
Theory of rate of nonradiative trapping 
A. S. loselevich and E. I. Rashba 

L. D. Landau Institute of Theoretical Physics, USSR Academy of Sciences 
(Submitted 12 June 1986) 
Zh. Eksp. Teor. Fiz. 91, 1917-1937 (November 1986) 

A theory of the rate w of nonradiative trapping of carriers and excitons in dielectrics and 
semiconductors is developed. The theory covers the cases of intrinsic self-trapping and of 
multiphonon trapping by various defects (or extrinsic self-trapping and trapping by "normal" 
defects). Capture of both thermalized and hot particles is considered. The self-trapping barrier 
is assumed high enough for the trapping probability to be exponentially small. An exponential 
rate for thermalized particles was investigated by the authors earlier [JETP Lett. 40, 115 1 
( 1984); Sov. Phys. JETP 61, 11 10 ( 1985) 1. The coefficient of the exponential is a product of 
several factors. The first, due to averaging over the Maxwellian distribution of the trapped 
particles, determines the dependence of w on Tat  low temperatures. The second is determined 
by the effective volumes in which the particles are trapped from the band state to a discrete 
level. The third is due to the presence of a zero temporal mode; in the continuum 
approximation it is due also to the existence of spatial zero modes. The last two factors cause 
the coefficient multiplying the exponential to substantially exceed the chracteristic lattice 
frequency. In the low-temperature region, the coefficient decreases with increasing T. The 
initial energy E of the hot particles can affect the probability of surmounting the barrier (this 
probability increases in the case of self-trapping), but only if this energy is coherently 
transferred to the lattice. The probability of this transfer at high E is exponentially small, so 
that particles with E 5 Ware predominantly trapped. The optimal self-trapping energy 
decreases with increasing T; the optimum for trapping by normal defects is always reached at 
E = 0. Specific differences of the temperature dependence of w for self-trapping (intrinsic and 
extrinsic) and for trapping by normal defects arc also discussed. 

1. INTRODUCTION 

This article is closely related to our preceding papersIs2 
on the theory of electron and hole self-trapping rate in homo- 
polar crystals, as well as self-trapping of excitons in crystals 
of all types. The formalism developed in Refs. 1 and 2 per- 
tained to a very general model of electron-lattice interaction. 
The only serious constraint was in fact the assumption that 
the electron-phonon coupling is linear in the phonon ampli- 
tudes. The process that determines the rate of self-trapping 
was taken to be the surmounting of the self-trapping barrier 
beween the free and self-trapped states. Such a barrier al- 
ways exists in three-dimensional systems if the particle 
(electron, exciton) is coupled to the phonon field by a short- 
range intera~t ion.~ The penetration of the barrier (by tun- 
neling or activation) was considered in Ref. 2 in an exponen- 
tial approximation. A common formalism was used for three 
specific models corresponding to three types of electron- 
phonon coupling. 

In the present paper we generalize the model further, 
waiving the requirement that the electron-phonon interac- 
tion be linear, and analyze the coefficient of the exponential: 
we estimate its value and find its temperature dependence. 

Our aim is best illustrated by using the simplest dia- 
gram that describes self-trapping. It is shown in Fig. l and 
corresponds to the presence of one lattice degree of freedom 
(one configuration coordinate Q). Generalization to the 
case of many coordinates is trivial in the case of an isolated 

trapping center: the point V is changed from a maximum 
into a saddle, and br is changed from a point into a surface. 
In the presence of translational symmetry there are many 
equivalent points-as many as there are unit cells in the crys- 
tal. 

Linear electron-phonon coupling is a widely accepted 
approximation. It is not valid, however, at the core of a self- 
trapped state, where the displacements have the dimension 
of the lattice constant a,.3 The extent to which it is valid in 
the region of the barrier (Fig. 1 ) , where the principal events 
connected with electron capture into a self-trapped state, is 
not clear at present. From general considerations one might 
assume that W is of the order of atomic, - 1 eV ( W-Eat 
-Eb ), and the spatial scale of the barrier is rb -a,. Many 
experimental results seem to indicate, however, that W for 
excitons is noticeably smaller in a number of crystals. Typi- 
cal values are W 5  100 meV (in alkali-halide crystals,435 soli- 
dified noble gases,6 and others). At W- 1 eV the exciton 
lifetime would simply be too short for self-trapping to occur. 
The only presently known argument3 capable of explaining 
the low value of W is based on the assumption that the cou- 
pling constant in the investigated crystals is A z E  Fc /EB % 1 
(see Fig. 1 for the notation). Under these conditions 
W- EB / A 2  9 EB is indeed small, and the characteristic di- 
mension of the barrier is large, rb -Aao%a,. At r, %ao the 
displacemelits are small and the linear-coupling approxima- 
tion suffices. This is why a continuum approximation and a 
linear coupling were used in the preceding There 
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frequency w, (if all the estimates are made from first princi- 
ples), and the main contribution is made by large momenta 
q-ao- ', when calculations are impractical. An uncertainty 
-w, in the value of I: leads to a comparable uncertainty in 
W, and hence to an uncertainty in the numerical coefficient, 
since the tunneling probability at T = 0 is proportional to 
exp( - bW/w), where w is the characteristic value of the 
vibrational frequency and b - 1 (Ref. 7).  An uncertainty of 
the same order is introduced also by other factors. A possible 
exception is the case of models of trapping by impurity 
centers, in which it is assumed that there is no interaction 
with an ideal lattice, and coupling exclusively to a local 
mode is con~idered .~- '~  

FIG. 1. Schematic dependence of the adiabatic potential Uon the configu- 
ration coordinate Q for a crystal with an electron. I-potential energy of 

We return now to Fig. 1, which is an adiabatic diagram 
crystal with free electron at the bottom of the electron band: 1'-the same whoseindividual segments can be related to definite stages of 
curve, but shifted by an amount equal to the itinerant-electron energy E; 
2-adiabatic potential for a crystal with an electron on a local level; W- 
height of self-trapping barrier; E,,-Franck-Condon lattice-deforma- 
tion energy; 2E,-width of electron band. The labeled values of the coor- 
dinate Q have the following meaning: Q,,-in the self-trapping state, 
Q,-in the barrier state, Q,,-at the branch point corresponding to for- 
mation of a local level for an exciton. The free state F corresponds to 
Q = 0. 

is, however, no direct experimental evidence that r, )ao, 
and a typical value is A - 3 (Ref. 6 ) ,  i.e., not very large. One 
cannot exclude the possibility that r, -ao actually happens 
by chance. It must also be taken into account that the mini- 
mum dimension on the tunnel trajectory can be less than r, . 
Indeed, it was shown in Ref. 7 that such a small quantity 
does exist and can be either numerical or parametric. It is 
therefore likely that W can be small owing to the relatively 
large values of A, but tunnel trajectories can nonetheless 
pass through configurations of size -ao, for which the non- 
linearity is appreciable. A generalization of the model is 
therefore urgently needed. Of course, the results become 
consequently less specific. On the other hand, it will be possi- 
ble to make certain assertions of general (model-indepen- 
dent) character. Some equations for specific models can be 
borrowed from Refs. 1 and 2. 

The determination of the coefficients of the exponen- 
tials in the equations for the self-trapping rate is important 
for comparison of theory with experiment, especially for in- 
terpretation of the temperature dependence~. The point is 
that for Tgw, where w is the characteristic frequency of the 
phonons, the temperature dependence of the argument of 
the exponential is very weak,'.2 and the T dependence of the 
coefficient is therefore decisive. At high temperatures, 
T k  w, the exponential itself is equal (or close, see Sec. 5)  to 
exp( - W/T), and if Wis small ( W- 3w ), the contribution 
of the coefficient to the temperature dependence can be quite 
appreciable. It must be taken into account if W is to be cor- 
rectly determined from the experimental data. 

We shall not determine the numerical coefficients in the 
coefficients, and we confine ourselves to finding how they 
depend on the principal parameters, especially on tempera- 
ture. It is practically impossible to determine the numerical 
coefficients in self-trapping problems. In fact, the self-ener- 
gy part I: for an itinerant electron is of the order of the Debye 

the self-trapping process. This will allow us to trace the rea- 
soning in the article and to discern the similarities and differ- 
ences in related studies. 

Since W)w, the lattice motion is quasiclassical and the 
adiabatic approximation is valid over the greater part of its 
path. In contrast, however, to the theory of multiphonon 
nonradiative transitions in impurity centers, which dates 
back to the paper of Huang and Rhys'l (see the review by 
Kovarskii et a!.''), the dependence of the electron wave 
function on Q is significant in the entire region of the barrier 
and must be consistently taken into account. The configura- 
tion-curve scheme in Fig. 1 does not take account of transla- 
tional invariance, and hence of the fact that intrinsic self- 
trapping can take place in any cell of the crystal, so that an 
infinite number of degrees of freedom is involved in the pro- 
cess. A consistent description must therefore be based on 
field-theoretical  method^.'^.'^ The adiabatic approximation 
is not valid at the point br, where the bound-state energy 
vanishes and near which electrons are trapped from the con- 
tinuum to an adiabatic level. This stage of the process has an 
analog in the theory of atomic  collision^,'^ where it is de- 
scribed by the zero-radius-potential method.16 It determines 
the dependence of the self-trapping rate on the electron ener- 
gy E. 

A related group of problems deals with tunneling under 
conditions of interaction with a heat bath (e.g., phonons); 
work along these lines was initiated in Ref. 17. Our problem 
is different because the barrier is formed by the very same 
phonon interaction that determines the scattering. Under 
these conditions, the time of tunneling with a trapped elec- 
tron is not a free parameter, but is always of the order o f o w  I .  

This time is too short for dissipative forces to manifest them- 
selves, since interaction of a "dressed" electron with phon- 
ons is strongly suppressed. 

Our problem being quasiclassical, the self-trapping rate 
is determined mainly by an "imaginary" actions( P ) ,  where 
p =  T - I .  This quantity is real and is equal to that imaginary 
part of the total classical action which is due both to below- 
barrier motion and to Gibbs averaging. The variety of situa- 
tions notwithstanding, the possible S( 8) dependences are 
apparently of two principal types, illustrated in Figs. 2a and 
2b. Each includes a curve A corresponding to the classical 
activational (Arrhenius) surmounting of the barrier, and a 
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curve I that describes thermally activated tunneling (instan- 
ton). These curves are tangent at the point Po = 27~ /w~" .  
The frequency w wo has a simple meaning. In the multidi- 
mensional case the point V i s  the lowest saddle point of the 
adiabatic-potential surface. This surface is represented in 
the vicinity of 3Y by a quadratic form1' that has a single 
negative eigenvalue corresponding in imaginary time to the 
frequency wwo . The tangency of the curves at the point Po 
was analyzed in detail by Affleck,19 while the scheme in Figs. 
2a and 2b was discussed by Meshkov. lo For the one-dimen- 
sional model it is simply interpreted in terms of the energy 
dependence of the period of the quasiclassical oscillations. A 
similar picture appears in the theory of quantum nuclea- 
tion." We found the intersection of curves A and I (Fig. 2b) 
in Refs. 1 and 2 for specific models. The form of segment I ' of 

FIG. 2. Main types of S(D) dependences: A-acti- 
vation (Arrhenius) regime; 1, 1'-instanton; 
8, = T ,  '--regime switch over point. Cases a and 
b pertain to self-trapping (both intrinsic and extrin- 
sic), case c-to trapping by a "normal" recombina- 
tion center. 

the curve, however, interpreted there in terms of the "long 
instanton," was incorrectly obtained (this was noted by 
Meshkov''). Incidentally, the form of segment I ' is unim- 
portant, since the action on I' is larger than on I and A. It 
appears that cases 2a and 2b are experimentally distinguish- 
able: the switch from the Arrhenius to the instanton tem- 
perature dependence is more abrupt in the second. 

In the next two sections we obtain coefficients of the 
exponentials in the low- and high-temperature regions. In 
Sec. 4 we consider self-trapping of hot electrons, while in 
Sec. 5 the theory is transferrred to multiphonon trapping of 
carriers by impurity centers (recombination and extrinsic 
self-trapping; the latter term was introduced in Ref. 2 1 ). 
Some of the results that follow were published, in part with- 
out proof, in Refs. 22 and 23. 

FIG. 3. Integration contours T: a )  initial contour; b) con- 
tour for low-temperature region. Tf-free motion of lattice 
(thin line), t *-instant when a discrete level is produced. c) 
Contour for high-temperature region. The motion becomes 
loaded in the classically accessible region long before the bar- 
rier is surmounted. d)  Contour for self-trapping of hot elec- 
trons, high-temperature region. 3) The same for the low- 
temperature region. f)  Contour for tunneling in a 
recombination center (the upper half of the contour is 
shown). 
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2. LOW-TEMPERATURE REGION 

The low-temperature region is bounded by the inequali- 
ty T < T, = P: I. The self-trapping in this region is by the 
instanton mechanism. 

Since we seek below, in contrast to Refs. 1 and 2, instan- 
ton solutions in explicit form, whereas the coefficients are 
most naturally obtained by integrating with respect to the 
phonon coordinates rather than the electron wave functions, 
we modify somewhat the formalism used in Refs. 1 and 2. 
We do not exclude the phonon coordinates Q(t)  from the 
path integrals (1.9) and I. 10)'' but, on the contrary, exclude 
formally the electron functions \y for thermalized elecrons, 
averaging, with allowance for (1.8)-(I. 1 1),  Eq. (1.6) over 
the Boltzmann distribution of the electrons, we obtain 

where Z = Z,,,Z, is the normalization factor: 

If the measure is properly chosen, Z,,, is equal to the lattice 
partition function. Here G :Ql and G fQ} are the retarded and 
advanced Green's functions of the electron and depend func- 
tionally on the lattice trajectory Q(t) ,  L ,,, is the free-lattice 
Lagangian, and the contour r is shown in Fig. 3a. The usual 
periodic conditions Q(t, + iP/2) = Q(t, - iP/2) are im- 
posed on Q and will hereafter be called the conditions of 
periodicity in imaginary lines, k is the momentum of the free 
electron, E(k)  is its energy, and $,, and $k are the Schr6 
dinger wave function of the self-trapped and itinerant elec- 
trons, respectively. Electron Green's functions that depend 
on the lattice trajectory were previously used in other prob- 
l e m ~ . ' ~  

Self-trapping sets in at some instant of time between t, 
and t,. It is convenient therefore to express G and G fQ) in 
a mixed representation: 

where V is the volume of the crystal. The functions 
$m,oc,, ( r )  and Em (Q( t ) )  comprise the complete set of 
Schrodinger wave functions and the energies corresponding 
to them in the time domain t corresponding to self-trapping 
(loaded motion of the lattice); $,, corresponds to the lowest 
Em (Q). In the region of free lattice motion, we must substi- 

tute Em (Q) *E(k). The symbol {Q) in the arguments of 
the various quantities means that they depend on the coordi- 
nates Q nonlocally with respect to time, or in other words, 
that they depend on the entire trajectory of the lattice. The 
factor urn,, is the amplitude of the transition from the state k 
to the state m. Substituting (3)  in ( 1) we obtain 

where 

The correspondingly deformed contour is shown in Fig. 3b 
(cf. Ref. 2 ) . The electron is trapped at the point t * located on 
the vertical section of the contour T. The entire vertical sec- 
tion corresponds to lattice tunneling within a timeP/2. The 
duration Im{t *) = ~, -w- '  of the loaded motion for T<w 
is considerably shorter than P /2 and is independent of Tin 
this region. 

We calculate the path integral by the saddle-point 
method, using the presence of the large paraemeter W/o ) 1. 
We can then take u s , ,  of the coefficient outside the integral 
on the extremal trajectory; we denote this quantity by u (k) .  
For slow electrons with E ( k )  - T we can neglect the depen- 
dence of u (k)  on k and write simply u (0) (see the Appen- 
dix). The dependence on E( k )  is completely separated in the 
form of a factor exp{ - ( P - 2r,) E(k)  1. Thermal elec- 
trons obey the quadratic dispersion law E ( k )  = k 2/2m. The 
integral with respect to k can therefore be calculated, and its 
ratio to Z, is equal to 

pe , . (T) =(exp (2.toE (k) ) >,= (l-2roT)-". ( 6 )  

We express the Lagrangian L (Q), with E( k )  left out, in 
the form 

where the adiabatic potential U(Q) is equal to the lattice 
potential energy Urn (Q) of the lattice on the free-motion 
segment (curve 1, Fig. 1 ), while on the loaded-motion seg- 
ment we have U(Q) = U,(Q) + EST (Q) (curve 2, Fig. 1). 
The subscriptj numbers the degrees of freedom of the lattice. 
The potential U(Q) cn be expanded near the extremal trajec- 
tory Q, ( T )  in powers ofq = Q - Q, . As a result, the contri- 
bution wCell of this extremal to w, is equal to 

where 

Here S, - W/w is the instanton "imaginary" action at 
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E(k)  = 0. Its temperature dependence was considered in 
Refs. 1 and 2. The eigenvectors of form I(q,t), which are 
periodic in imaginary time, will be designated by q'" ( t ) ,  
and the corresponding eigenvalues by ( - A, ). The A, de- 
pend on T via the periodicity conditions. The eigenvalues of 
the operator I for the free lattice [i.e., with Q, ( t )  =O] will be 
designated ( - A :"). The meaning of the indexs for the free 
lattice is easy to interpret. It numbers both the normal co- 
ordinates of the lattice and all the natural oscillations (peri- 
odic in imaginary time) corresponding to each of these co- 
ordinates. There is no such simple classification for loaded 
motion, but the total number of eigenvalues remains un- 
changed. It can be shown in the usual fashion that one of the 
A, is negative (A, < 0) and one is zero (A,  = 0).  the corre- 
sponding zero mode q"' oc a, QI ( t )  . This zero mode is time 
dependent. It corresponds to translation in time and its con- 
tribution to the integral in (8)  is (t, - t, )S :/,. Gaussian 
integration in (8)  and cancellation of (t, - t, ) yields 

weell-peV-' I u (0) 1 St''' e-S1 me,,, 

A prime on the product symbol means that the zero mode is 
left out. If no soft modes other than long-wave acoustic 
phonons are included among the A, then, since the charac- 
teristic values satisfy A, -A jO) -a2, the estimate a,, -w is 
valid, with o,, independent of Tas T- 0. Since all the lattice 
cells are equivalent, the number of extremals with identical 
action is V/v, where v is the unit-cell volume. Therefore 
w,  = ( V/v)w,,,, . Using Eqs. (A1 ) and (A2) for lu(0) 1 2 ,  
we obtain ultimately 

w ~ - ~ ~ u - ~ w  ( m a ) - "  exp ( -SI )  -pew ( E B / ~ ) '  exp ( - -S t ) ,  ( 11 

where we used the estimate E, - r n - ' ~ - ~ / ~ .  
Equation ( 1 1 ) is invalid when the instanton radius 

r, -a,. With increasing r, there appear among the A, three 
anomalously small eigenvalues corresponding to three 
translational soft modes (with frequencies asoft 1. Then 
we, -a (w/a,,, ) and w, increases substantially. As 
w,,, -0, the expansion (9)  in terms of the corresponding 
variables is no longer sufficient, and o,, no longer increases. 
In the continuum limit (r, %a,) the soft modes are trans- 
formed into three spatial zero modes. A standard proce- 
dureI4 leads to the equation we, - w (v/r: )S :/', since the in- 
tergration over the instanton coordinate is limited to the unit 
cell. For interaction with nonpolar optical phonons we have 
r, - r, (Ref. 7) ,  and then 

w,-p, (T) oSr3  exp ( - S I ) .  (12) 

For acoustic phonons, the instanton has two scales in the 
continuum appr~ximation.~ The internal scale satisfies 
r, < r, , with r, # O  only because the lattice is discrete. In the 
strict continuum limit, when r, -+O and the electron inter- 
acts exclusively with acoustic phonons, the system acquires 
as T-0 an additional symmetry with respect to the four- 
dimensional scale transformation of the instanton.' This 
symmetry should correspond to an additional zero mode. 

All this can change, and more readily increase, the coeffi- 
cient in Eq. ( 12). 

Large factors, (E, / u ) ~ " )  1 and S: 9 1, multiply w in 
both equations ( 11 ) and ( 12). This increases w, consider- 
ably with the usual elementary estimate. It is convenient to 
interpret first the physical meaning of these factors as ap- 
plied to Eq. ( 1 1 ) , which we rewrite in the form 

The factor S 'I2$  1 always appears in problems involving 
tunneling from an oscillator-type potential well. It stems 
from the fact that the tunneling is not from the bottom of the 
well but from a lower level with energy w/2. The factor 
r:,/u% 1 contains the effective radius r,, of the trapping re- 
gion (see the Appendix). This factor reflects the possibility 
of the onset of instanton fluctuation in any of the cells within 
the trapping region. The additional factor S :/2 % 1 in Eq. 
(12) is due to the fact that the translation group becomes 
continuous. Equations ( 1 1 ) and ( 12) can be rewritten in the 
form 

(wIu)  SIIA exp ( - S I )  
w==~er tr~dt ,  dI -{ 

( u / r b 3 )  S12 exp ( -ST)  ' 
(14) 

The quantity d, is called the instanton density2' and has the 
meaning of the probability of the onset of an instanton fluc- 
tuation per unit volume and per unit time. The upper and 
lower equation ford, pertain to the discrete and continuous 
limits, respectively. 

At T g  1 the temperature dependence of S, is weak: the 
temperature-dependent contributions to S, are proportional 
to T 4  and T respectively for deformation and piezolectric 
interactions with acoustic phonons, and to exp( - o/T) for 
nonpolar interaction with optical phonons.'s2 The tempera- 
ture dependence of p, (T )  [Eq. (6 ) ]  should therefore be 
dominant here. It appears that it is just the factor p, (T) 
which describes the temperature dependence of the rate of 
exciton self-trapping in Xe at T 5  30 K (Ref. 26), as follows 
from the analysis of Ref. 23. 

3. HIGH-TEMPERATURE REGION 

At high temperatures T >  T, the self-trapping is by the 
activation mechanism. In the region T k  T, , nevertheless, an 
appreciable fraction of the flux passes by tunneling near the 
top of the barrier. 

It is convenient to rewrite Eq. (4) in terms of the lattice 
Green's functions DR(A)  . They should in principle be labeled 
by two indices corresponding to the numbers of the sheets of 
the adiabatic-potential surface in the initial and final states. 
Since self-trapping corresponds only to off-diagonal ele- 
ments (such as D we shall omit the subscripts. Passage 
through the point br introduces into D the amplitude of the 
passage between the sheets, which coincides with the elec- 
tron-trapping amplitude V -112u (k)  . In this notation, (4)  
takes the form 

(1.-tl) W T  = Z-I j+ dQl dQ2 DA ( Q , ,  t,-iP/2 1 92, t ~ )  
(an) 
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The integration over d ~ ,  extends here to the region from 
which flow behind the barrier is possible, while the integra- 
tion of $Q, extends only to a region behind the barrier from 
which return to the free state is already practically impossi- 
ble. The integrands take in the energy representation the 
form 

(16) 

Since the coefficient of the exponential in (16) oscil- 
lates rapidly on the scale E -  (t, - t, ) - I ,  the function 
D ::A:,, can be expanded in powers of E .  It is necessary here 
to make use of the quasiclassical character of the motion 
(with the possible exception of the immediate vicinity of the 
point W ) ,  as a result of which the fastest factor in DR is 
exp{iSo(E (Q,,Q, ) 1, whereso is the reduced action. Since Q, 
and Q, are on opposite sides of the barrier,the reflected wave 
need not be taken into account. Expanding the action in 
powers of E,  recognizing that dSo(E IQ,,Q, )/dE is equal to 
the time TE (Q,,Q,) of the motion between Q, and Q,, and 
then integrating over E,  we transform ( 16) into 

Our problem is to separate in the right-hand side of 
( 15) the time dependence in the form of a factor t, - t,. To 
this end it is convenient to partition the entire multidimen- 
sional space by means of a hypersurface E,- that passes 
through the point W near which the main flux is concentrat- 
ed, and is normal to the coordinate go corresponding to a 
negative eigenvalue ( - w w i )  of the adiabatic potential in 
the vicinity of the point W. The main flux of the particles is 
oriented along go. We denote by Q, (Q,,Q,> the point 
where a classical trajectory drawn from Ql to Q, intersects 
the surface 2,.. We can then write TE(Q2,Ql) 
= TE (Q2,Q7/. ) + TE (Qw- ,e l )  and respresent ( 15) with 

the aid of an elementary transformation in the form 

To interpret the inner integral, it is convenient to consider 
the auxiliary expression 

where f, ( Ql ) = 0 and f2(Q3) = 0 are the equations of the 
two hypersurfaces 2, and X2, while p, is the multidimen- 
sional momentum of the lattice at the point Q, for the trajec- 
tory from Ql to Q,. If 2, intersects the volume element dQ,, 
then 

is equal to the spectral density of the flux, near the energy E, 
which passes through an elementary surface area Z,. Here 
v(E,Q,) = P-' Im D 2 (Q,,Q,) is i he  density of states. 
From the equation (H - E + iO) D (Q,Q, 1 
= - S(Q - Q,), which defines the function D g, it follows 

that the stationary density produced at the point Q by a S- 
function source located in Q, is equal to )Dg(Q,Q,) 1'. It 
follows at the same time from a time-dependent Schrodinger 
equation having the same right-hand side that the source 
produces a total flux 2 Im D g (Ql,Ql ) .27 In the quasiclassi- 
cal situation the flux is concentrated near a classical trajec- 
tory, and the density dN, at the point Q,, produced by a flux 
dII, at the point Q,, is equal to 

It is now clear that ( 19) is the elementary flux from surface 
2, to surface 2,. It can be verified that for surfaces 2, and 2, 
defined by the S functions in ( 18) we have 1 (pi V '  ) ( = 1, 
i = 1,2. Indeed, separating from the set Qi the coordinate goi 
corresponding to motion along a classical trajectory tangent 
to p, we get pi dfi /dqoi = ( piVfl ) = + 1. To obtain the last 
equation we used the well-known classical formula 

Thus, the integral over Q, and Q, in (18) is the spectral 
density of the flux between the surfaces 2, and 2,. 

By virtue of flux conservation, this integral remains un- 
changed in the quasiclassical region if 2, and 2, are dis- 
placed along the flux, and is therefore independent oft. Con- 
sequently, the integral with respect to t in ( 18) reduces to 
multiplication by t, - t,, and the surfaces 2, and 2, can be 
brought close to 8, to permit only quadratic expansion of 
U(Q) near Y.  Next it is convenient to transform with re- 
spect to all coordinates except go to the quantum-number 
representation Q-qo,{ni),i> 1. We can similarly write for 
the energy 

where Eo is the energy corresponding to the degree of free- 
dom go and measured from the top of the barrier. The 
Green's function for the degree of freedom go is of the form 

The first two factors are the standard form for the quasiclas- 
sical Green's function, the factor V -"'u (k)  is the contribu- 
tion from the trapping stage, and (d(Eo) 1' is the transparen- 
cy of the barrier. This last factor takes into account the 
possible deviation from quasiclassical behavior near 7. 
Taking (21) and (A2) into account, we can integrate in 
(18) with respect to k. It is unusual that the integral with 
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respect to k converges not to E(k)-T,  but to 
E (k )  - R - (a2 W) 'I3, which is the characteristic capture 
energy. As a result, the dimensionless phase volume of self- 
trapping particles is of order (WT)~' , .  In the integration 
with respect to k the factor exp( - E(k)/T) is not manifest- 
ed in the numerator of ( 18), since E ( k )  is a fraction of the 
total energy E contained in the Gibbs factor in ( 18); the 
integration with respect to E is carried out below. The inte- 
gration with respect to Q, and Q, in ( 18 ) reduces to calcula- 
tion of the partition function with respect to ni and integra- 
tion with respect to go, with i = l and 2. The last two 
integrations eliminate the S functions contained in the argu- 
ments of TEo (Qi ,Q, ), and cancel out simultaneously the 
momenta that enter in (21). As a result, we have for the 
contribution w,,,, in w,  from the self-trapping of an electron 
in a defnite unit cell: 

Here wi are the free-lattice frequencies, and w ,, are the vi- 
brational frequencies on the barrier. Using for d(Eo) the 
familiar expression 
ld(E,) l 2  = {l + exp( - 2aEJw ,, )I-', corresponding to 
a parabolic barrier, and multiplying by the degeneracy fac- 
tor V/v (see Sec. 2), we get 

This expression for w,  differs from its analog for activa- 
tion surmounting of a barrier by nonlinear multimode sys- 
tem19 in that the latter contains in square brackets a factor 
responsible for trapping under activation conditions. The 
meaning of this factor becomes clear if it is rewritten in the 
form (r:, / u )  (R/T) 312. Its order of magnitude is (E, /T) 312. 

If T 2 T, , we have we, -w and 

~ , -v- 'o ( rnT)-~~ exp (-WIT) - (E,IT)"o exp ( -WIT)  .(24) 

FIG. 4. Schematic form of adiabatic-potential surface: W ,  
and W2-lowest saddles corresponding to a self-trapping 
barrier for two neighboring unit cells; Y--taller saddle that 
acts as a col between Y, and W2. 

The coefficient of the exponential is thus large and depends 
on temperature. 

Although (23) is written as an exact equality, in view of 
the renormalization of the free-electron spectrum it is in fact 
accurate only to within a factor of order unity (as explained 
in Sec. 1 ) . 

The estimate (24) is valid for a small radius of the bar- 
rier state, when the individual saddles are well separated. As 
r, increases the potential relief (Fig. 4) is smoothed out and 
the height A W of the barriers between neighboring saddles 
decreases rapidly at an exponential rate. Three anomalously 
low frequencies Asoft appear then among the frequencies 
w wi (i# 0). The oscillations corresponding to them are gen- 
erators of zero-point modes (cf. Sec. 2). If A W >  T, then we, 
-- (w/ws0, ) 3, and we get in place of (24) 

i.e., w,  increases appreciably. With further decrease of A W, 
when A W< T, the situation approaches that of a continuum. 
we, is then obtained from the corresponding equation of Sec. 
2 by making the substitutions rI -r ,  and SI - + S ,  r W/T. 
The result is 

The temperature dependence of the coefficient of the expo- 
nential becomes stronger than in (24). 

The meaning of the derivation of Eqs. (25) and (26) 
requires the coefficient in (26) to be much larger than in 
(24). This is indeed so if the low values of W for excitons 
( W4EB ), reported for a number of crystals, are due only to 
the large A )  1. In the transition region A - 1 the barrier 
height is then W-E, , and the inequality of the coefficients 
is well satisfied. If, however, for reasons unknown at present, 
the numerical values are such that Wg EB also in the region 
A - 1, the use of Was the energy scale in the coefficient of the 
exponential in (26) is not justified at A - 1. It is then appar- 
ently more correct to use in this region the estimate (EB/ 
T13. This remark holds also for Eq. ( 12). 

4. HOT ELECTRONS 

The carriers and excitons are produced in most experi- 
ments with an initial energy significantly higher than ther- 
mal. The question is: how are they thermalized and how does 
the branching of the process take place, viz., what fraction of 
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the particles is thermalized into a free state, and what frac- 
tion is self-trapped prior to thermalization? It is also very 
important to identify the relaxation stage at which the main 
outflow of particles to the self-trapping state takes place. To 
answer these questions, we must calculate the self-trapping 
rate w(E,T) as a function of the particle energy E. 

We shall carry out all the calculations in the exponen- 
tial approximation. Calculation of the coefficients is not ur- 
gent at present, since the methods of exciting fast carriers 
and excitons are difficult to control and the nonequilibrium 
distribution function of the particles is unknown. 

The self-trapping barrier blocks not the electron but the 
lattice degrees of freedom. Nonetheless, the initial electron 
energy can in principle be used to permit the lattice to sur- 
mount the barrier. If, however, the fast electron loses energy 
gradually, emitting a cascade of incoherent phonons, this 
will in no way facilitate its self-trapping, which requires that 
the energy be transferred from the electron to the lattice 
coherently. Since, however, the lattice frequencies are low, 
the probability of such a transfer is exponentially small. We 
consider here, for the technique used above, a modification 
that is needed to be able to calculate this probability. 

If any of the contours of Figs. 3a to 3c are used, the 
coordinates remain real at all times, and the transition from 
surface 1' to the point br (Fig. 1 ) entails a jump of the elec- 
tron energy. It is just this jump which determines the 
amount of energy that must be coherently transferred to the 
lattice, and the problem consists of calculating the probabil- 
ity of this transfer. In the spirit of the adiabatic theory of 
quantum  transition^,'^ the contour must be deformed so as 
to prevent this jump. It follows from (5)  that it is necessary 
that EST (Q) which is negative for real Q, satisfy at a certain 
instant of time the condition E ,, (Q) = E, where E > 0 is the 
free electron energy. This is possible only if Q is complex, i.e., 
the contour must be deformed. 

We make one general remark. In the present section, in 
contrast to Secs. 2 and 3, no Gibbs averaging over the elec- 
tron energy is carried out. In this calculation method, the 
results of Eqs. (4) and (5) must be multipled by the factor 
exp (DE). 

Consider first the activation regime. A discrete level is 
produced at the instant t * as the lattice moves in the direc- 
tion of real time. At times t close to t * the electron energy 
varies as 

(see the Appendix). The equation E ( t ) = E is satisfied at 

t tr- - t * - i ~ - % ~ ' h  (28) 

The contour must therefore be provided with an appendage 
that passed through the point t,,. The increment to the 
imaginary action due to circuiting by this appendage, is 
equal to 

AS*-2 Im J (E-EBT ( t )  ) dt = - 
11, 

The integration in (29) was carried out with (27) and (28) 

taken into account. The factor 2 is due to the presence of two 
appendages, upper and lower (Fig. 3d). It can be seen from 
(29) that the probability of coherent energy transfer from 
the electron to the lattice is indeed exponentially small at 
E > O - ( W ~ W ) " ~ .  

For imaginary t - t * the energy EST ( t )  can be inter- 
preted as the location of a quasilocal level above the contin- 
uous spectrum of the electron. This level is formed in a com- 
plex potential produced by complex displacements Q of the 
lattice. At the instant t,, the level energy coincides with the 
electron energy and the latter is resonantly captured on the 
level. Equation (29) is outwardly similar to the usual equa- 
tion of adiabatic perturbation t h e ~ r y , ~ ~ . ' ~  where adiabatic 
energies which are two branches of one analytic function are 
located on the two edges of the cut, and the contour can be 
deformed and still bypass the branch point. There is never- 
theless a substantial difference. The energies EST and E in 
(29) are actually two independent functions, so that the con- 
tour cannot be shifted away from the point t ,, . 

As a result, the imaginary action for hot particles can be 
written in the form 

S.,(E, T) =( W-E) /T f4 / , (E /Q)" .  (30) 

The first term is a modification of the actions, = W/T that 
enters in the arguments of the exponentials in Eqs. (23)- 
(25). This modification results from the already mentioned 
omission of Gibbs averaging over the electron energy. The 
physical meaning of the first term is easily understood. The 
electron contributes an energy E to the total energy Wneed- 
ed to surmount the barrier. The heat bath need therefore 
supply only the energy deficit W - E. The second term de- 
termines the probability of transferring an energy E from the 
electron to the lattice, and agrees with Demkov's exact solu- 
t i ~ n ~ ~  (cf. the Appendix). S, has a nonmonotonic depen- 
dence on E. At small E it always decreases linearly. The 
minimum is reached at Em, - (w/T)'W, with 

S A  (0, T)-Sa(E,in, T ) - ( u I T ) ~ ( W I T ) .  

The equations obtained are valid if (27) can be used, 
meaning that w I t * - t ,, I < 1 or E< W. Only under these con- 
ditions can recoil be neglected and electron capture consid- 
ered for a given motion of the lattice. 

We change now to the instanton regime. Since the point 
t * is now on a vertical segment, the potential well becomes 
deeper as we move downward from the point t *, i.e., in the 
direction of imaginary time. We have therefore in place of 
(27)and(28)  

EST ( t )  =Q3(t-t*)', ttl=t*-S2-'E'b, 

and the contour takes the form shown in Fig. 3e. The same 
integral as in (29) determines ASI, but its imaginary part is 
zero in this case, so that MI = 0. As a result, the action for 
hot carriers is equal to 

This equation, just as (30), is valid if E< W. 
For E- Wit is impossible to obtain the dependence of S 

on E in general form. If E9 W, however, estimates can be 
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made from scaling considerations. The results are found to 
depend on the model. For two models (deformation interac- 
tion with acoustic and optical phonons) it was shown in Ref. 
22 that S, and S, increase as powers of E in this region. It 
follows from all the foregoing that Em,, - Win the low-tem- 
perature region and Em,, W at high temperatures. Ap- 
proximate plots ofS(E,T) are shown in Fig. 5a. 

One general relation valid for all E and T can be estab- 
lished. The shape of the contour r and in particular the val- 
ues oft ,, are determined by E and T. Formally, however, it is 
convenient to regard the imaginary action as a function, 
S = S(E,T,t ,, ), with t,, chosen to meet the condition dS/  
a t  ,, = 0 [it can be shown that Eqs. (28) and (3  1 ) satisfy this 
condition]. The total derivative is therefore dS/dE = dS/  
dE. The explicit dependence of S on T is obtained by inte- 
grating ( - E) with respect to time along r,. The resulting 
contribution is equal to ( - 2E Im{t,,}). As a result, 

It follows hence, in particular, that t,, is real at the point 
E = Em,, . In the region where S increases with E we have 
Im(t ,, } < 0. This shows that at E 2 W the contours become 
considerably more complicated than those shown in Figs. 3d 
and 3e (see Ref. 22). 

Averaging the self-trapping probabilities given by (30) 
and (32) over an equilibrium Gibbs distribution leads to the 
equations of Secs. 2 and 3. 

Returning to the questions raised at the beginning of the 

FIG. 5. Schematic dependence of S on the electron energy E 
at various lattice temperatures ( T, < T, < T,): a )  intrinsic 
and extrinsic self-trapping; b)  recombination centers. 

present section, we can assert that the self-trapping rate in- 
creases in a definite range of electron energies E. It remains, 
nevertheless, exponentially small. The argument of the ex- 
ponential, however, decreases noticeably and this can lead to 
a considerable diversion of electrons to the self-trapping 
state prior to their thermalization. 

5. TRAPPING BY IMPURITY CENTERS 

For electrons interacting with impurity centers there 
exist adiabatic-potential surfaces of two basic  type^.'.^^.^' 
They are shown in Figs. 6a and 6b for the one-dimensional 
model. Those of the first type are called intrinsic self-trap- 
ping centers," and of the second "normal" defects or recom- 
bination centers. 

The adiabatic-potential surfaces for the centers of the 
first type differ from the analogous surface for intrinsic self- 
trapping in the bulk (Fig. 1) in having no translational sym- 
metry. Specific centers in AI, Ga, -, As were ascribed in 
Ref. 30 to both types. The qualitative difference between 
them is that the points br and V are separated in case a but 
are superposed in case b (V  lies on the br surface in the 
multidimensional case. ) 

Interest in multiphonon trapping was stimulated re- 
cently by Henry and Lang's analysis' of long-time photocon- 
ductivity in terms of the theory of multiphonon transitions. 
Capture by centers of type b was analyzed in detail by Aba- 
kumov et aL9 In a model where an electron interacts with 
one local mode. A comparative analysis of the picture of 

FIG. 6. Adiabatic-potential curves for impurity centers: a )  
extrinsic self-trapping, b)  recombination center. The shaded 
lines show the tunneling trajectories. 

I I I 
I I * I + 

f fbr  ffb Qb = Qbr 4 
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capture by centers of both types was made by MeshkovIo on 
the basis of a similar model. The important step made in 
Refs. 9 and 10 is the consistent description of the system 
motion in the vicinity of the point br. The methods used in 
Refs. 9 and 10 for impurity centers and in Ref. 22 for intrin- 
sic self trapping are close to one another. 

The task of the present section is to examine the types of 
behavior that are typical of multimode systems and there- 
fore are lost sight of in the one-mode description. Another 
task is to determine the features that are common and are not 
connected with particular models. 

The rate of nonradiative capture of electrons by impuri- 
ty centers, averaged over the thermal distribution, is equal to 

where Ni is the density of the centers, v, the electron veloc- 
ity, and o the capture cross section. The general formalism of 
Refs. 2 and 23 and of Secs. 2 and 3 of the present paper can be 
directly applied to impurity centers. 

We consider first the temperature dependence of wT in 
the exponential approximation w, a exp ( - S),  where 
S(T)  is the imaginary action. The value of S(0)  is deter- 
mined by the detailed structure of the centers, and local 
modes can make an appreciable, possibly even decisive, con- 
tribution. The low-temperature dependence ofS( T) is, how- 
ever, always determined by interaction with acoustic phon- 
ons, which are the only low-frequency modes of the system. 
The low-temperature correction AS(T) to the action can be 
satisfied by making the motions in the system (made up of 
long-wave acoustic modes and the instanton formed by the 
short-wave and local modes) self-consistent so as to satisfy 
the least-action ~ondition.~'  Naturally, this correction de- 
pends on the space-time form of the instanton, so that the 
numerical coefficient cannot be found in general form. The 
equations for deformation and piezoacoustic electron- 
phonon interactions differ greatly. Estimating ASin analogy 
with Refs. 2 and 23 and assuming ro-wP I, we get 

Here Cis the deformation potential, P, the piezomodulus,p 
the density, and s the speed of sound. 

The analysis of case a is quite similar to that of intrinsic 
self-trapping. The only difference is that the number of ex- 
tremals is not V/v but VN, . As a result we obtain in lieu of 
( 11 ) and (24), respectively, 

wT-p,(T)IV,o(mo)-': exp(-S,(T)), 

wT-N,o(ml')-' exp(-WIT), (36) 

p, ( T )  is determined as before by Eq. (6).  Just as for intrinsic 
self-trapping, the temperature dependence is monotonic, 
and at the very lowest temperature it is determined by the 
electronic factor p, ( T) . 

Case b differs in one important respect from case a: here 
T, < 0 (see Fig. 3f). The reason is the following. It can be 
seen from Fig. 6b that on the tunneling trajectory the point 
br is a turning p ~ i n t . ~ ~ . ~  At the same time, the "imaginary" 
velocity Q(T) (T  is the imaginary time) is not zero at this 

point. To ensure continuity of Q(T)  it is therefore necessary 
to invert the contour at the point t *. Complex trajectories 
with backward motion in time were considered in detail for 
this problem in Ref. 10. Since T, < 0, p, (T)  becomes a de- 
creasing function of the temperature [see Eq. (6) 1. This 
makes the temperature dependence of wT [Eq. (36) ] non- 
monotonic with a minimum in the low-temperature region 
(T",i" (a). 

The specifics of case b are most clearly manifested at 
high temperatures ( w a s  1 ). In contrast to the case a, the 
process retains the properties of thermally activated tunnel- 
ing right up to the highest temperatures, and there is no 
transition to the activation regime. The optimum tunneling 
energy increases with T and approaches W asymptotically. 
As a result, the tunneling correction always causes the 
imaginary action SI to be somewhat smaller than S, = W/ 
T. (In case a at T 2  T, there is likewise a tunneling contribu- 
tion to the current, but this contribution alters only the coef- 
ficient of the exponential and does not affect its argument. ) 

The activation regime is absent because the point 7Y 
has moved to the br surface. The lowest saddle is therefore 
reached not at the point where the function U(Q) is analytic, 
but on a multidimensional sharply peaked crest. Since the 
trajectories of importance at pw ( 1 are those passing in a 
narrow region near W ,  the variables can be separated (see 
Sec. 3). Introducing a longitudinal coordinate q, measured 
from W ,  and transverse coordinates Q,, we obtain for the 
two branches of the adiabatic potential in the vicinity of W :  

A,, A,, and B, were estimated under the assumption that the 
dependence of U, on q, does not deviate greatly from para- 
bolic, and that U, and U, have the same scale. For the re- 
duced action corresponding to a transition between different 
points (see Fig. 6b), the following estimates are valid: 

Here the energy E is measured from W. The minimum of the 
imaginary action SI (E) = ~S,(E) + P( W + E )  is reached at 

and is equal to 

Equations (38)-(40) are valid when the tunneling correc- 
tion to the action is large: ( W/T) 1. This quasicla- 
cissism condition is met up to T-w ( W/T)3'2. The region of 
higher temperature is of no practical importance. Thus, an 
instanton solution exists at practically all T, but there are no 
activation solutions at all (i.e., T, = w ). As E-0, however, 
the difference between the behaviors typical of the instanton 
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and activation solutions vanishes for the most part (see Fig. 
2c). 

We show now that the recoil of thermalized electrons 
captured by a discrete level can be neglected (in analogy 
with Secs. 2 and 3). To this end we put again 
EST (TI = - Rk (T - T ~ ) '  and determine R, from the fol- 
lowing estimates: according to (37), EST = (A, - 
On the other hand, 

Calculating EST (T) for (r - T ~ ( -  ( ro( ,  we obtain the esti- 
mate 

It can be seen that Rm , in contast to R  [Eq. (A1 ) 1, depends 
on T. It is easy to verify that the adibaticity condition for an 
electron level at times -  IT,^, which takes the form 
a, I T , / )  1, coincides with the quasiclassical condition ob- 
tained above. 

For thermalized particles, p, is calculated in analogy 
withEq. (6) ,but inthiscase~~<Oandexp{( - 21~,IE(k)} 
is averaged out. It follows from (41 ) that I.rol )P. AS a re- 
sult, the integral over the Gibbs distribution converges to 
energies - 1~~14 T. The particles predominantly captured 
have therefore energy - IT,J-', which is much lower than 
thermal. From the inequality 

it follows that recoil can be neglected. 
The capture probability can be written in the form (cf. 

Sec. 3 )  

i f .0  

(43) 

Calculating the integral by the saddle-point method and rec- 
ognizing that p, - ( ~ / ~ T , ( ~ / ' - ~ W , I U  (0)  1'- ( m i l m  ) -312 

and d 2So/d~2- (PW) - ' I 3  Ww, we obtain ultimately 

It is of interest to note that, to within the difference between 
SI ( T) given by (4)  and S, , Eq. (44) agrees with the second 
equation of (36), obtained for case a by considering the acti- 
vation mechanism. The coefficients agree in both limiting 
cases with those obtained by Abakumov et aL9 for a special 
model of the recombination center. 

From the difference in the signs of T~ for extrinsic self- 
trapping (T, > 0 )  and for recombination centers ( r0 < 0) it 
follows that the trapping rates of the hot particles depend 
differently on their energies E. It follows from (32) that 
when E is low, S, (E,T) increases with E for recombination 
centers. Since at high E the action also increases with E, as 
shown in Ref. 22, SI (E,T) can be regarded as a monotoni- 
cally increasing function of E (Fig. 5b) and w(E,T) as a 

monotonically decreasing one. Therefore slow carriers re- 
combine most effectively via "normal" centers. A similar 
result was obtained in Ref. 10 within the framework of a 
single-mode model. 

6. CONCLUSION 

The probability of multiphonon capture of an electron 
in a crystal (self-trapping, recombination) can be written in 
the form 

Here w is the characteristic frequency of the phonons, and 
S% 1 is the classical action; the vector v is the dimensionless 
density of the capture centers. For intrinsic self-trapping we 
have Y = 1, and for capture by various impurity centers 
Y = N, v (as before, Ni is the density of the centers and v is 
the cell volume). This notation is valid both for the activa- 
tion regime (high T) and for thermoactivated tunneling 
(low T). The question is what are the values of S and B and 
how do they depend on the lattice temperature T and on the 
electron energy E ?  It turns out that B s  1 in all cases. 

Three nontrivial factors must be taken into account: 1) 
the multiplicity of the lattice modes; 2)  the presence of a 
temporal zero mode, and 3) the nonadiabaticity of the pro- 
cess during the electron-capture stage. 

The lattice mode multiplicity determines primarily the 
low-temperature behavior ofS. It is formed by low-frequen- 
cy acoustic phonons and is different for the deformation and 
piezoelectric interactions [Eq. (35) 1. If surmounting of the 
barrier can be described by the continuum model, three spa- 
tial zero modes appear for the intrinsic self-trapping and as a 
result the mode multiplicity increases B by a factor S 3 1 2 ~  1. 
The temporal zero mode always introduces in B a factors l f 2  

at low temperatures. The non-adiabaticity during the trap- 
ping stage causes B to contain in all cases the large factor 
r:,/vs 1. Here r,, is the radius of the electron t,b function at 
the boundary of the adiabaticity region. 

Allowance for the initial energy E of the thermalized 
carriers in the low-temperature region introduces in B the 
factorp, ( T) [Eq. (6)  1. This factor determines the tempera- 
ture dependence of w, as T-0, which has opposite signs for 
self-trapping (intrinsic or extrinsic) and "normal" recom- 
bination centers. Systematic experiments in this tempera- 
ture range are highly desirable. 

In the high-temperature region, Gibbs averaging over E 
leads to the relation B a T -312 .  If spatial zero modes exist, 
wehaveB a T -3 (theactionat high TisS = W/T, where W 
is the height of the barrier). Since semilog plots of many 
experimental data have shown the surprisingly low values 
W- (2  - 3)w, correct allowance for B ( T )  is very urgent; it 
will lead to a noticeable increase of W. 

The estimates of B can be generalized in the following 
manner. At low temperatures we have 

( W/w)3-in the continuum limit for 

B(T) a p , ( T )  intrinsic self-trapping, 
(EB /w )3/2-in all other cases, 
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where E, is the halfwidth of the band. At high temperatures, 
we replace o by T and put p, = 1. 

If the electrons are not thermal, allowance for their ini- 
tial energy leads to the even more important consequence 
that S is changed. This is due to simultaneous action of two 
mechanisms: suppression of the fast-electron trapping prob- 
ability and an influence of the electron's initial energy of the 
lattice motion. These mechanisms compete in the self-trap- 
ping process; as T-0, therefore,the largest w is obtained for 
electrons with E -  W. For recombination centers these 
mechanisms are additive, and w is a maximum at E = 0 .  

The most difficult problem is to determine the absolute 
values of B and S. The numerical coefficients depend strong- 
ly on the model. Omitting initially the calculation, we tried 
to express all the quantities in terms of the three parameters 
W, EB,  and o. Naturally, estimates of all the quantities in- 
volved in the theory in terms of these three are bound to be 
crude. It is impossible, however, to improve on them without 
resorting to specific models. a 

As for nonradiative capture phenomena, the compari- 
son of the theory with experiment is at present in its initial 
stage. It appears that the experimental data are so far insuffi- 
cient even to determine the position of the point T, at which 
the regimes change over. Light may be cast on the situation 
by measurement of the capture rate in a wide range of tem- 
peratures. 

We are grateful to S. V. Meshkov, V. I. Perel', L. P. 
Presnyakov, an I. I. Sobel'man for a discussion of various 
problems related to this paper. 

APPENDIX 

Consider an electron in a potential well that becomes 
monotonically deeper with time and is produced by a mov- 
ing lattice. Assume that the well parameters vary smoothly 
over a time -0-' without change of scale. Let a local level 
be produced at the instant t  = 0 and let it deepen with in- 
crease o f t  such that after a time -a-' it reaches a depth - Wso. At times t  4 w- ' the level energy depends quadrati- 
cally on t  and can be expressed as E  = - R3t 2 ,  where 

Q- (oZW)'". (A1 1 

The level is adiabatic at T >  0-', so that the particle is 
trapped within a time t 5 R -  ' <ap'. Consequently, during 
the entire capture stage the level remains shallow ( IE 1 < W )  
and can be described by the zero-radius-potential method.16 
The problem was solved by D e m k ~ v ~ ~  and i follows from his 
result that the capture probability is equal to ( u ( k ) / ' / V ,  
where 

The quantity lu (k)  l 2  has the dimension of the volume from 
which the particle is effectively trapped on a level. For slow 
particles the trapping radius is r,, = ( u  ( 0 )  I2l3 - ( m a )  - ' I 2  

and has the meaning of the radius of the wave function at the 
limit of the adiabaticity region, i.e., at t - W 1 .  

"The situation for "normal" recombination centers is special; it is consid- 
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