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Brillouin scattering with the scattered light wave propagating in the same direction as the 
incident one is possible in an anisotropic medium. The problem of stimulated Brillouin 
scattering (SBS) for such a scattering geometry has already been solved for the stationary 
regime. It is shown in this article that the problem of SBS in a nonstationary regime reduces to 
solution of a nonlinear sine-Gordon equation with a specified initial condition. The known 
inverse scattering transform method is used to solve this problem and yields in explicit form 
the amplitudes of the interacting waves. It is shown that an effective-interaction region is 
produced in the crystal, and in this region the intensity of the incident light wave is transferred 
to the scattered one. In the case of nonstationary SBS, this region moves in the course of time 
to the entrance face of the sample. 

Stimulated Brillouin scattering (SBS) is usually ob- 
served in backscattering geometry, when the scattered light 
wave emerges from the sample counter to the incident one. 
In an isotropic medium, the frequency and wave-vector con- 
servation laws forbid forward scattering of light from sound. 
A crystal, however, has birefringence, differently polarized 
light waves have different velocities, and diffraction of light 
by a moving lattice of sound is possible also in forward-scat- 
tering geometry. SBS is also observed in this case.' The SBS 
can frequently be observed only for large intensity transfer 
from the incident to the scattered light wave. A mathemat- 
ical description of this process follows. 

Assuming that the spatial and temporal variations of 
the interacting-wave amplitudes occur over intervals much 
larger than the lengths and periods of the waves, we can 
change from the wave equations to the truncated equations 
for the electric-field intensity amplitudes E,(x,t) and 

The intense light wave that causes SBS is usually pro- 
duced by a laser pulse, whose time To- lop8 s is significant 
in the description of SBS. Assuming that the sample length L 
is traversed by the light instantaneously, LgcT,, we can 
drop the time derivatives in Eqs. ( 1 ) and (2).  What matters 
is whether a stationary sound-wave amplitude can be set up 
within the time To. If 

a w T o W  (5)  
this does take place and the SBS takes place in a stationary 
regime. We can then neglect in the system ( 1 )-(3) all the 
time derivatives. For coordinatesx > 1/a we neglect also the 
space derivative in ( 3  ) , and then the system can be complete- 
ly integrated.2 An analogous solution was indicated for sti- 
mulated Raman scattering by Loudon3v4: 

exp (abeP2xla) 
u ( x )  = uo 

I+(aslbeP2)2e~j)(2ab82xla) ' ( 6 )  
. - .  

E,(x,t) in the incident and scattered light waves, and the 
amplitude u(x,t) of the displacement in the sound wave2: E, (2) = b (auolbeP2) [ exp (abeP2xla) - I) 

1 l+ (a~,/b&'~) exp (2ab@x/a) ] '"' 
( 7 )  

8Eo/dx+ c-'(dEo/dt)  =-a&,, a = ~ " ~ p o q / 4 c ,  (1)  

8El/dx+c-' (aE, /d t )  =auEo, (2 )  1- ( a u o l b b 2 )  exp (rsbeP2xla) E , ( x ) = b  
1 I f  ( a ~ , l b b ~ ) ~  exp(2abb2x/a)  1'"' (8 )  

w-'(duldt) +du/dx+a(u-u,) =bE,E,, b=e2p/32npw2. (3)  

Here E is the dielectric constant, p is the photoelastic con- 
stant, p is the density, c and w are the light and sound veloc- 
ities, q and a are the sound wave vector and damping coeffi- 
cient, and w is the light frequency. For simplicity, we do not 
distingush between the dielectric constants, velocities, and 
frequencies of the incident and scattered light waves. We 
neglect the weak damping of the light compared with the 
stronger damping of the sound. 

The system of equations is completely defined by speci- 
fying the boundary and initial conditions 

E,(x=O, t )  =8, E,(x=O, t )  =0,  

The amplitude u, simulates the thermal-noise level, and only 
its inclusion in Eq. (3  ) is compatible with the natural bound- 
ary conditions (4)  .' 

The small terms ( a ~ , / b t F ~ ) ~  were left out ofexpressions (6)  
and (8 )  whenever they came close to unity. I t  can be seen 
that an effective-interaction region is produced in the crys- 
tal, with length of the order of a / a b g 2 .  In this region, the 
amplitude of the incident light wave decreases exponential- 
ly, while the amplitude of the scattered wave grows exponen- 
tially to the value 8. Only in this region does an intense 
sound wave exist, with amplitude determined by the intensi- 
ty of the incident light wave. With increase of this intensity, 
the effective-interaction region shifts towards the entrance 
face of the sample. 

If the inequality (5 )  is reversed, the SBS regime is non- 
stationary. We describe it by the same system of equations, 
but now we simplify Eq. (3)  by leaving out the last term of 
the left-hand side. The second term in the left-hand side, 
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which is necessary for the description of the small region 
x < wTo, can also be left out, since we are interested in large 
coordinates. Even the simplified system, however, consists 
of partial differential equations that describe the variation of 
the amplitudes both in space and in time. 

In the linear theory of nonstationary SBS the amplitude 
69 of the incident wave is assumed constant and Eq. ( 1 ) is 
disregarded. The system ( 2 ) - ( 4 )  can then be easily solved: 

E ,  ( x ,  t )  =uo(ax/bwt)'"I,  [ 2  (xtabw&Y2) %]. (10)  

Replacing the Bessel functions of imaginary argument in 
these equations by their asymptotics I,, ( z )  = ( 2 ~ z ) - ' ' ~ e ' ,  
we obtain an exponential growth that allows the scattered- 
wave amplitude reach a value of order g , notwithstanding 
the small prefactor of the exponential. At those values of the 
argument at which this occurs, however, the approximation 
with a specified incident-wave amplitude is not valid. 

I t  is easy to show that the system ( 1 ) - ( 4 )  has a first 
integral 

The value of the constant was chosen from the boundary 
conditions ( 4 ) .  Using ( 1 1  ), we introduce a new function 
p(x , t ) ,  choosing 

Equations ( 1 )  and ( 2 )  together with conditions ( 4 )  are 
transformed into one expression 

substitution of which into ( 3 )  reduces the solution of the 
system to a solution of one nonlinear partial differential 
(sine-Gordon) equation 

1 d 2 q  
--= sin cp 
waba2 d x d t  

with initial condition 
cp (x, t=O) =2auox. ( 1 5 )  
The method developed in modern mathematical phys- 

ics to solve such a Cauchy problem is the inverse scattering 
transform method. I t  is described in the known book by Zak- 
harov et I t  is shown in the Appendix how to use this 
method to find a solution of (14)  at  larger values of the 
argument xtabwg2. This solution is 

Expressions are accordingly obtained for the amplitudes of 
the interacting waves 

( 4 n )  -'"u, (x tabwZ2)  -'" exp (4x tabwbz)  '" 
u ( x ,  t )=  

I f  (a2u,2/16n)x'h ( tabwZ2)  --yr exp (16xtabwZ2) '" 

( 4 ~ )  - ' "a~ , x"~  ( t a i 1 w 8 ~ )  - ':I  exp (4xtabw8') '" 
= Z  I+ (n2uO2/1 6 n )  x"' ( tabw8')  -"' exp ( l G x t a b ~ 8 ~ )  '" ' 

I- (aZuo2/16n) x'" (tabw&Y2) -% exp (16xtabwZ2) 'Iz 
=8 -- 

I f  (a%02/16n) x"' ( tabw8')  -.lr exp (16xtabwZ2) '" 

(19 )  
Expressions ( 17) and ( 18) are naturally matched to the 
asymptotic expressions (9 )  and ( 10). These equations de- 
scribe an exponential decrease of the incident-light-wave 
amplitude with simultaneous growth of the scattered-wave 
amplitude. The region in which this takes place depends on 
the time and shifts in the course of time towards the entrance 
edge of the sample. 

The solution encounters a difficulty, however, viz., re- 
versal of the sign in (19 ) .  A similar difficulty can be ob- 
served in ( 8  ) at  very large values of the coordinate. Since the 
wave amplitude is by definition positive, the thought occurs 
that the sign reversal corresponds simply to a change of 
phase, and in Eqs. ( 8 )  and ( 19) one should simply use abso- 
lute values. 

The set of equations for three interacting waves must 
take into account the spatial and temporal variations of not 
only the amplitudes but also the phases S,(x,t), 6 ,  ( x , t ) ,  
6 ,  ( x , t ) .  This adds to the right-hand sides of ( 1)- (3)  an 
additional factor cos (a, - a, - a, ) . Furthermore, three 
coupled equations are added: 

E,  ( fi + s) = auE, sin (60-61-6.), 
ax  c at 

( 20 )  

At the start of the parameteric process, a solution arises with 
a zero phase difference, and is preserved in time and in space 
by virtue of (20)-(22) .  At  the point where the wave ampli- 
tude vanishes, however, the phase is not defined, a phase slip 
can occur, and the solution of the complete system must be 
determined anew after passage through such a point. 

For stationary SBS, such a point is xo = (2a /  
abg2)ln(bkF2/au,). At this point, the total energy has al- 
ready been transferred to the scattered waves. For coordi- 
nates larger than x ,  we choose a solution with a conserved 
phase difference equal to ir. The solution of the equations for 
the amplitudes is given by Eqs. ( 6 )  and ( 7 ) ,  and by ( 8 )  
taken with a minus sign. I t  must be emphasized that no expo- 
nential parametric growth of the wave amplitudes occurs in 
this coordinate region. In the absence of such a growth, sepa- 
ration of the interaction of only three waves has no physical 
meaning. The parametric connection is therefore "drowned 
in the noise" for stationary SBS at  x > x,. 

In nonstationary SBS, the evolution of the process is 
somewhat different. The amplitude Eo vanishes for each co- 
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ordinate at some definite instant of time, and a phase shift by 
.R is again possible. The solution for the amplitudes is then 
given by ( 17), ( 18), and by ( 19) with a minus sign. This 
solution corresponds to reverse intensity transfer, at infinity, 
from the scattered into the incident wave. At long times, 
however, the sound damping should lower the effectiveness 
of such a reverse transfer. 

APPENDIX 

Since the inverse scattering transform method is appli- 
cable to functions that do not increase at infinity, we present 
a modification of Eq. ( 12), cutting off the initial value of the 
funciton p(x, t  = 0)  at x-  ccr : 

cp ( x ,  t=O) = 
0, ( A l )  

{ ( 2 a u O / y ) [ i - e x p ( - y x ) l ,  rPO' 

We show now a procedure for finding a desired solution that 
does not depend on the cutoff parameter. 

The inverse scattering transform method reduces the 
solution of the Cauchy problem for a nonlinear equation to a 
solution of a set of linear problems. The first problem in- 
volves consideration of the system (x > 0)  

d$("(x ,  A)/dx=ih$("(x, h )  + i a ~ , e - ~ " $ ( ~ ~  ( x ,  A ) ,  (A2) 
d$(2' ( x ,  h ) / d ~ = - i h $ ( ~ ) ( x ,  A) f iauoe-7X$"1 ( x ,  A ) .  (A31 

The role of the potential is assumed in this system by 
O.Sdp(x,t = O)/dx. We must find a unimodular transition 
matrix that relates the exponentially observed linearly inde- 
pendent solutions at x - CC. At x < 0, since there is no 
potential, the solutions of the system are free. The system 
(A2), (A3) can be easily reduced to one second-order equa- 
tion for each of the functions $(") (x,A ). Its solution is simply 
expressed in terms of the variable 6 = (au,/y)e - Y x  : 

~ " ' ( x ,  A )  =CIP'"J +th,l(g)+C2C'iiJ- -~hl l (c)~ (A4) 

$")(x ,  h )  = C l i l ; K J - ~ ~ , + , ~ l r ( ~ ) - C 2 i ~ ' h J ~  (-45) 

The constants are determined from the continuity of Eqs. 
(A4) and (A5) at x = 0. 

The asymptotic solution as x - + co is 

$'" (2 ,h )  " C22"' exp [ -i (hly ) ln (auo/2y) ] e"lX, 
r (i /z-ih/y) 

(Ah', 

By this token, the transition matrix is completely deter- 
mined. The final expression for the reflection coefficient 
r(A) is 

This equation shows that r(A) has no poles, i.e., there is no 
discrete spectrum in the problem. This means also that the 
solution of the Cauchy problem is not connected with the 
soliton solutions of the (sine-Gordon) equation ( 14). 

According to the general theory, the dependence of the 
sine-Gordon equation on the time T = abwg2 is universal 
for the reflection coefficient 

Strictly speaking, the inverse scattering transform method 
pertains to the following linear problem-solving a system 
of integral equations with a specified kernel r(A,r): 

+=- 
?(Ar, t) ex~( -2 ixh ' )  

y"' ( a ' )  dh', 

y(Z)  ( a )  =. - - r (A', z) exp (2ixh') 
I J il-h+i6 

y'l' ( A ' )  dh', 6+0. 
2ni -_ 

(A101 

The apostrophe denotes a complex conjugate. The depen- 
dence on space and time enters in the function y'"' (A ) as a 
dependence on the parameters. From the solution of this 
system of equations we can determine the spatial derivative 
of the function p(x , r )  at r > 0: 

+m 

Let us determine the form of the reflection coefficient, let- 
ting y-0. AtABy andau,%y we have 

The square root must be determined as an analytic function 
of the complex variable A ,  a function positive when A > 0. 
Only the phase of r(A) depends on the y cutoff. It should be 
noted that expression (A12) for the reflection coefficient 
can be obtained from the solution of the system (A2) and 
(A3) by using a classical method, known from quantum 
mechanics. 

At A>au, the phase of r(A) takes the simpler form 
a2ui /Uy,  so that by choosing y small, satisfying the in- 
equalities 

we make the phase small and can neglect it completely. In 
this limiting case the expression for r(A) becomes greatly 
simplified: 

There is no cutoff parameter in (A14), and the integral 
equations have a solution determined by such values of the 
kernel and independent of the cutoff parameter artificially 
introduced into the problem. 

We seek the solutions of the system (A9), (A10) at 
large (XT) ' I 2 ,  where the nonlinearity of the SBS problem 
manifests itself. The corresponding method consists of de- 
termining the integrals in (A9) and (A10) by the saddle- 
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point method. To this end it is necessary to draw the integra- 
tion contour in the corresponding planes through the points 
A, = f i(r/4x)'I2. For these values of A we can use the 
simple expression (A14), since auo/21Aol = au#/ 
( ~ 7 )  'I 2  4 1 and in this fraction the numerator is small and 
the denominator large. 

The saddle-point integration method can, however, be 
used only if the oscillations of the function y'"'(A) do not 
suppress the oscillations of the kernels of the integral equa- 
tions. Unfortunately, the functions y'"' (A) must contain 
such rapidly oscillating parts. We separate in the functions 
y'"' (A) the slowly varying functions of the variable A: 

y'" (A) =z(')(h)+?(h) exp (-2ixA+iz/2h) z ( ~ )  (A), (A15) 

~ ' ~ ' ( h )  = ~ ( ~ ) ( h )  +r(A)exp (2ixA-iz/2A) z(')(A). (A16) 

That the functionsz'"' (A) vary slowly can be proved by con- 
sidering the system of integral equations which they satisfy: 

I ?(Ar) exp (-2ixk'+iz/2h') 
z(ll(h)=l-- J z(?' (A') dh' 

2ni -m A'-L+i6 

z ' ~ '  (A) =-z'~) (A), 
+ m 

1 r (A') exp (2ixh'-iz/2Af) I(~)(A)=--J . 
h' -A-id 

z( ')  (A') dA' 
2 ~ 2  - 

z(') (A) =z(') (A). (A20 

In this system we can already obtain the integrals of the 
rapidly oscillating functions by the saddle-point method: 

+ - 

- - auo exp (4x.r) " 
z(l)[ A=-i(&)'] ( 0 4 ) .  

4n'" (xz) '" [ A+i (z/4x) '"1 

The solution of this system does not depend on the cutoff: the 
integral term contain the absolute value of the reflection co- 
efficient, and expression (A14) was used for the saddle- 
point values. 

We can now verify that the integral terms in (A21 ) and 
(A22) always make a contribution that is small as au,/)A I ,  
so that these terms can be neglected. We have justified by the 
same token the possibility of neglecting the difference 
between the functions y'"' (A) and ~'"'(2). 

For the saddle-point values 2'"' (Ao) we obtain the sim- 
ple system of algebraic equations: 

z(" [A=-i(z/4x)"] =[I+ (a2u02/16n)x'hz-" exp(l6x.c) "I-', 
(A231 

exp (4xt) '" 
X L I+ (aZu,2/16n)x'1'z-~ exp ( 1 6 ~ ~ )  '"1 

The integral (A1 1 ) is also calculated by the saddle-point 
method, demonstrating the need for only the value of the 
function (A23 ) : 

acp (+, n-'/,au ( )-'I. 
- - xz exp(4xz)" 

ax I+  (azuu,2/16n) x ' "T-~  exp ( 1 6 ~ ~ ) ' ~  ' 
(A25) 

This equation can be integrated with respect to coordinate 
approximately, accurate to terms small in (xr) - 'I2, but this 
is also the accuracy of the saddle-point method used to ob- 
tain Eq. (A25): 

q (2, .c) =4 arctg [(16n)-" (a~ ,x '~r -" )  exp (~xT) '"] .  (A261 

To satisfy the initial and boundary condition we match the 
solutions (A25) and (A26) to the linear solutions (9) and 
( 10). Such a matching to the asymptotics of (9) and ( 10) is 
obvious. 
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