum. 

We have already discussed the Markovian approxima- 
tion (see Appendix 1 ) .  We shall assume that 7-97,. It re- 
mains to be ascertained whether or not the condition 2) 
holds for an excited molecule. It is not difficult to verify that 
it does not hold. Indeed, the reciprocal quantity T-' deter- 
mines the characteristic width of the absorption spectrum of 
the system. As is well known,'* the multiphoton excitation 
of polyatomic molecules in the quasicontinuum is possible 
only because the broadening of the spectrum is greater than 
the anharmonic level shifts S, i.e., r - '>S.  The quantity S 
characterizes the nonequidistance of the levels of the vibra- 
tional molecular mode, and lies in the range from - 1 to 4 
cm-'. The spectral widths of the excited molecule 
range12.27,2x from >N 10 to 30 cm- I, and the condition T- ' > S  
is indeed fulfilled. The quantity S is the characteristic value 
of the difference Iw,, - w,.,. I .  Thus, the condition 2) is 
clearly not fulfilled. And what is more the opposite condi- 
tion Iw,, - w,.,. I <T-'  is fulfilled, which indicates that the 
nonequidistance of the levels is not important for the relaxa- 
tion, and the vibrational mode can be modeled by a set of 
equally spaced levels: this is the quasiharmonic model," in 
which the mode frequency depends on the molecule energy, 
but the mode levels remain equidistant. 
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In Refs. 18 and 20-23 it is implicitly assumed that the 
condition 2) is fulfilled. This is, as we have shown, incorrect. 
As a result, a highly overestimated value is obtained for the 
width of the IR absorption spectrum of the excited molecule. 
For example, if for the harmonic oscillator we compute the 
spectrum of the transitions between the levels n and n + 1, 
assuming erroneously that the condition 2) holds, then we 
obtain the well-known f ~ r m u l a ' ~ , ~ ~ ' ~  

(n + 1) (7;; ntl) 
A n ,  n+i (UL) 

(on, ,L+l - 0 ) ~ ) ~  + 6: ,1+d2 ' 

where 

w,,, being the rate of reservoir-induced vibrational relaxa- 
tion from the level n to the level k [here we do not take 
account of the purely phase relaxation (see Sec. 2 )  1. For the 
oscillator with linear fri~tion,~'  the spectral width computed 
in this way is 

where G is the meah oscillator occupation number and y ,  
determines the rate of relaxation of the energy to the equilib- 
rium value: AP = - 2 y , A ~  [see (42) 1. It is known that the 
transition spectrum actually has a width equal to Y , .  The 
factor [ (2E + 1 ) (2n + 1) + 2E], which, for excited mole- 
cules (E is ofthe order of unity or two) can be k 10, leads to a 
more than an order of magnitude overestimation of the spec- 
tral width. 

4. The purpose of the preceding discussion was to dem- 
onstrate the inadequacy of the random-phase approxima- 
tion for the vibrations of excited polyatomic molecules. A 
more adequate approximation is the quasiharmonic approx- 
i m a t i ~ n . ' . ' ~ . ~ ~ . ~ ~  The simplest variant of the kinetic equatioh 
is discussed in Ref. 16, where the anharmonic coupling 
between the excited mode and a reservoir of a special kind is 
considered, but no allowance is made for the purely phase 
relaxation. In this paper we consider a more general situa- 
tion for the quasiharmonic approximation. 

We derive kinetic equations describing the relaxation of 
a selected vibrational mode of a molecule to the equilibrium 
state, and analyze the role of the various anharmonic terms 
causing the relaxation. We find out the types of interaction 
that give rise to the purely phase relaxation, and when their 
contribution to the shaping of the absorption spectrum cah 
be separated from the contribution of the energy relaxation 
processes. We show that, when allowance is made for the 
high-order anharmonic interactions, the relaxation occurs 
nonexponentially, and the absorption spectrum of a highly 
excited molecule is in the general case non-Lorentzian. In 
Sec. 3 we investigate the dependence of the longitudinal- and 
transverse-relaxation rates (in the case when they are sep- 
arable) on the molecular parameters: the anharmonicity, 
the molecular frequencies, the number of degrees of free- 
dom. We show that the effective molecular nonlinearity, 
which governs the relaxation processes, depends on the ener- 
gy of the molecule. Whereas at low energies the relaxation is 

governed by a three-frequency interaction, i.e., by a nonlin- 
earity of the third order, at high energies higher-order an- 
harmonic interactions are "switched on," and the relaxation 
is governed by many-photon processes. It is worth noting 
that, at high energies we can identify the nonlinearity order 
m* making the greatest contribution to the relaxation. This 
order naturally depends on the energy of the molecule. At 
low energies m* = 3, and at energies E-D,  m* can attain 
values k 10. Numerical results for the model crystal CF,I 
are giveh at the end of Sec. 3. 

2. THE RELAXATION OPERATOR AND EFFECTIVE 
HAMILTONIAN FOR THE EXClT ED dObE 

In the present section we derive for the excited-mode 
density matrix u in the Markovian approximation a kinetic 
equation containing the Green function expressed in terms 
of the variables of the reservoir. In particular, the energy- 
and phase-relaxation rates, which are of interest to us, will be 
expressed in terms of the corresponding reservoir correla- 
tors, which will be subsequently computed by us. The proce- 
dure for deriving the kinetic equations in their general form 
can be found in Refs. 15 and 34. We shall derive our equa- 
tions in operator form. This will, in particular, allow us to 
use for the analysis of the equations the coherent-state and 
quasiprobability-function technique, as is done in Refs. 26, 
32, and 33. 

Let us represent the Hamiltonian of the molecule in the 
form 

where H,  is that part of the total Hamiltonian which con- 
tains only the variables of the excited mode, H, is the analo- 
gous quantity for the reservoir, and the V,, are the anhar- 
monic cross terms, which contain the variables of the excited 
mode and reservoir. In second order in the V,, and in the 
Markovian approximation the equation for u has the 
form34. I6  

whereHbi) is the effective Hamiltonian for the mode in first 
order in the vsB : 

Here the averaging is performed over the reservoir density 
matrixf: 

Similar designations are used for a. The effective interaction - 
VsB in (2)  is given by the expression 
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All the averages in (2) ,  as well as the operators a and f under 
the integral sign are evaluated at the moment of time t .  This 
simplification can be made because of the assumption that 
the damping of the correlations of the reservoir variables is a 
fast p r o ~ e s s ' ~ , ~ ~  (see Appendix 1 ). The real part of the inte- 
gral in (2 )  determines the relaxation operator for the excited 
mode, while the imaginary part gives a correction of second 
order in the interaction V,, to the dynamical part of the 
equation for a. 

Recognizing that the anharmonic interaction can be 
represented as a sum of various products of the coordinates 
(normal or of the excited mode and the reservoir, let 
us represent VsB in the form 

where the A ,  are operators containing only the coordinate of 
the mode, while the B,  are the analogous operators for the 
reservoir. 

Notice that only the products of the effective, vsB, and 
usual, V,,, interactions [where vsB is defined in ( 5 ) ]  stand 
under the Tr  sign in (2) .  The meaning of such products con- 
sists in the fact that only the irreducible parts of the corre- 
sponding Green functions of the reservoir variables occur 
under the integral sign in the averaging over f in (2) .  Indeed, 
the term ( VsB ), in (5 )  has the following form 

which in turn ensures the absence under the integral sign of 
an c-independent component, which would have led to a 
divergence. The roleof the last term (V,,), in (5)  amounts 
only to the overdetermination of the Hamiltonian 

6H"' = A . < A ~ ) ~ G ~ ~  (w + 0 )  , (10) 
a8 

where the Green function GaD(w), which is analytic in the 
upper part of thew plane, is defined as 

Again we see that the term (V,,), in (5 )  has led to the 
appearance under the integral sign of a correlator that does 
not contain a constant component, this time because of the 
commutator in ( 1 1 ), and this ensures the convergence of the 
integral. 

Taking account of the foregoing comments, we obtain 
the equation for a in the form 

where D is the dynamical part of the equation and I, is the 
relaxation operator: 

D = [RY' , a ]  - Im Q,, 
ZR=ReQs, 

-[A,, oA~+(wi )  I ) +  ~ ~ ( [ A ~ , A B + ( o ~ ) ( J ] - [ A ~ ,  oAe-(oi) I ) } ,  
(15) 

+[Am, a A e + ( ~ $ )  l ) ) - [GH(z) ,  0 1 .  
We have introduced here the notation 

9a0 ( w )  = .f i0 (T) <Ba ( T )  BB (0)  )irefa' d ~ ,  (17) 

The quantity SH'*' in ( 16) is defined in ( 10) and ( 11 ). In 
deriving ( 15) and ( 16), we assumed that the B,  are real 
functions of the reservoir coordinates. The separation into 
positive and negative frequency exponential functions in 
( 18) has been done for convenience of derivation of the spe- 
cific expressions for I ,  with allowance for the fact that A ,  is 
some power of the excited-mode coordinate q,, while A + 

and A - are some products of the normal creation and anni- 
hilation operators a + and a. For example, if A = q" where q 
is the excited-mode coordinate, then A  ' ( w ,  ) can be found 
from the expansion 

The kinetic equations are obtained through the substitution 
into ( 13)-( 16) of the corresponding operators at ' ,  a', a ta ,  
aa+. 

Let us now give the analogous expressions for the case 
in which the nonresonance terms in the expression for the 
operator V,, are discarded, and V,, can be written in the 
form 

where S, pertains to the excited mode, while T, pertains to 
the reservoir. The expression (20) is obtained by discarding 
in ( 7 )  the rapidly oscillating terms. These terms do not af- 
fect the energy relaxation, but can be important in the dy- 
namics of the off-diagonal elements of the density matrix. 
The interaction, as written in the form (20),  is widely used 
(see, for example, Ref. 3 6 ) ,  but the relaxation operator I, 
and the dynamical part D cannot, on account of the condi- 
tion (21),  be obtained from the foregoing; therefore, this 
case requires a separate analysis. After carrying out calcula- 
tions similar to the foregoing, we obtain 
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The Green functions entering into these expressions are de- 
fined as follows: 

Notice that if the operators I' were Hermitian, then we 
shouldhavein(23)ReYf(w) = - R e 9 - ( - # ) . L e t u s  
now consider the individual particular cases of the expres- 
sions obtained. 

1. Pure dephasing 

Let the operators A, be diagonal in the basis of the ei- 
genfunctions of Hs [e.g., A, = (a+a)"  for the oscillator Hs 
= waf a ] ;  then A, (f) = const, and in the sums over mi  in 

the expressions ( 15) and ( 16) it is necessary to retain only 
the terms with wi = 0. Taking account of the fact that 
A, = 1/2(A ,+ + A ; ), we obtain 

a) 

Notice that pure dephasing does not lead to the mixing 
of the various matrix elements during the relaxation (see the 
Introduction and Appendix 2),  and has the form 
( I R  = - ( T ~ ' ) m n ~ r n n .  

The dynamical part of the equation is determined by the 
effective Hamiltonian 

D=[P2) ,  a], (29) 

If A = a fa ,  then (28) reduces to the following expression, 
which is well known in quantum optics3': 

I ~ I = -  y ( 2 )  [a+a [a+a, 01 1, (31) 

y=Im 9(m+O). (32) 

The operator I , (3  1 ), with the phenomenological constant 
y'2) was used earlier by Narducci e t ~ 1 . ~ '  to describe the vibra- 
tional-mode excitation dynamics in a polyatomic molecule. 
Unlike Narducci et ~ l . , ~ '  we investigate here the dependence 
of y"' on the molecular parameters. The operator 1; leads 
only to purely phase relaxation (urn, = 0): 

The terms proportional to a +  a lead to the linear damping of 
the induced polarization in the mode. Taking account of the 
fact that the coordinate q = 2-"'(at + a) ,  we find from 
(33) that 

At equilibrium (q) = 0, as it should be. 
Let us note an interesting characteristic of @(2'  in the 

case of pure dephasing. If the Hamiltonian Hs is linear in the 
variables A, ,  e.g., if 

then the effective Hamiltonian H is, because of the interac- 
tion with the reservoir, a nonlinear Hamiltonian with the 
constant 

?tap,=-Re Oap((t)+O). (34) 

Such a situation is typical of a degenerate vibrational mode 
of a polyatomic molecule, such as for instance the v, mode of 
the SF, molecule. We have A, = a; a,, 

Hs =z w..l., (35) 
a 

The second and last terms in f i y )  lead to an H,-fre- 
quency shift, but if the first term leads to the dependence of 
the frequency on the state of the reservoir, the second term 
leads to the dependence of the frequency on the state of the 
oscillator itself. This is a natural result if we take account of 
the fact that the approximations used by us are close in spirit 
to the self-consistent approximations. 

In the general case the dynamical part does not reduce 
to an effective Hamiltonian like (29), (30). 

2. Energy relaxation 

As a second example, let us consider the operator Vs, , 
which is linear in the excited-mode coordinate q. Anhar- 
monic terms of this type give rise to processes of single-pho- 
ton exchange of energy between the excited mode and the 
reservoir. Let us first consider the resonance approximation 
(20). Let us set a = 1, S = a, and Hs = w,af a. Equations 
(22)-(24) in this case yield 
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where E is the mean excited-mode occupation number. The 
relaxation operator in the form (38) was used earlier by 
Zel'dovich and his co-workers" to describe the damping of 
an electromagnetic mode in a cavity resonator. This same 
operator with a phenomenological damping constant has 
been used also to describe vibrational-mode excitation in po- 
lyatomic m~lecu les .~ '~"~ '~  The relaxation of energy from the 
mode into the reservoir occurs at a rate equal to 2y'": 

where E is the energy in the mode and .F is the equilibrium 
value of the energy. 

We have already noted that allowance for the nonreson- 
ance terms in the expression for the anharmonic-interaction 
operator alters the form of I,. In the case of a linear cou- 
pling, i.e., for V,, = qB, we find in place of (38) that 

where q = a +  + a .  It can be seen that (43) does not reduce 
to (38),  but that the energy relaxation rates are the same in 
the two cases. The dynamical part does not amount here to 
an overdetermination of the Hamiltonian. 

2. Simultaneous longitudinal and transverse relaxation 

Let us now consider the case when the anharmonic in- 
teraction has the form V,, = Vk,  + V $ ,  where the cases 
of v $, and V k, were considered above. If the reservoir op- 
erators entering into the expressions for V i B  and V I B  are 
not correlated, then the relaxation operator will be equal to 

This additivity does not obtain in any of the remaining cases. 
Let us now consider the question of the contour of the 

absorption line that is formed as a result of the various relax- 
ation processes. In all the above-analyzed cases the line con- 
tours turn out to be Lorentzian, with widths y"', y"', and 
yo' + y"' respectively. As can be seen, in order for such a 
simple picture to obtain, we must make fairly strong assump- 
tions: the interaction should have the form (a+ + a ) B ,  
+ a+aB,, where B ,  = 0 or B, = 0, or B,,, #O, but 
(BIB,) = (B,)  (B,). In the majority of papers on many- 
photon excitation," it is assumed that the spectrum of the 
excited molecule has precisely a Lorentzian shape, but the 
anharmonic terms of higher order in a and a +  can make an 
appreciable contribution at high molecular excitation levels. 
It has been pointed out before that the high-order anhar- 
monic interactions play an important role in intramolecular 
 dynamic^.^^.^^ For example, if we consider the anharmonic 
terms of the type (aCa)'B,, then instead of (33) we shall 
have for the relaxation the expression 

&,,n=-y(2) (m2-nz)2~mn,  (46) 

whence we find that the absorption spectrum of the thermal 
ensemble has the form 

(47)  

where Sw = i;, - w,  is the detuning from the line center r3. 
The spctrum (47) is formed through the superposition of 
Lorentz contours of increasing width, and this leads to the 
stretching out of the wings of the spectrum (471, as com- 
pared to the normal Lorentz contour. Such characteristics of 
the absorption spectrum at the wings can be expected at very 
high molecular excitation levels, when the occupation num- 
ber in the excited mode E 2 2. For moderately excited mole- 
cules the spectrum can, in general, have quite a complicated 
~ h a p e . ' ~ . ' ~  

4. Contribution of the T, and T' processes to the line width 

We have found out that, in the general case of the inter- 
action V,, , when contributions to the relaxation are made 
by the various anharmonicity orders, the weak-radiation ab- 
sorption spectrum turns out to be non-Lorentzian, and the 
purely phase relaxation processes are inseparable from the 
energy relaxation processes. But if the anharmonicity con- 
stants in the molecule are such that only the first terms of the 
expansion of VsB in powers of the excitation-mode coordi- 
nate q are essential, i.e., if V,, = qB, + a+aB,  (where B ,  
and B, are arbitrary uncorrelated operators of the reser- 
voir), then the contribution of the phase relaxation to the 
line width is separable from that of the energy relaxation. 
The absorption line contour turns out to be Lorentzian, with 
width y = y"' + y"'. Notice that, for terms in the anhar- 
monic potential that have the same anharmonicity order, 
and contain the coordinate q to the power k, the smaller the 
power k in such a term is, the greater is the term." This 
constitutes additional grounds for the special treatment of 
the VsB = qB, + a+aB, case. We shall consider this case 
below. Let us find out which processes ( the T I  or T,) make 
the dominant contribution to the line width. Furthermore, it 
will be interesting to know which orders of the nonlinear 
interaction make the dominant contribution to the relaxa- 
tion processes. 

From the foregoing we have 

where 

3(+) ( 0 )  = 3 ie (T) (B i  (T) Bi (0) >"eiWT dt, ( 5 0 )  

o, is the excited mode frequency and Ti ,  is the mean thermal 
occupation number (19) for the mode. The operators 
B = B(q, ,  . . . ,gas ) are some functions of the reservoir co- 
ordinates g,, . . . ,q,, wheres is the number of degrees of free- 
dom of the reservoir. Since VsB contains anharmonic terms 
of order not lower than the third, the expansion of B ,  in 
powers of the reservoir coordinates starts with the second 
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power q,. Next, we wish to express the Green function ( 50 )  
of the arbitrary operators B(q , ,  . . . ,q,) in terms of the sim- 
plest Green functions 

3i , ( t )=iO(t ) (q , ( t )q i (0) )" ,  (51)  

which are found in Ref. 5  for a system of coupled oscillators 
in thermal equilibrium. Let us represent the function B ( q )  at 
the point q  = {q,, . . . ,q,) in terms of its value at the point 
ij = ( q ) ,  where g is the mean thermal value, and the operator 
effecting the shift in the q,-coordinate space as 

B(q  . . .  q,)= .xp(): I a v a )  B ( ~ I . .  . I s ) ,  ( 52)  
a=I 

where la = q, - q, and V, = d /dij,. Then 

( B ( ~ ) B ( o ) ) "  =[( exp (C ~ a ~ a + I a ' ~ a ' ) )  

- ( a )  ( a t a  ) I  B )  (53)  

wheref=l( t )  andf ' = l ( 0 ) .  The averaging ofthe exponen- 
tial functions yields 

(B( t )B(O)  )" 

m rn-I  

= [ e x  ( c ): a a m ) i r  

rn-2 m!l=i a , .  a, 

where CL, is a binomial coefficient and the superscript ir 
denotes the connected part of the correlator. Irreducible cor- 
relators of order higher than the second in a system with 
weak anharmonicity decrease like a power of the anharmon- 
icity; therefore, in ( 54 )  and ( 5 5 )  we retain only the pair 
correlators: 

<q,(t)qi(O) )"=(E,(t)E,(O) ). (56)  

Taking account of the fact that the off-diagonal elements 
( l igx ) are small,%e obtain 

+m 

I m ~ ( w ) = { l m  iB(t)erp [iwt + ~ l ( ~ . ( t ) ~ , ( 0 ) ) ~ t ~ . ' ]  dt  
- m 

The last two formulas solve the formulated problem; the 
function Im 9 ( w )  needed by us can be entirely expressed in 
terms of the simplest correlators of the reservoir. 

The correlation functions (g, ( t )  f ,  ( 0 ) )  for the nonin- 
teracting oscillators are 

<~i( t )~i (0))=l / , [ (Zi+l)  exp (-io,t)+Ei esp (iwit)] . (59)  

For a system of coupled oscillators at"> T,, i.e., above the 
stochastization threshold, the oscillations in ( 59 )  attenuate 
exponentially with a constant y, that depends on the tem- 
perature T. In this case the frequencies w, are the self-consis- 
tent frequencies of the quasiharmonic approximation for the 
reservoir. After the substitution of (59)  into ( 5 7 ) ,  we obtain 

where the effective anharmonicity constants are defined as 

I t  is not difficult to verify that 

where in the averaging we must retain the coupled correla- 
tors of order not higher than the second. The normal anhar- 
monicity constants B  ;''? ,n,,z are defined as derivatives evalu- 
ated at the point q, = 0. The renormalization of ( 62 )  is 
equivalent to the summation of the infinite series 

m 

If the correlators of the reservoir are damped with constants 
yi, then the S functions in ( 60 )  can be replaced by Lorent- 
zian contours with widths Zy,. In the summation over 
a, ,  . . . ,a ,  in ( 60 )  the neighboring contours overlap, so 
that Im 9 ( a )  is a smooth function of the frequency. It is 
clear that the expression ( 60 )  should go over in this case into 
an expression of the type of the Fermi "golden rule." Indeed, 
let the reservoir-oscillator frequencies be lumped around the 
mean frequency win the interval A. The presence of damping 
with constants yi is equivalent to the replacement of the dis- 
crete spectrum by a continuous one. We shall assume that 
the frequency density in the reservoir is 

The normalbation in ( 64 )  has been chosen such that the 
total number of reservoir oscillators is equal to s. If the width 
of the frequency spectrum is not large, then in ( 60 )  we can 
set n, = E ,  where E is the occupation number for the oscilla- 
tor with the mean frequency. Furthermore, we shall assume 
that all the anharmonicity - constants differ only in their or- 
ders: L!''? ,a,n = B  Then we can compute the sum of the 
S functions in ( 60 )  : 

The combinatorial factor allows for the equivalent permuta- 
tions of the frequencies with the same sign. Replacing the 
summation by integration with the density ( 64 ) ,  we obtain'' 
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re8 sm exp {- (i;, (21-m) -o)  ' /2A2m)  
p m  ( o , l ) =  l! (m-1) ! (2nm)'"A 

, (66) 

wherepz(w,l) is the density of the resonance at the frequen- 
cy o ,  which is of the type w = w, + . . . + w, - . . . - w,. 
Taking account of the assumptions made, we obtain 

m 

This function gives the y'" and y'*' of interest to us [see (48) 
and (49) ] : 

m 

In the formulas (68) and (69) we denote the anharmonicity 
constants of the functions B, and B, by one letter, since they 
are defined in terms of one and the same intramolecular po- 
tential, and differ only in their orders. The expansion (68) 
starts with the third order of the anharmonicity, while the 
expansion (69) starts with the fourth order. The sums over 
the resonances always converge (it is assumed that the i? '") 

at least do not increase with increasing m ) ,  despite the fact 
that we may have E> 1. The convergence is ensured by the 
combinatorial factor in (65 ), making pz -0 as m - a. 

Let the anharmonicity constants i? '"I vary, as their or- 
der m increases, likei? '" + ') = Ai? '"', where the parameter 
A < 1, so that i? '"' = 3 ' 3 ' A  m - 3  . If A is small, and ii is not 
very large, than the dominant contribution to y'Is2) is made 
by the first terms in the sums (68) and (69),  i.e., by the 
lowest-order resonances. But at higher E the expansion pa- 
rameter is actually not A 2m,  but (A 'E)", and the situation is 
possible when A *E 2 1. In this case the terms in the sums 
(68) and (69) first increase with increasing m because of 
(A 'E)", and then begin to decrease because of the fact that 
p z - 0  as m - . Let us determine the orders of the reson- 
ances that make the dominant contribution to such a situa- 
tion. 

The qualitative analysis is most easily carried out in the 
y"' case, since the dependence o f p z  on 1 at w = 0 is especial- 
ly simple. We shall assume a priori that E % 1 and m* $1. 
Then 

Usually, the magnitude of the dispersion A -Z, and (2m ) ' I '  

does not play an important role when m* $1, since the terms 
in the sum (70) increase up to 

FIG. 1. Them dependence of the partial contribution y" I."' ( c m  ' ) from 
the mth order resonances to the total intramolecular vibrational relaxa- 
tion rate y"' = Zy'",'" for the v, th mode of the model for the molecule 
CF,I with different values of the parameter A = 0.35, 0.15. For all the 
curves B'" = 3 c m '  and E = 20 000 cm-I. 

and then begin to decrease. The "resonance-region" width 
6m - (m*)  'I2, and in the resonance region itself 

When E% 1, the dependence of m* on the molecule energy is 
linear: m* = U 'E,  where E is measured in units of E. 

A similar analysis for y"' has been carried out numeri- 
cally in the particular case of the CF,I molecule (see Fig. 1 ). 
Figure 2 shows the dependence of m* on the total energy E 
for the y"' of the CF,I molecule. 

Thus, the parameteril, which characterizes the stiffness 
of the molecule, plays an important role in the determination 
of the relaxation. If the molecule is stiff, i.e., if R is small, 
then the relaxation is governed by the lower-order anhar- 
monicities: the anharmonicities of third and fourth orders. 
But if the molecule is not stiff, i.e., ifR lies in the range from 
-0.3 to 0.4, as in the preceding example, then an important 
contribution can be made by the high-order interactions. 
The ratio of the contributions of the T I  and T, processes is 
then of a universal nature: 

FIG. 2. Molecule-energy dependence of the degree m*  of effective molec- 
ular nonlinearity, which is the primary effect that governs the relaxation 
processes. The molecular frequencies correspond to the frequencies of 
CF,I, and /1 = 0.35. 
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For the characteristic values of /I and E, at an energy E - D, 
where D is the molecule dissociation energy, the ratio lies in 
the range from 2 to 5. Let us note that, in the majority of the 
other physical situations, we have yU'< y"' (see, for exam- 
ple, Ref. 40). 

In conclusion the author expresses his gratitude to M. 
V. Kuz'min, A. A. Makarov, V. V. Tyakht, and V. M. Aku- 
lin for useful discussions of the paper. 

APPENDIX 1 

Let us verify that the Markovian approximation, on 
which our derivation is based, is indeed valid in the case of a 
highly excited polyatomic molecule. The correlation time r, 
of the reservoir is determined by various correlators of the 
form (B(r)B(O)) [see (11)-(17)]. Each function B is a 
sum of products of the reservoir coordinates qi, ,. . . ,qj ,?,. If 
we assume a priori t h a t v q ,  ( r )q ,  (0) ) -e - "', where 
y = y ( E )  is some characteristic molecule-energy dependent 
value of the relaxation constants for the molecule, then the 
correlator (B(T) B (0)  ) will be a sum of oscillating exponen- 
tial functions having composite frequencies & a i .  
+ . . . +a, ," ,  and damped at the same time with damping 
constant my, i.e., 

(B (r) B (0) ) - exp (-my%) z e x p  ( i ~ , r ) .  - 
The characteristic value of the composite-frequency interval 
A for a polyatomic molecule is of the order of the character- 
istic molecular frequency itself, i.e., A-5. The characteris- 
tic value of the composite-frequency spacing depends on the 
number of frequencies entering into the composite oscilla- 
tion, and is determined by the reciprocal density (p:) - ' of 
the corresponding Fermi  resonance^.'^ If the condition 
( p r )  5 ym is fulfilled, then the correlator (B(r)B(O) ) 
attenuates over the period of time r, - A- -5- as a result 
of the dephasing of the oscillating exponential functions, and 
the recovery phenomena, which are possible at times 
rR -p:, will be suppressed by the damping exponential 
function exp( - m yr) ,  since my 2 ( p r  ) - I .  Thus, under 
conditions when my? (p:)-l, the correlation time 7, of 
the reservoir is of the order of the reciprocal characteristic 
frequency of the molecule. It is clear that in this case 
r - y- ) T,, These relations constitute necessary conditions 
for the validity of the Markovian approximation. 

The characteristic value of the reciprocal density of the 
resonances in molecules of the type CF,I, SF,, (CF,),CI, 
etc., is, depending on the number of degrees of freedom and 
the type of resonance, of the order of 1 or 10 cm-' [see 
(66) 1. For excited molecules with energy of the order of the 
dissociation energy, the width of the absorption spectrum is 
usually 2 10 cm-I (Refs. 12, 27, 28). The condition my 
2 ( p r )  -' is fulfilled even for third-order resonances, for 
which the density p"%as its minimum value. On the other 
hand, the widths y depend on the energy of the molecule5; 
therefore, the Markovian approximation is, generally speak- 
ing, valid only for high energies and sufficiently large mole- 

APPENDIX 2 

Let us derive the condition necessary for the random 
phase approximation to be valid. In matrix form the kinetic 
equation for the density matrix (T of the system has, in the 
fairly general case, the form1' 

amn=iwdn +ZR.  .,,, oh,. ( A . I )  
A.1 

where the a,:, are the renormalized-as a result of the inter- 
action with the reservoir-transition frequencies of the sys- 
tem and the R,,,,, are the kinetic coefficients. These coeffi- 
cients determine the relaxation rate y in the system, and, in 
order of magnitude, y- lR 1 ,  where R is the characteristic 
value of the R,,,,,. We shall assume that the levels in the 
system are not degenerate. Let us consider the relaxation of 
the diagonal (i.e., m = n )  elements. The right-hand side of 
(A.  1) oscillates rapidly for all (k,l)  terms except the term 
with k = 1. Therefore, the diagonal terms relax independent- 
ly of the off-diagonal terms. For the off-diagonal terms we 
obtain from (A. 1)  in the first approximation in JR / the esti- 
mate 

If the frequencies in the system are nondegenerate, i.e., if for 
different pairs of levels k, 1, /w;, - a;, I -S> y - I R 1 ,  then 
such pairs of levels k, I can be ignored in (A.2). Only the 
terms with (k,l) = (m,n) remain, and the relaxation part 
assumes the form - ( T ;  '),,u,,, , where ( T ;  I ) , , ,  

- - R,,,,, . This is none other than the random-phase ap- 
proximation. The criterion for this approximation is the con- 
dition 8) y, i.e., the anharmonic level shifts should be much 
greater than the level widths. In the opposite case, i.e., for 
S 5 y, we can ignore the anharmonicity of the levels, and 
consider the levels to be equidistant. In this case the random- 
phase approximation is incorrect. Let us note that Fain's 
condition,I5 6 %  r, (where 7, is the correlation damping 
time in the reservoir) for the validity of the random-phase 
approximation is too strong. Since y 4 r; ', if the condition 
6)r;' is fulfilled, then we shall always have 8s y. But the 
converse is not true. Typically, for the vibrational mode of a 
highly excited polyatomic molecule, S 4 y r; I .  
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