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The effects of dislocations are studied for crystals in which a structural phase transition is 
accompanied by an increase in the volume of the elementary cell. The equilibrium distribution 
of the order parameter is calculated for systems with and without continuous degeneracy. In 
the absence of continuous degeneracy, a dislocation domain wall structure is formed. The 
influence of the wall structure on the thermodynamic anomalies, light scattering, and 
attenuation of sound and the soft mode is studied. 

1. INTRODUCTION 

Many phase transitions are accompanied by an increase 
in the volume of the elementary cell (see, e.g., Ref. 1). Be- 
cause such transitions reduce the translational symmetry 
and not all of the dislocations in the low-symmetry phase 
remain filled, the resulting strong topological interaction 
between the dislocations and the order parameter 7 distorts 
the equilibrium distribution of the latter. The nature of the 
distortion depends on the symmetry of the order parameter. 
If 77 is symmetric under a continuous group of transforma- 
tions (as is the case, e.g., for an incommensurate charge den- 
sity wave), a vortex in 7 is associated with each dislocation. 
In the absence of such symmetry, a domain wall is associated 
with the dislocation. In the latter case if the crystal contains 
a forest of parallel dislocations, a domain wall structure 
forms in which each wall extends between two dislocations. 
Such a structure has been observed in gadolinium molyb- 
date, for e ~ a m p l e . ~  

Impurities and lattice defects can greatly alter the prop- 
erties of materials near a structural t ran~it ion.~ In all cases, 
the effects of dislocations on the various quantities charac- 
terizing the phase transition have been found to be propor- 
tional to the dislocation density n, .435 However, in materials 
that contain dislocations that are frozen-in, these effects all 
become proportional to n;" rather than n, owing to the for- 
mation of a domain wall structure; they are therefore much 
more pronounced at small densities n,. In this paper we 
analyze how dislocation domain walls influence the thermo- 
dynamic anomalies, as well as their effects on light scattering 
and the damping of sound and the soft mode. 

2. EQUILIBRIUM VALUE OF THE ORDER PARAMETER FOR 
T< T, 

We consider a phase transition involving the condensa- 
tion of a soft mode with a wave vector k in the Brillouin zone. 
Let a displacement field v(r)  = 7ek exp(ikr) be generated in 
a perfect crystal below the transition temperature, where e, 
is the polarization vector for the soft mode and 7 is the order 
parameter. The Landau expansion for the free energy den- 
sity is valid near the transition point: 

Here 

(we assume that the system is axisymmetric relative to k).  If 
the transition doubles the lattice period (this is the simplest 
case), k is equal to one-half a reciprocal lattice vector and q 
is real. For arbitrary k in the Brillouin zone, however, 7 is in 
general complex. 

A dislocation can be produced in a perfect crystal by 
slicing it along a half-plane and sliding the edges of the cut 
relative to one another by an amount equal to the Burgers 
vector b parallel to the cut. This generates a displacement 
field u(rO) in the crystal, where the jump discontinuity of 
u(rO) across the cut is equal to the Burgers vector: 

The Z0 axis is taken parallel to the dislocation, while the 2' 
axis is parallel to the slipping plane and normal to the dislo- 
cation. 

If we neglect deformation effects, which are of little im- 
portance in our treatment, the free energy density is again 
given by ( 1 ) in the undeformed coordinates rO. The displace- 
ment field generated by the phase transition can be expressed 
in the form 

v(r0) =q(ro)ekeikr0, (3) 

where the function 7(r0)  is continuous everywhere except at 
the cut. On the other hand, in terms of the deformed coordi- 
nates r = r0 + u(rO) we can write the displacement field as 

v (r) =g(r)eleikr, (3') 

where g ( r )  is continuous everywhere. Comparing (3) and 
(3'), we obtain 

g(r) =q (r-U) eiku. 
Condition (2) and the continuity of g ( r )  give rise to the 
boundary condition 
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q  ( I ,  y"=+O, r") =eikbq ( f ,  ij=-0, r " ) ,  f >O ( 4 )  

for the order parameter at the cut [the change in q ( r )  over 
atomic distances can be neglected]. For the case when the 
lattice period doubles, we have k*b = .rr and the boundary 
condition is 

We stress that the boundary conditions ( 4 ) ,  (4') result from 
our use of undeformed coordinates; the actual displacements 
of the lattice sites have no singularity across the cut. 

The equilibrium distribution of the order parameter for 
r < 0  is governed by the boundary conditions ( 4 )  or ( 4 ' )  
together with the familiar equation 

Here the x and y axes lie in and normal to the plane defined 
by the dislocation and the vector k, respectively; 
cc (p)  = cIl sin2P + cL cos2j?, wherepis the angle between k 
and the dislocation; q i  = la l/b. 

We consider the case when the lattice period doubles ( q  
real). For distances much greater than the correlation radi- 
us rc = [ (c ,  (P)cl  ) '121aI ] 'I2, the solution has the form of a 
domain wall with origin at the dislocation (Fig. 1 ). The or- 
der parameter is equal to - qo in region I and + qo in region 
11; q  varies continuously from - qo to + qo inside the do- 
main wall. The equation for the change in 7 in the wall is 

b(q2-qo2)q-cC(a)a2qlaxL2=O 

with boundary conditions 

Here the coordinate x, is normal to the wall, and a is the 
angle between the wall and the vector k. The solution is 

where rc ( a )  = [c ,  ( a ) / l a l ]  'I2. The linear strain on the wall 
312 2 is a = 2 a  r, ( a ) / 3 b .  If c, <ell then the strain is mini- 

mized for a wall parallel to k. 
When r  -4 r, we need retain only the derivative terms in 

the left-hand side of Eq. ( 5 ) .  The solution is then 

FIG. 1. A dislocation domain wall. The wall is bounded by the dashed 
curve, while the dashed-and-dotted line shows the plane of the cut. The 
wall and cut divide the crystal into two regions I and I1 with order param- 
eter 9 equal to - q, and + qo, respectively. 

where r  and q, are the polar coordinates in the plane normal 
to the dislocation, and p0 is the angle between the domain 
wall and the x axis; the constant A is of order unity and can 
be found by matching (8)  with the asymptotic formula for 
r%rc, 

Now let the order parameter be complex. If continuous 
degeneracy is present then q  varies from 7 ,  to exp (ik-r) 7 ,  in 
the entire region around the dislocation. The solution for 
r  % r, describes a vortex: 

where 

For small distances r  4 r, 

~ ( r ,  cp)=Bqo[ (r lr , ) ( i+A cos 2q) Ikb"" exp(ikb$(cp)/2n), 

( 9 ' )  
where B- 1. 

A similar result was obtained in Ref. 6 for a Heisenberg 
antiferromagnet with a screw dislocation. The solutions ( 9 )  
and (9') reduce to the one found in Ref. 6 for k-b = IT and 
c,  ( P )  = c, = cll . The vortex energy per unit length is 

En= (4n) - ' (kb)2(~ ,~ , )"q ,Z  1n (Llr , ) ,  

where L is comparable to the distance between the disloca- 
tions. 

3. CONTRIBUTION FROM DISLOCATION DOMAIN WALLS 
TO THE THERMODYNAMIC ANOMALIES 

We now consider the period doubling case in more de- 
tail. If many parallel dislocations are present, a domain wall 
structure forms in which each wall extends between two dis- 
locations. If the strain on the walls is not too anisotropic, 
they will extend primarily between adjacent dislocations. If 
the positions of the dislocations are random and uncorrelat- 
ed, the distribution of the wall dimensions is given approxi- 
mately by the distribution function for the minimum dis- 
tances between the dislocations. Consider an arbitrary 
dislocation. The probability that the nearest dislocation lies 
at a distance from I to I + dl away is equal to the product exp 
( - md I ') .2?rlnddl, where the first factor is the probability 
that no dislocations lie within a sphere of radius I ,  and the 
second is the probability for a dislocation to lie in a shell of 
radius I and thickness dl. The distribution function for the 
nearest-neighbor distances is thus 
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P(1) =2nlnd eap(--nndlz), ( 10) 

and we find that ( I  ) = 0.5n; 
The domain walls are well separated if rcnL'2 9 1. A 

transition to the phase of higher symmetry occurs when the 
correlation radius becomes comparable to the average dis- 
tance between the dislocations, so that the energy associated 
with the nonuniform structure is comparable to the gain in 
the local part of the free energy. The dislocations thus de- 
crease the transition temperature by an amount AT which 
can be estimated from the relation r, (AT)n, ' I 2 -  1. 

For r, n, ' I2  4 1 the domain walls give rise to corrections 
to the thermodynamic quantities. To find the correction to 
the free energy, we note that the average wall diameter is 
(I ) = 0.5n; 'I2, while the number of walls per unit area is 
nd/2; hence the correction is 

Since 0- f, r, , where f, is the density for the anomalous part 
of the free energy, the correction has a stronger singularity as 
r + 0  than is the case for the free energy in a pure substance. 
However, for r, n, ' I 2  g 1 it remains less than the anomalous 
part of the free energy. In the Landau region Af, - lrI3l2, 
while in the fluctuation region Af, - / rI2 - " -' , where a is 
the critical index for the specific heat and v is the correlation 
length. 

We next consider the correction to the specific heat 

In the Landau region, 

while in the fluctuation region AC, - / T I  " - " . In a perfect 
crystal the temperature dependence of the specific heat in 
the Landau region is determined by the fluctuation correc- 
tion7 

-2-V2kBao% 1 .c 1 -'"Inc% 
f - 

If we compare this with the correction due to the domain 
walls, we find that 

Here d is the interatomic distance ( -  10V7 cm) and 
To = c2/k,db is of the order of the atomic temperature 
( - lo4-105 K) .  If T, - lo2 K then the domain walls deter- 
mine the temperature dependence of the specific heat at den- 
sities n, - 10'-lo9 ~ m - ~ .  

Antiferroelectrics exhibit a dielectric anomaly at the 
transition point owing to the proximity of the ferroelectric 
state (see, e.g., Ref. 8 ) .  To examine how dislocations influ- 
ence this anomaly, we expand the free energy density in pow- 
ers of the polarization P and order parameter in the presence 
of an electric field E, 

The equilibrium distribution P is determined by the 
equation 

For a perfect crystal P = const, and (14) gives 1/ 
xo = ap  + blv; for the reciprocal of the susceptibility. In 
the Landau region when T < 0, I/%, increases linearly as the 
temperature decreases, 

To estimate the correction to I/%, due to domain wall 
dislocations, we use the equation 

for the change in P near a wall; here c, (a) = c,,, sin2a and 
c, cos2a, and the function ~ ( x ,  ) is given by Eq. (7).  

The derivative term in ( 16) can be neglected in the re- 
gion 1 T 1 g rO, and the dislocation correction is of the form 

To estimate how the susceptibility behaves in the opposite 
limit 1 ~ 1 %  rO, we make the change of variable u = x,  /2ll2r,. 
This transforms Eq. ( 16) into 

where for r ro the dimensionless constants S, = 2cb,/cp b 
and S2 = 2 (c/c, ) (b , / b  - a,,/a,) are of order unity. We 
conclude from ( 16') that the additional polarization per unit 
wall area is given by AP=C(S,,S2)x,r$, where 
C(S,,S,) - 1. The correction to the inverse susceptibility 
when 17 / % r0 is therefore 

A (11%) --ndllEr,/~o--l.cl'h. (18) 

The correction in this case also depends on a fractional pow- 
er of the temperature, but with a different exponent. We have 
assumed in the above calculation that a ferroelectric transi- 
tion does not occur on the wall [in order for such a transition 
to occur, we must have S2 z (S, - S212]. 

4. LIGHT SCATTERING 

Irregularities in the crystal scatter light by producing 
fluctuations in the dielectric constant E. The intensity for 
scattering involving a change in the wave vector by q is 
I- ( I E  (q)  / 2), where ~ ( q )  is the Fourier component of the 
dielectric constant. For our qualitative purposes we may ne- 
glect the anisotropy, so that 

We consider scattering by domain walls when the light 
wavelength A satisfies n; 1'2%/2 $r,. For visible light, this 
corresponds to dislocation densities n, S lo9 ~ m - ~ .  The 
walls scatter independently at these wavelengths, and they 
perturb E by an amount 

where g,, = 2"'gr1,,2r, ;n, is the normal to the surface of the 
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jth wall, which is of length 1, (the walls are parallel to the z 
axis). The Fourier component of E is of the form 

sin [ (q,n,,-q,n~.) 4/21 
E (q) = - 2 g w z  6 (9,) exp (iqro,). 

j 
Qanj,-9vnj= 

(21) 
Since the component of the wave vector parallel to the wall 
varies slowly, most of the contribution to the scattering is 
from walls perpendicular to q (provided that q(1) ) 1, i.e., 
the scattering angles are not too small). Upon averaging 
Ic(q) l 2  over I and the directions of the normal n, we obtain 
the result 

where V is the volume of the illuminated crystal. The total 
scattering intensity is 

Sincegi - 171, the scattering by the dislocation domain walls 
becomes stronger away from the transition point. The above 
result may be compared with the intensity 

for scattering by noncritical density fluctuations, where A is 
the elastic modulus. We obtain 

gqo2 Ads hr, 
~JzP-dn;~ %( 

Inserting the estimates 

gilo2(pde/dp)-'-lO-', A-10sd, r,-lOd, 

Ad3/kB-T.-10' K, T-10' K, nd-1OB CM-', 

we find that 

zw/zp-lo5. 

Even at low dislocation densities the walls can thus scatter 
light much more effectively than the density fluctuations. 

5. ABSORPTION OF SOUND 

We now consider absorption of a sound wave in a crys- 
tal containing dislocation domain walls for which A, )r,,  
where A, is the acoustic wavelength. The sound wave causes 
the walls to vibrate, resulting in the absorption of energy. We 
examine the simplest case when the interaction energy for 
the deformation and order parameter is given by 

&.,=r dr div uq2. 

We can then write 

~,:.=r,j drdivd[y-u(r,  r ,  t ) ] ,  rw=2%qZrcr 

for a deformation interacting with a wall at position y, where 
y = v(x,z,t). We consider the motion of a wall of length 1 in 
the field of a longitudinal acoustic wave u = u, 
exp[i(qr - o t )  1. If the interaction is weak the perturbation 
of the sound wave may be neglected to lowest order, and the 
wall displacement v(x,z,t) = v(x)exp( [i(q,z - of) ] obeys 
the equation 

with the boundary conditions v(0) = v(1) = 0. 
We have 

in the Landau region, wherep, and y, are the effective mass 
and the damping constant for the soft mode. The power ab- 
sorbed per unit length of wall is given by 

1 

The energy absorbed by the wall per unit volume per unit 
time is 

B='/2nd(P(I, q, cos cp, q, sin cp, qz) ) I ,  ,. 
The averaging is carried out over the angle q, between the 
projection of the acoustic wave vector q and the z axis, and 
over the length 1 [with the weight function ( 10) 1. We ne- 
glect the anisotropy in a ,  p, , y, and solve Eq. (24) by tak- 
ing Fourier transforms. Inserting the solution into (25) 
yidlds the following expression for the inverse acoustic relax- 

- - 

ation time l/rS = E /po2~g:  
Cs7 

1 rw2nd ( 1 1 ~ ~ )  1ql2 sin2 cp I a, (q,L cos cp) 1 ' -=-E(. 
T. ~ P P W  ,I=, ( o ' - ~ ~ ~ [ ~ , ' +  (nn/ l )2] )2+02i~> >G,r 

Here v, = (a/p, ) ' I 2  and 1 / ~ ,  = y,/p, are the propaga- 
tion velocity of the wall oscillations and the inverse relaxa- 
tion time, and the 

a,,(ql) =2xn[l- (-1)" exp iql] [(nn)2-(ql)']-1 

are the coefficients in the expansion of exp (iqx) in terms of 
the harmonics sin (mx/ l )  . 

If l / ~ , ) u , n ~ ' ~  and the frequency satisfies 1/ 
T, So ST, U, 2nd, one can derive the result 

where us is the speed of sound and a, is the angle between the 
acoustic wave vector and the dislocations. In the Landau 
region, expression (27) can be recast as 

We now compare this result with the case of absorption 
by the Landau-Khalatnikov relaxation me~hanism.~ The 
sound wave perturbs the order parameter and acoustic ener- 
gy is absorbed for finite relaxation times, because 7 is unable 
to adjust back to its equilibrium value. The inverse relaxa- 
tion time corresponding to this mechanism is 

~/TL.K =2r2q2q02y,lpa2. (29) 
Comparison of (28) and (29) yields 

TL-K (2nd) lhrc3a2 
-= 

Z. 8~rllv,~ 
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where ~ 2 ,  = c/p, (u, -us ), and w, = (a/p, ) ' I 2  and 
r, =p,/y,, are the frequency and relaxation time for the 
soft mode. The result (30) shows that the absorption by the 
domain walls can exceed that due to relaxation when 
w, r, ) 1 (i.e., sufficiently far from the transition point). 

At low temperatures there is a region in which the in- 
equality 1/rW 4 v, n, ' I 2  holds. Here the absorption is reso- 
nant-sound at frequency w is absorbed primarily by walls 
whose dimensions are close to the resonance values I,,, (n ): 

0 2 = u , 2 [ q , ~ ( n n l Z , , , ( n ) ~ 2 1 .  (31) 
The absorption is greatest at frequencies roughly equal to 
w, = rrv,n, ' I 2 .  If the walls are soft (so that u, &us ), we 
have q, 19 1 in the region of maximum absorption. Calcula- 
tions of the absorption using this inequality lead to the result 

where 
OD 

f (.)=x-" ( 2 n + l )  exp [ - x  ( 2 n l - I )  2x -2 ]  

is given approximately by 

exp ( - x / x 2 )  /x3 ,  x< 1  
' ( x )  = { l i l n x ,  xB4 ' 

For small and large x (see Fig. 2).  With the estimates 

we obtain l/rs w - lop3 in the region of strongest absorption 
if we set n, - 10' ~ m - ~ .  

6. DAMPING OF THE SOFT MODE 

We now consider the oscillations in the order parameter 
caused by the domain walls. When defects are present, the 
oscillations in r ]  heat the material nonuniformly and are 
damped due to heat transfer between different regions of the 
crystale3 The equations of motion for the order parameter 
near a domain wall (including temperature fluctuations) are 

FIG. 2. The function f ( x )  determining the shape of the resonant acoustic 
absorption curve. 

where C, is the specific heat for r] = const and x is the ther- 
mal conductivity. The expression 

for the absorbed power can be derived from Eq. (33). The 
potential describing the interaction between the order pa- 
rameter and domain wall is nonreflecting. The phase shift 
during passage of an order parameter wave with wave vector 
q tends to zero as q - 0 (Ref. 10). For this reason, the form of 
the eigenmode with q = 0 changes only near a wall; we will 
neglect this and take r] to be independent of r. Edge effects 
near the ends of the walls will also be ignored. Since r ]  

changes sign near the wall and the amount of heating is pro- 
portional to r],(x, ) r ] ,  the temperature change will have op- 
posite signs on either side of the wall. Since (x/  
C, w, ) ' 1 2 ) r ,  everywhere except in a narrow temperature 
interval near the transition point, we can replace r],(x, ) by a 
step function. The change in temperature near the wall is 
then given by 

Substitution into Eq. (35) gives 

for the contribution from the domain walls to the effective 
damping constant y, = p , ~ / ~ .  If we use the estimates 
C, -k4,T3 (k-us )-3andx-k,T,us/Td2forthephonon 
specific heat and thermal conductivity (they are valid for T 
comparable to the Debye temperature TD ), we obtain the 
following result for the dimensionless ratio y, /p, w, = 1/ 
rd w, : 

l / ~ ~ ~ , , - n d l " d t - ' ~  (T; /T:T)  'h(TD/T)*/a .  (38) 

Setting n, - 10' cm-', T- T, - T, - 10' K, and r- 1, we 
get the estimate l/rd W, - 1. This mechanism can thus damp 
the soft mode even at temperatures quite far from the transi- 
tion point. 

The above result may be compared with the damping 
due to anharmonic effects8: 

This expression is more singular than l/rd w, as r -. 0. How- 
ever, for the above parameter values and 7- l ,  the damping 
by the domain walls is two orders of magnitude greater. It 
should be noted that the contribution from the domain walls 
to the damping constant, which determines the relaxation 
absorption of sound for T=: T, [Eq. (29) 1, differs greatly 
from (37). The perturbation of the order parameter by the 
acoustic wave can be described by adding a driving force 
f(x, ) = q o ( x l  ) div u to the right-hand side of (33). Be- 
cause this force changes sign near the wall, so does the asso- 
ciated change in the order parameter, and the even eigen- 
mode considered above is not excited by the wave. The 
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damping constant for the forced oscillations therefore differs 
greatly from the damping constant for the eigenmode. In our 
case the amplitude of the heat source, which is proportional 
to v0(x1 )q(xl ) [Eq. (34) 1, is spatially constant except 
within distances (r,  from the wall. For rc 4x/Cqw the tem- 
perature distribution is of the form 

Substitution into (35) then yields the estimate 

This result is valid when w)Pn,x/C,, i.e., when the heat 
transfer occurs independently for each wall. At low frequen- 
cies o n, x/C, the departure of the temperature from its 
equilibrium value is expressible as 

T'=aoqo(r)q(r)IC,+TN, (40) 

where the bar denotes a spatial average; T "  4a,  =/C, 
obeys the equation 

where 6(qoq) is the deviation of qOq from its average value. 
We have the estimate 

- 
TN-iaooqoqr,t (r) /ndll>x, 

where t(r)  - 1, t(r) = 0. Substituting this into Eq. (35), we 
obtain 

At low frequencies the effective damping constant for the 
forced oscillations is thus independent of the dislocation 
density. For T-  TD and n, - 10' ~ m - ~ ,  the transition from 
(39) to (41) occurs at frequencies 0- 10'-lo9 s-'. 

7. CONCLUSIONS 

We have used a simple model to analyze how disloca- 
tions affect the properties of phase transitions that are ac- 
companied by an increase in the volume of the elementary 
cell. The model treats a phase transition of the displacement 
type in which a single soft mode condenses. The situation for 
real crystals is frequently more complicated. For example, in 

lead zirconate (an antiferroelectric) , several soft modes con- 
dense simultaneously, and the elementary cell for the low- 
temperature phase contains eight elementary cells for the 
high-temperature phase. In nonintrinsic ferroelectrics, the 
order parameter has two components. There are also materi- 
als (such as ammonium dihydrophosphate, ADP) in which 
the period increases as a result of an order-disorder transi- 
tion. Although the specific models for the interaction of the 
order parameter with dislocations differ, in all cases disloca- 
tions are responsible for domain wall formation when 
T < Tc , and the results found above remain qualitatively cor- 
rect. Above the transition point, the order parameter inter- 
acts with the dislocations either through the deformation 
field4 or because the order parameter is distorted at the 
centers of defech3" For T >  Tc, all the effects involved in 
the interaction are proportional to the dislocation density 
n, , while for T < Tc they are proportional to n y 2 ,  owing to 
the formation of domain walls in this case. It would be ex- 
tremely interesting to have comprehensive experimental 
data on how plastic deformation alters the properties of 
phase transitions that increase the volume of the elementary 
cell. 
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