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Fluctuations of the current-voltage characteristic (CVC) of a mesoscopic specimen are 
considered. Such a specimen can be made in the form of a contact involving two normal 
metals. The dependence of the current I on the voltage V is a random function, and the CVC 
has the form of "grass" on the usual ohmic pedestal. The scale of the "grass" with respect to 
the voltage is of the order of Vc -fi/rfe, where rf is the time of flight across the contact and e 
is the electron charge. The current scale S I  depends on the voltage V and the temperature T 
and is found to be of the order of (e2/fi) ( VV, ) 'I2, if V) V,, T/e. As a result, at sufficiently 
large voltages regions of negative differential resistance appear. 

The current-voltage characteristic of a contact between 
two normal metals, calculated by using the kinetic equation, 
is found to be ohmic. The deviations of the CVC from linear- 
ity that arise from the nonequilibrium character of the distri- 
bution function in the contact and from the dependence of 
the rate of inelastic processes on the electron energy have a 
large scale with respect to the voltage and will not be consid- 
ered here. Another source of nonlinearity is associated with 
quantum interference effects. In the present article we con- 
sider the case when the contact resistance ~ ,<f i /e '  and the 
interference effects emerge as small corrections to Ohm's 
law. 

These corrections are greatest when the interference oc- 
curs over a long time exceeding the time of flight rf of an 
electron across the region of the contact. Such interference is 
possible only for electrons with approximately equal ener- 
gies such that - c2)  5 eVc = fi/rP If the mean free path I 
is smaller than the length L of the contact, then rf-L '/D, 
where D is the electron diffusion coefficient. The interfer- 
ence effects depend on the specific arrangement of the im- 
purities, and this leads to non-self-averaging of the CVC. If 
the voltage Vacross teh contact is much smaller than V,, the 
CVC is linear and the conductance g = 1/R contains a non- 
self-averaging correction Sg. The theory for this pre- 
dicts an irregular dependence of Sg(p,H) on the magnetic 
field H and on the Fermi energy p of the electrons. 

The current across the contact is formed by electrons 
from the region of energies I & ,  - ~~1 -eV near the Fermi 
level. If V) V,, this region breaks down into V/ V, intervals 
of values of and .c2 for which interference is important. 
Each such interval gives an independent random contribu- 
tion of order e2 Vc/fi to the total current. Therefore, the cur- 
rent I is a random function of the voltage Vwith characteris- 
tic scale AV- V, and amplitude AI- (e2/fi) ( VV, )'I2. For 
V> (Ne2R,) V, there are parts of the CVC that have a nega- 
tive differential resistance. 

The random function I( V) is characterized by the cor- 
relator 

K(J'i, J'z)=l( J 'g)l(  V ~ ) - J T ) R Q .  (1 

In this paper we find the dependence of K on 
V = ( Vl + V2)/2, A V = V, - V,, and the temperature T. It 
is assumed that the contact has the form of a bridge between 
massive "banks", with cross section S and length L ) S  'I2. 

The mean free path I is assumed to be smaller than L. 
In the study of a nonlinear CVC it is convenient to use 

the diagram technique of Keldysh.6.7 In this technique the 
Green's function has the matrix form 

Here 

GR'A'(l, 2)=Ti0( _+ t ,  $ t 2 )  <$(l)$+(2)+g+(2)g(i)>,  

GK (1,2) =-i<$ (I)$+ (2) -$+ (2)$(l) >, 

where t+bf and t+b are creation and annihilation operators in 
the Heisenberg picture. In conditions of thermodynamic 
equilibrium, 

where n ( E )  is the Fermi distribution function. 
In a microcontact, ineiastic-relaxation processes are 

unimportant, and therefore G satisfies the equation 

[E+ (A2/2m) V2-U(I)-ecp(r)]d,(r, r') =6(r-r'), ( 3 )  

where p ( r )  is the electrostatic potential and U(r) is the ran- 
dom potential of the impurities; the distribution of U is as- 
sumed to be Gaussian, and 
- 
U(r) =0, U(r) U(r') = 2 n v ~ 6  (r-r'). 

Here v is the density of one-electron states and T is the mean 
free time. Calculating the average Green's functions Gin the 
approximation pr/fi) 1, we obtain 

while f(r , r l )  satisfies the diffusion equation 

DV2GK(r, r)=O, D=va2.t/3. ( 5 )  

1075 Sov. Phys. JETP 64 (5). November 1986 0038-5646/86/111075-03$04.00 @ 1987 American Institute of Physics 1075 



Taking into account the boundary conditions at the banks of 
the contact, we find 

where V = p(L)  - ~ ( 0 )  is the potential difference across 
the contact. The current I is expressed in terms of the 
Green's function be means of the formula 

e i i  
I=-i- j d e j  dS(V-V')GcK(r,rr) l r = r , .  

2m (7) 

Averaging (7) over the distribution of the random potential 
and using (5) and (6),  we obtain for the total current T 
across the contact the usual expression 

The current correlation function K( V,, V2) corresponds to 
the diagrams depicted in the figure. The spurs on these dia- 
grams correspond to c K ( r , r )  determined by formulas (5) 
and (6). The other ladders on the diagram correspond to the 
two-particle Green's functions 

PL,-E2(r, rr)=GerR(r, rf)G.ld(r, r'). (9)  

Here the one-particle Green's functions in (9)  describe the 
motion of an electron in different electrostatic potentials p, 
and p2. In the diffusion approximation Po (r,rl) satisfies the 
equation 

{DVz+iolfi+i(elfi) [qt(r)-cpz(r) l)P,(r, r') =-2nv6(r-r'). 

On a boundary with massive banks, 

P, (r, r') Izso. L=O. (1 1) 

The sum of the diagrams a-d yields the expression 

For V ,,, ( V, , in Eq. ( 10) we can neglect the potential q, and 
the expression ( 12) goes over into the formula for the cur- 
rent correlation function in the ohmic r e g i ~ n . ~ - ~ * ~  If 
V,,, B V,, A V, then the main contribution to the formula is 
given by the term (P,, - ,? (x,,x2) l 2  and the important region 
of energies is I E ,  - E ,  ( (eV. Therefore, the dependence of K 
on V, T, and A V factors: 

d 

FIG. 1. 

4 
K ( V ,  AV, 2') = ,(%)' VV. 

( 2 ~ )  

x [ ~ t h ( q ) - $ - I t ( ? ) .  (13) 

Here the dimensionless function f(a3) is expressed by the 
integral 

where II, (y,yl) satisfies the equation 

The coefficient in Eq. (14) has been chosen so that 
f(0) = 1. For a)  1 theimportant region in the integral ( 14) 
is ly, - zl - Iy2 - zl - 1 (a .  Therefore, 

f (AVlV,) =C(V,/AV)", AVB V,; (16) 
+ rn 

v 
c=- v j j ~ ~ l ~ ~ z ~ n z ~ ~ l l  Y.) I., (17) 

- m 

where the integral ( 17) the function II, (y,,y2) depends 
weakly on z in the interval - a/2 < z  < a/2. In the region of 
high temperatures T )  V,, V, factorization occurs irrespec- 
tive of the relative magnitudes of V and A V. In this case we 
can also neglect the term with Re P in ( 12) and rewrite this 
equation in the form 

The correlator Kg of the differential conductances is 
connected with the function K( V,,V2) by the relation 
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For V& V, the largest contribution to Kg arises upon differ- 
entiationof the function f( A V/ Vc ) : 

With increase of V the correlator Kg grows, and for 

the fluctuations of g exceed g. This implies that if the condi- 
tion (21) is fulfilled, then on the CVC there are parts, of 
width A V- V, , on which the differential resistance is nega- 
tive. With increase of voltage V or temperature, inelastic 
processes, which have not been taken into account above, 
can become important. These processes are characterized by 
a drift time r i n .  The time T,, is determined by the average 
electron energy, i.e., by the temperature or voltage. When 
the time T,, becomes smaller than the time of flight, rf ,  rin 
must be taken into account in the equation for P, which takes 
the form 

{DV2-l/t,,+iw/A-eEx/h)P,(x, x') =-2nv6 (x-x'). (22) 

When rin is taken into account the function f(AV/ V, ) 

msut be replaced by a fucntion (L /Lin , Lin /L, ), where 
Lin = (Dr,, ) ' I 2  is the diffusion length of the inelastic pro- 
cesses, and L, = (DWeE)'12 is the field length. For large 
AV, the asymptotic form of @(c,v) coincides with the 
asymptotic form ( 16). However, this asymptotic form is 
reached only for L, gL,, L, when 

In the opposite limit, then 

F o r c 4  1 and arbitrary 77 = (L,,/L, ) 3  the function @(c,v) 
takes the form 

The coefficient C is defined by formula ( 17). 
The temperature factor in (13) is changed somewhat 

when energy relaxation is taken into account, if V& T and 
L BLin. This change is connected with the change of the 

electron distribution function in the contact and depends on 
the relative magnitudes of the electron-electron collision 
time re, and the electron-phonon collision time . 

Thus, inelastic processes lead to weakening of the cur- - 
rent fluctuations and to increase of the voltage scale of the 
CVC fluctuations. The correlator Kg of the differential con- 
ductances is then further decreased: 

Qualitatively, the form of the CVC does not depend on the 
explicit form of the function K(  V,, V,), but it would be inter- 
esting to find this correlation function experimentally and, 
in to check the asymptotic formula (17). The 
calculation of K(  V,, V,) was carried out above by averaging 
over realizations of the random potential. The correlation 
function can also be found by measuring the CVC of the 
same contact in a wide range of voltages V and averaging 
over V for a fixed A V. 

The shape of the contact is not important. For an arbi- 
trary shape, in place ofL one must use the characteristic size 
of the contact region that determines the resistance of the - 
contact. For example, for a hole in a thin insulating layer 
between normal metals this size of of the order of the diame- 
ter of the hole. The assumption that the mean free path satis- 
fies ZgL is also not a restriction. If Z%L, an irregular CVC 
should also be observed, but the times of flight rf - L /Vf in 
this case are shorter and the characteristic scale-V, -fiv,/~ 
of the fluctuations is greater than for a dirty contact. 

The authors are grateful to S. Murzin for a communica- 
tion on the observation of an irregular CVC in microcon- 
tacts, and to B. L. Al'tshuler for a discussion of the results. 
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