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The vertex part of the electron-electron (e-e) interaction in a "dirty" superconductor is found 
by considering all types of e-e interactions in a Cooper pair condensate. It is shown that the e-e 
interaction causes fluctuations in the phase and modulus of the order parameter, screens the 
Coulomb interaction dynamically, and gives rise to a correction to the critical current due to 
interference between the fluctuations in the order parameter and scalar potential. The order 
parameter (renormalized for the e-e interaction) is calculated, and the corrections to the 
critical current due to the e-e interaction are found for a Josephson junction. In addition to 
their temperature dependence, the corrections also depend nontrivially on the size and 
geometry of the junction. 

The effects of electron-electron (e-e) interactions on 
the thermodynamic and kinetic properties of disordered 
electron systems have recently been widely discussed in the 
literature.' In addition to corrections to the specific heat, 
conductivity, magnetic resistance, and other physical prop- 
erties, e-e interactions also significantly influence the I-V 
characteristics of tunnel junctions. For example, it was 
shown in Ref. 2 that dynamic screening of the electron-elec- 
tron Coulomb potential (diffusion e-e interaction channel) 
is responsible for the anomalous behavior of the I- Vcharac- 
teristics for junctions at zero bias. If one allows for interac- 
tion processes involving superconducting fluctuations (the 
Cooper e-e interaction channel) in tunnel junctions at tem- 
peratures above the critical point,3 one finds that the anoma- 
ly at V = 0 is also accompanied by a distinctive "pseudogap" 
minimum at eV - k, ( T - Tc ) . In Ref. 4 it was shown that 
for T >  Tc, the superconducting fluctuations perturb the Jo- 
sephson component of the current in a tunnel junction by 
producing a rapidly oscillating additional current which 
causes the junction to emit electromagnetic waves (fluctu- 
ation radiation). 

The purpose of this paper is to analyze how e-e interac- 
tions alter the properties of a Josephson junction below the 
critical temperature. The situation here is more complicated 
than for T >  Tc because the corrections to the diffusion and 
Cooper channels cannot be considered independently. The 
condensed Cooper pairs permit e-e interactions that do not 
conserve the number of uncondensed particles before and 
after the interaction, and the diffusion and Cooper channels 
are thus coupled. 

In Sec. 1 we examine e-e interaction in a "dirty" super- 
conductor by means of the temperature diagram technique. 
In Sec. 2 we calculate the first-order correction to the one- 
electron Green's function for a superconductor and find the 
average value of the order parameter after renormalization 
for the e-e interaction. The e-e interactions cause the modu- 
lus and phase of the order parameter to fluctuate, screen the 
Coulomb interaction dynamically (the scalar potential fluc- 
tuates) when a condensate is present, and give rise to an 

interference contribution to the critical current due to inter- 
ference between the fluctuations in the phase and in the sca- 
lar potential. In Sec. 3 we express the total current through 
the Josephson junction in terms of correlation functions for 
the temperature Greeen's functions. This expression is used 
to analyze how the e-e interaction alters the critical current 
for a Josephson film junction. The resulting correction to the 
critical current alters the temperature dependence near Tc. 
In addition, the correction depends nontrivially on the di- 
mensions of the junction, because large-scale phase fluctu- 
ations decrease the average order parameter for each of the 
electrodes. 

1. e-e INTERACTION IN A DISORDERED 
SUPERCONDUCTOR 

To a certain extent, electron-electron interactions in su- 
perconductors have been considered previously-for exam- 
ple, in connection with the Carlson-Goldman experiments5 
and in the theory of collective oscillations in superconduc- 
t o r ~ . ~  Specifically, the one-electron state density and results 
from tunnel experiments were considered in Ref. 7, where a 
generalization of the standard approachS was suggested for 
describing the fluctuations in a gapless superconductor. 
However, this generalization did not treat the coupling 
between the diffusion and Cooper channels. In fact, all thee- 
e interaction processes in the superconductor phase must be 
considered together, and the method proposed in Ref. 9 
makes it possible to do this systematically. The contribution 
from the e-e interaction to the linear response and dielectric 
permittivity of superconductors was considered somewhat 
later in Refs. 10-12, where experimental results5 were also 
analyzed. However, the choice of the representation formal- 
ism employed there was unfortunate because it necessitated 
extremely elaborate and physically obscure calculations. 

We use the temperature diagram technique to analyze 
the e-e interaction in a disordered superconductor (for 
which the electron mean free path I satisfies the condition 
p ,  ' 5 I(u,/Tc ). The e-e interactions mentioned above can 
all be described in a unified way by introducing a suitable 
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FIG. 1 .  Diagram representation of the electron-electron interaction matrix 
for a superconductor. 

vertex part z (Refs. 9 and lo),  which is expressible as a 
rank-two tensor on the four-dimensional Euclidean space 
R,. Figure 1 shows the corresponding matrix in the conven- 
ient "arrow" representation which describes the interaction 
for T> T, (it was also used in Ref. 10). The structure of this 
matrix can be analyzed as follows. Above T,, the matrix 
elements zoo, andz,, correspond to the ordinary fluctuation 
propagator,' while E l l ,  El,, z,,, and z2, correspond to the 
dynamically screened Coulomb interaction' (the elements 
El,, z2, describe interactions between a particle and a hole 
with total spin S = 0, while E l l  and z2, do the same for 
S = 1 1. The presence of the condensate is responsible for the 
other off-diagonal elements, which describe processes that 
do not conserve particle number. 

In the ladder approximation, the vertex part L is given 
by the familiar formula 

The matrix of bare verticesz 'O' in ( 1 ) describes e-e processes 
that occur to first order in perturbation theory. Thus, the 
matrix elementsz 2' = 2 ::' = A, whereil is the effectivee-e 
interaction constant for large momentum transfers, while - 
the elements z I:' = L ::' = 4re2/q2 correspond to the bare 
Coulomb interaction. In the next approximation, the first- 
order elements E l l  and z2, describe two distinct interaction 
processes13 and correspond to large and small momentum 
transfers, respectively. We may therefore write 

The bare vertices vanish for the remaining matrix elements 
z,,, because they correspond to processes that do not con- 
serve particle number. 

The polarization operator 0, in Eq. ( 1 ) is represented 
by the matrix whose elements are all possible loops consist- 
ing of normal and anomalous Green's functions for the su- 
perconductor (averaged over the spatial impurity distribu- 
tion). 

It is a very tedious process to calculate the vertex part z 
in this "arrow" representation. lo On the other hand, a simi- 
lar polarization operator in a more convenient block repre- 
sentation was used in Ref. 14 to describe collective oscilla- 
tions in a superconductor. We can recover this 
representation for fi in ( 1 ) by transforming by the matrix 

so that fi decomposes into block matrices. Writing L and fi 
for the vertex part and the polarization matrix in this repre- 
sentation, we obtain 

1 dSp = - - Sp T I - {;ie''' (p++ on+%) 
2 

'"n 
(2n)' 

Here 

is the one-electron Green's function for a dirty superconduc- 
tor in the Nambu formalism (here and throughout, a sum- 
mation is understood over repeated indices). The factor qon 
= 1 + v / 2 ( ~ :  + A2)'I2 (v = T-l) takes into account the 

averaging over the impurity distribution,15 A is the order 
parameter, and g,, is the electron energ~~measured relative to 
the Fermi level. The Green's function G'O'(p,w, ) is defined 
on the space S2 of two-dimensional matrices and is express- 
ible in terms of the Pauli basis matrices 

The averaging of the polarization operator over the impurity 
iistribution is carried out by means of the three-tail vertex 
r , ;  the latter is defined by the usual ladder equation" which 
in the present case, however, involves the matrix Green's 
functions (5 )  for the superconductor. l4 Since one of its ends 
corresponds to the vertex part L,  of the e-e interaction, 
which belongs to the space R,, while the other two ends 
corresppd to matrix Green's functions in the space S,, the 
vertex r, its5f is defined on the direct sum R4@S2. We 
point out that r, contains elements that correspond to "coo- 
~erons" and "diffusions" in the superconductor. ' The vertex 
Tk can in turn be decomposed in terms of the basis matrices 
(61, 

where the matrix (T,, ) is again of block form: 
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Using the results in Ref. 14, we find the following ex- 
pressions for the matrices TA;, and nA;, : 

where p = mpF/2n- is the denisty of states on the Fermi 
surface, 

and the brackets in ( 10) denote an angular average along the 
Fermi surface: (...) = J (dflP/4a) (... ). 

In general, one should sum expression (4)  over the fre- 
quencies w, first before doing the momentum integration. l 5  
Expression (9) ,  in which the integration is done prior to 
summing over the frequencies, is therefore not completely 
correct. However, this error will disappear in what follows, 
because when evaluating the frequency sums we will express 
1/RR ' and 1/RR '(R + R ') as integrals14 

+- 
1 1 5' d f  -=-j --up- 

,, RR' n - _  (g2+R" ((g2+Rt2) 

1 1 
= _ d f 

(g2+R2) ( f2+R") RR' (R+R ') n-_ 

and add over the frequencies before performing the integra- 
tion over 6. This leads to an explicit expression for the polar- 
ization operator II(q,fl, ) which is valid near T, 
(Tc - T<Tc) :  

where 

xo=Q('/~+( IQ,l+Dqa)/4nT)-+('I2), 

X~-Q('/~+IQ~~/~~T)-Q(~/~), 

$ ( x )  is the logarithm of the derivative of the gamma function, and { ( x )  is the Riemann zeta-function. 
Using expressions ( 12), ( 1 3 ) , and Eq. ( 1 ) , we obtain 

Formula ( 16) shows that the elements L,  = N, - A ,  is pressions in the square brackets in ( 16), (17) vanish. When 
nonsingular, and for IR I p 4 1 it gives a negligible correction we invert the matrix L -' (q,fl, ) in the block LA remains 
to the Green's function. For T >  T,, the off-diagonal matrix diagonal; the elements of greatest interest to us is 
elements in L vanish, L , ,  becomes equal to L,, and corre- 
sponds to an ordinary fluctuation propagator,' and L,, re- 1 1 

LI, (q, Q k )  = - - - 
duces to the expression in Ref. 1 for dynamic Coulomb P 2 In (Tc/T)Gk,~+x0 

(18) 

screening in a "dirty" metal. 
We are interested in the case T <  T,, for which the ex- When k = 0, the block L, is also diagonal: 
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the generation of a Goldstone boson (L,,) in the supercon- 

(-- t " ductor for T <  Tc. The element L,, determines the statically 
LB (q,O)= ( 19) screened Coulomb interaction, which for T=; Tc is the same 

q2 + x2 1 as for a normal metal ( x  = (8reZp)  'I2 is the reciprocal of the 
Debye screening radius). 

The singularity in ( 19) at low momenta corresponds to If fl, # O  then 

1 -- 2A sign QN (Dq2xi - I Q k  I ~ a )  Lm 
f'x0 XO ( Q k a  - (Dqa)2) 

2A sign Rk (Dq2x1 - I Pk I XO) L33 

20 [C2k2 - (Dq2)'] 
Lss 

This shows that the coupling between the Cooper and diffu- 
sion channels shows up as soon as a, $0 (i.e., the off-diag- 
onal matrix elements L,, and L3, are turned on),  while L,, 
describes a dynamically screened Coulomb interaction.' 

We note that Eqs. (12)-(20) above were derived only 
for the Matsubara frequencies a, = 2rTk 
( k  = 0, k 1, + 2, ... ) and differ markedly for zero and non- 
zero frequencies, so that ( 12) cannot be analytically contin- 
ued in an unambiguous way. However, Eqs. (18)-(20) at 
the Matsubara frequencies suffice to calculate the correc- 
tions to the thermodynamic quantities and, in particular, the 
critical current in the Josephson junction. 

2. RENORMALIZATION OF THE ORDER PARAMETER 

We now discuss how the e-e interaction alters the tem- 
perature dependence of the order parameter. In the case 
H = 0 which we consider, the self-consistency equation can 
be written in the form 

where 

is the energy-integrated one-electron Green's function for 
the superconductor. Figure 2a,b shows the correction 
& ( E ,  ) to 

to first order in the e-e interaction. The analytic expression 
corresponding to the diagram in Fig. 2a is 

6g'l) (en) 

A 

X & t o )  (p-q, en-Rr) rj (q, e,-Q,, en) G(') (p, en) Lij (q, 9,). 

A 
(23) 

If we use the expansions (5 )  and (7)  for G'O' and ?, in terms 

of the Pauli matrices, we obtain 

x (q, en, en-S2,)E;bn, 

where 

E,'L=;, ;s?,,,%?,,. (27) 

The correction dg',' shown inzig. 2b contains a four- 
tail impurity vertex Dg,  which like Ti is expressible in terms 
of the matrix Tq : 

where 

We can now express Sg(" in terms of the correction 6g"' 
found above: 

6g(2) (en) =K") (en) Dij  (0, en, en) 

FIG. 2. Corrections to the one-electron Green's function for a dirty super- 
conductor to first,order in the e-e interaction. The heavy line shows the 
Green's function G for the superconductor; the wavy line corresponds to 
the vertex part L,- of the e-e interaction; the vertices with three and four tails 
(hatched regions) allow for averaging over the position of the impurities. 
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where we write 

Inserting (23) and (30), (3 1 ) into Eq. (2  1 ) and calculating 
the trace, we find 

Formulas (24)-(27) yield the following expressions for K 'O' 

and K "': 

K'O) (en) =-niv-'T ZJ (dq) 
Q X  

K(') (en) =nv-'~ zJ (dq) {L~,T,~[ 2iToI sgn en-., 
01 

2 
 AT^^ (- + - )I +LZZT~~ [ -ZTZ3 sgn en-, 

Ie n J  len-kl 
2 

 AT^^ (- - - )] +L3,T3s [2T23 sgn en-. 
Ienl Ien-rl 

+ZTzzT33Lzs sgn en-. 

If we substitute the explicit expressions (8)  for the ma- 
trix elements TV into (32) and (33) and sum over the fer- 
mion frequency E, in ( 3 1 ), we get 

where the frequency 0, = 0 gives the dominant contribu- 
tion to the terms containing L2, and L,  ,. 

We point out that the propagator matrix element L2, 
has a singularity -q-2 at small momenta. For an infinite 
homogeneous film or wire specimen, this term does not pro- 
duce any divergence because the system possesses a long- 
range order. However, for a bounded specimen the integra- 
tion in (34) must be replaced by a summation over the 
eigenvalues of the momentum: 

where L, >Ly )d are the linear dimensions of the specimen. 
The momentum quantization conditions depend 

strongly on the boundary conditions. If the system is not 

subject to any external effects, the only condition is that the 
flux across the superconductor/vacuum interface must van- 
ish; this leads to the quantization condition q, = rn/L 
(n = 0, 1, + 2, ... ). The zeroth harmonic of the phase fluc- 
tuations in the order parameter is then found to give a diver- 
gent contribution-by Hohenberg's theorem,16 the average 
value of the order parameter vanishes. 

However, the boundary conditions are different if we 
want to perform a measurement on the specimen (e.g., con- 
nect it in an electric circuit). The zeroth harmonic now dis- 
appears and the divergence is replaced by a cutoff at q,,, 
- 1/L. 

Expression (34) can thus be transformed in various 
ways, depending on the relative linear dimensions. The ef- 
fects of the e-e interaction are most interesting for one- or 
two-dimensional specimens such as thin films and wires. 

We consider a "dirty" superconducting film of thick- 
nessd4Ly,Lx whose edges (perpendicular to thex axis) are 
connected to two massive electrodes in which fluctuations 
can be neglected. The quantization condition then read' 

(where n, k, and m are integers and n#O), and the diver- 
gence in (34) at long wavelengths is removed: 

Since d (L,,L,, the dominant contribution is from the ze- 
roth harmdnic q, = 0. Summing over qy in (37), we obtain 

1 Lv + ,  (38) 
max{d, L,) 6Lu 

where L, = (D /T) 'I2 -lbd is the diffusion length. 
Applying the above procedure to expression (34) for a 

film ( d 4 L  ,;LT (L, -Lx -L) and performing the remain- 
ing summation over a,, we get the final result 

The first correction to A2 is due to fluctuations in the modu- 
lus of the order parameter and is primarily responsible for 
the temperature dependence; the second correction comes 
from fluctuations in the phase of the order of parameter and 
depends on the longitudinal dimensions of the specimen. 
The last term receives contributions both from fluctuations 
in the scalar potential and from the interference term 
between the phase and the scalar potential. We observe that 
the last term may be neglected except for thin films with 
d(L,. Indeed, for thicker films ( d  2 L,) the last term is 
small and lies within the critical region. 
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3. INFLUENCE OF e-e INTERACTION ON THE CRITICAL 
CURRENT IN A JOSEPHSON JUNCTION 

We now calculate the corrections to the critical current 
due to the e-e interaction. In the diagram formalism the total 
current through the junction is given by 

Here K, ( i  = 0,3) is the correlation function for the Green's 
functions of the electrodes forming the junction (cf. Fig. 3) 
and is continued analytically into the upper halfplane of the 
complex frequency ( iw,  +w = eV, where V is the junction 
voltage) : 

(there is no summation over the index i in this formula). T,, 
is the matrix element of the tunnel Hamiltonian which takes 
an electron from momentum state p in the first electrode to 
momentum state k in the second electrode and gives it the 
boson frequency w,, with respect to which the analytic con- 
tinuation is performed.3 R, is the normal resistance of the 
junction. 

This formula can be readily verified by using the Leh- 
mann representation for the Green's functions as in Refs. 3 
and 17; expression (40) then reduces to the Ambegaokar- 
Baratoff fo rm~la . ' ~  We emphasize that (40) contains all the 
currents passing through the Josephson junction-the tun- 
nel and the Josephson currents, as well as the interference 
current for the quasi-particles and Cooper pairs (the cow 
contribution). 

For T >  T,, the Josephson component of the current 
vanishes identically, and the first term in (40) describing the 
tunnel current agrees with the result found previously in 
Ref. 3. For T < T, and V = 0, expression (40) reduces to the 
expression 

1 . = 4 r ~ y ,  Yr, I Tp. I 'FI  (p, 8.) h r +  (k, en) 

for the critical current derived in Ref. 19. 
We next consider a Josephson junction with "dirty" su- 

perconducting film electrodes at subcritical temperatures 
T < T, (Fig. 4). In this case, in addition to contributing a 
correction to the Green's functions in (41 1, the e-e interac- 
tion also leads to a renormalization of the order parameter 

FIG. 3. Diagram representation 

7;h 
for the correlation function 
Ki (0,).  

P, En+ W" 

FIG. 4. Temperature dependence of the critical current in a symmetric 
Josephson junction corrected for the e-e interaction. The dashed lines show 
the Ambegaokar-Baratoff dependences calculated for the critical tempera- 
tures T, and T r ,  respectively. 

appearing in the lowest-order expression (22) for the 
Green's functions. The former correction alters the critical 
current by an amount which can be calculated using (40), 
(24), and (29): 

We note that Im(K, - K,) vanishes to all orders in the e-e 
interaction; this corresponds to the fact that when V = 0, the 
e-e interaction alone is incapable of producing current cor- 
rections proportional to cos p. 

Expression (43) can be evaluated in the same way as 
(31); we find that the correction has a logarithmic singular- 
ity for T close to the transition temperature. The second 
correction to the critical current (associated with the renor- 
malization of the order parameter) is readily found directly 
by substituting A from (39) into the zeroth-order F-func- 
tions in (42); the result is 

This correction is the dominant one near T,, because it con- 
tains the additional factor T,/(T, - T) which is not pres- 
ent in 61:". 

Figure 4 shows how the critical current depends on 
temperature after correction for the e-e interaction. Accord- 
ing to Ref. 18, the critical current 1; for a symmetric Joseph- 
son junction must vanish at T,, and the dependence 1; ( T) 
is linear for TZ T,. However, the temperature T, here is 
purely formal, since only T: is experimentally accessible. 
We can find T r  by setting A ( T r )  = 0 in (39). Because of 
the e-e interaction, the curve I,  (T) lies somewhat higher 
than the line I :  (T) drawn through the point T :. 

CONCLUSlONS 

The principal results of this paper may be summarized 
as follows. 

We constructed the vertex part of the electron-electron 
interaction in a "dirty" superconductor for T <  T, which 
treats all interaction processes, including ones that change 
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the number of particles not in the condensate. It was shown 
that the e-e interaction in a superconductor causes the mo- 
dulus and phase of the order parameter to fluctuate, screens 
the Coulomb interaction dynamically when condensed par- 
ticles are present, and gives rise to an interference contribu- 
tion to the critical current due to interference between the 
fluctuations in the order parameter and scalar potential (the 
interference couples the Cooper and the diffusion channels 
in the superconductor). 

We used the vertex part to calculate the one-electron 
Green's function for a superconductor to first order in thee- 
e interaction. When this Green's function is inserted into the 
self-consistency equation, one obtains a renormalization of 
the average order parameter for the "dirty" superconductor. 
If the superconductor is bounded in at least one dimension, 
large-scale fluctuations in the phase of the order parameter 
cause the resulting expressions to diverge formally at low 
momenta. According to Hohenberg's well-known result,I6 
this divergence is due to a breakdown of the long-range order 
in unbounded one- and two-dimensional systems. For sys- 
tems of finite size, this divergence is eliminated through the 
imposition of boundary conditions. The average value of the 
order parameter in this case depends on the longitudinal di- 
mensions of the system. However, according to Ref. 20 a 
supercurrent can flow in the system even when the average 
value of the order parameter is now well-defined-it suffices 
merely for the correlation function of the order parameter to 
behave as a power of r in the long-range limit r+ co . 

On the other hand, in order for a Josephson current to 
flow through the junction a single phase must be present 
along the entire barrier. It is therefore clear that phase fluc- 
tuations will decrease the critical current density, so that the 
corrections due to the e-e interaction become dependent on 
the size and shape of the junction. 

If the dimensions satisfy ln(L, /d) )L,/Ly then the 
phase fluctuations are two-dimensional: 61, a - ( l/p$ld) 
-In( Ly/d), and the critical current drops due to phase fluc- 
tuations along the barrier itself. Of course, SIC depends on 
L, only when L, 52,  (where 2, is the Josephson penetra- 
tion depth), because for large (wide) junctions the current 
distribution becomes nonuniform. In addition, correlations 
between the phase fluctuations in the two electrodes across 
the barrier may be significant for large junctions, and this is 
neglected in the above theory. However, for very long thin 
junctions, L, 2 L, ln(Ly/d), the asymptotic behavior of 
(39) changes and the fluctuations in the phase of the order 

parameter are one-dimensional. The phase fluctuations 
along the electrodes themselves decrease the critical current 
in this case: 

One must of course remember that all of these results 
were derived to first order in the e-e interaction, and for the 
one-dimensional case they are valid only when L, 4 piSI. 
However, even for slender wires with diameter d- 1 p m  and 
mean free path 1- cm the corresponding lengths are of 
the order of 1 m, while for two-dimensional thin films they 
are exponentially large. 
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