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The motion of an isolated Bloch line (BL) induced in a domain wall of a ferromagnetic 
material by external magnetic fields of varying orientation is investigated. A reduced equation 
which is nonlinear in the BL velocity, obtained by perturbation theory for solitoqs, describes 
the dynamics of the BL as a mechanical particle (filament) whose state is detgrmined by the 
position of the center and by the velocity. The nonlinear dependences of the BL mass and of 
the friction force acting on the BL on the velocity are determined and the action of the 
gyroscopic force acting on the BL is considered. The maximum BL velocity in a domain wall is 
investigated. A new mechanism for dynamically transforming a BL into a cluster as the 
limiting velocity is reached is discussed. 

Bloch lines (BL) constitute an important element of 
the domain structure of magnetically ordered crystals.' 
They demarcate domain-wall sections (subdomains) with 
different spin directions. The study of BL is of fundamental 
importance in understanding the dynamic properties of do- 
main walls (DW) and of magnetization reversal in mag- 
nets.'-' BL have lately attracted much attention as potential 
means of developing magnetic memories with extremely 
high information density. 

One of the main problems in the study of BL is their 
dynamics. The linear dynamics (linear response to external 
fields) has by now been well in~estigated,'.'-~ but nonlinear 
processes have hardly been touched upon. The latter in- 
clude, e.g., the dependence of the steady-state velocity on the 
external fields, predicting the maximum velocity, nonlinear 
time-dependent processes, and others. These are problems of 
practical importance, since nonlinear motion of BL sets in 
many cases at relatively low velocities and in weak control 
fields. 

We investigate here BL dynamics in materials with 
large uniaxial anisotropy, for which the condition Q = K ,  / 
27rM S 1 is satisfied, where K,, is the uniaxial-anisotropy 
constant and M, is the magnetization. These are just the 
materials (usually single-crystal films) used in technologi- 
cal applications and in most physical investigations of the 

From the viewpoint of mathematical physics, a BL 
moving along a domain wall is a solitary wave-a soliton. 
Strictly speaking, such BL motion is usually assumed to oc- 
cur under ideal conditions, viz., when dissipation and exter- 
nal magnetic fields are absent and the parameters of the 
equations are independent of space and time. We are inter- 
ested in BL motion under real conditions, however, when 

tions. We pay principal attention in the present paper to the 
derivation of the reduced equations for the coordinates x, of 
the center and for the velocity u of the BL, and also to the 
determination of the conditions for the existence of a moving 
BL as a particle. We consider also the maximum BL velocity 
u, and the peculiarities of its motion near u = u, . 

Figure 1 shows two typical experimental geometries in 
which BL are investigated. The easy-magnetization axis is 
perpendicular to the plane of the slab (film) in the first and is 
located in this plane in the second. Many BL experiments 
with iron-garnet slabs are performed in the geometry la. The 
second geometry, lb, is the usual one for films with uniaxial 
anisotropy in the plane of the film, and was used in the well- 
known experiments of Nikitenko et aL4 

$1. BASIC EQUATIONS 

Consider the geometry la. Let the DW be parallel to the 
xz plane of a Cartesian coordinate frame. In accord with the 
usual approximation of DW theory, we regard the DW as a 
surface, i.e., we neglect its thi~kness.'.~ The DW is then 
treated as an elastic membrane with internal degree of free- 
dom, and its state is specified by two parameters, q ( r , t )  and 
$(r,t), where q is the DW displacement from the equilibri- 
um position and $ is the azimuthal angle that specifies the 
orientation of the magnetization at the DW center relative to 
thex axis in the xy plane. It is expedient to describe the DW 
dynamics by a Lagrangian formalism wherein the Lagran- 
gian and the dissipative Rayleigh function can be represent- 

account must be taken of the field, of dissipation, and of the a 'r b 

nonuniformity of the parameters. For this purpose we use 
soliton perturbation theory. In this approach, the perturbed 
soliton (the BL) is regarded as a particle whose state is de- x 
termined by two parameters (the coordinate x, of the BL 
center and the velocity u) and by the "radiation." The "radi- 
a t i on~  is produced in this case by the field of the near-wall FIG. 1.  Two geometries of formation of vertical Bloch lines ( A B )  in a 

domain wall of a uniaxial ferromagnet (the arrows indicate the direc- 
magnons, which are flexural domain-wall oscillations ex&- tions of the magnetic moments) : a-easy axis perpendicular to the plane 
ed by the moving soliton under the influence of perturba- of the film (plate); &easy axis parallel to pian; of film (plate). 
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ed in the form 

.9=-q$-cr($), R='12~a(d2+@), (1)  

where a is the dimensionless damping constant of the Lan- 
dau-Lifshitz equations and u($) is the DW energy density 
given by 

O = ' / ~ ( V ~ ) ~ + ' / ~ ( V ~ ) ~ + ' / ~  sinZ $+'/2b2q2-hz cos $ 

-hy sin I.$-h,q. (2) 

In the last equation we use the dimensionless quantities: 

where H = (H,, H,, Hz ) is the external magnetic field, 
A = (A /K,  ) ' I 2  is theDW thickness, AL = (A /2?rM 2, 'I2is 
the BL thickness, H '  is the gradient of the magnetic fields 
that keeps the DW in the equilibrium position, y is the gyro- 
magnetic ratio, and A is the exchange-interaction constant. 

To transform to geometry lb, we must make the substi- 
tutions H F' - + H  lb' and HI"' -. H :b' everywhere, and set 
they component of the demagnetizing field equal to zero. 

The Euler-Lagrange equations corresponding to the 
system ( 1 ) are of the form 

$+ aq=Veq-bzq+h,, 

a$-q= Vz$- sin $ cos 9-h, sin $ t h y  cos $. 
(3) 

The system (3) is known as the Slonczewski  equation^.^ 
They constitute Landau-Lifshitz equations suitably aver- 
aged over the spin distribution within the DW. It is conven- 
ient to write them in vector form, putting w = (q,$) 

T d,w-%,(w) =%', (w) +ad,w, (4 )  

where 

-" ) .  (w) = ( hz sin $-hr cos $ 

We shall investigate the BL dynamics in a one-dimen- 
sional approximation, i.e., assume the parameters describing 
the BL to be independent of the z coordinate along the nor- 
mal to the plane of the plate (film). This approximation is 
appropriate for the geometry of Fig. lb, but is valid for the 
geometry la  only for sufficiently thin films of thickness 
d 5 A,. If d )  A, the DW become "twisted" and the results 
of the one-dimensional theory apply to them only approxi- 
mately. 

The field component hy will henceforth assumed to be 
zero, since the demagnetizing field Hy (z) can in our approx- 
imation be disregarded, and an external field having this ori- 
entation does not act directly on the BL. 

$2. FREE MOTION OF BL IN A NONDlSSlPATlVE MEDIUM 
(a=O, H=O) 

Under the equilibrium conditions c j  = = 0 and at 
H = 0 Eq. (4) has a solution that describes immobile BL: 

q=O,. $,=nn+2 arctg exp q(x-x,), ( 5 )  

where n = + 1, + 2, ..., 7 = + 1. This solution satisfies the 
boundary conditions 

Bloch lines having different values of n and 7 have equal 
energies, i.e., the solutions can be said to be degenerate in n 
and 7. It suffices to consider solutions with n = 0 and 1; the 
only difference is in the sign of the magnetic charge pro- 
duced when the subdomains are joined at the BL, and in the 
direction of the untwisting of the magnetic moment. It is 
important to take the magnetic charge into account in stud- 
ies of interactions between BL. We, however, are consider- 
ing an isolated BL and confine ourselves henceforth, for the 
sake of argument, to the case of n = 0. The parameter 7 is 
also called the topological charge of the BL. The concept of 
topological charge can be extended to include a solitary 
wave in the following manner: 

The free motion of a BL is described by two-parameter 
functions of the form 

where u and x, are the velocity and coordinate of the BL 
center and satisfy the equations 

-UY bZq, (7a) 

-uqE=-YEE+sin Y cos Y, ~ = x - u ~ - x o  (7b) 

with boundary conditions 

The phase space of the system (7)  is defined by the four- 
dimensional vectors a = (Y, Ybl q, qr ). We are particularly 
interested in the equilibrium points a, = (m,O,O,O), where 
n = 0, + 1, + 2, ... . They correspond physically to DW 
subdomains. For u < u - = 1 - b, the equilibrium points are 
of the saddle-saddle type. The BL is described by an integral 
curve that joins neighboring points which it enters and 
leaves monotonically. In the region u - < u < u + = 1 + b the 
points a, are of the saddle-focus type. We know of no analyt- 
ic solution of the nonlinear system (7) ,  but can derive an 
approximate solution in terms of the small parameter b ( 1. 
It is just this situation, i.e., b( 1, which is realized under 
typical experimental conditions. " 

From (7a) we have 

where 

Substituting (8)  in (7b) we get 
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+- 

~ , - s i n  Y cosy =uz J ( ~ - X I )  I,, (tf) ax'. ( 10) 
-0. 

Assuming u 4 1, we can solve Eqs. (8)-( 10) by successive 
approximations: 

where 8(5) = {/Ig ( and +,({) is described by Eq. (5). The 
solutions obtained are valid in the region b 16 1 ) 1. Recogniz- 
ing that b 4 1, we can regard ( 1 1 ) and ( 12 ) as a good approx- 
imation of the solution in the region I f  I 2 1 of interest to us. 
Exact solutions of (7) ,  obtained by numerical methods, are 
discussed below (see $5 ) . 

$3. PERTURBATION THEORY FOR SOLITONS 

We consider now the influence of external fields and of 
dissipation on the BL motion. This can be done by using 
perturbation theory for solitons. We investigate first the in- 
fluence of the field h,, i.e., we put h, = h, = 0 in Eqs. (4).  
The equilibrium points of the system (7)  are then preserved 
for h, < 1. We represent the solution of Eqs. (3 )  in the form 

where w, is defined in ( 1 1 ) and ( 12), but assume here that 
the parameters u andx, are slowly varying functions of r and 
t, where r is the coordinate in the DW plane. Assuming the 
perturbation to be small, i.e., Jw,J (Jwol, and linearizing 
(41, we get 

f;w,=f, (14a) 

f = ~ , ( ~ ~ ) + a a ~ ~ ~ - i ~ T a , w ~ - l i T ~ ~ ~ ~ ,  (14b) 

where the linear operator L is of the form 

The functions 

I\ 

are2' solutions of the homogeneous equation Lw, =$. They 
are linearly independent, since the 2-form (dx W,Td, W,) 
differs from zero. Here and henceforth (...) = $ 2  ... dx. 

We multiply (14a) from the left by V, and integrate 
with respect to x; then 

wh%e f is defined in ( 14b) and j = 1 and 2. Since the opera- 
tor Lo is self-adjoint, and 

while L Vj  = 0, we get 

a, (vf~w,)=<vff> .  

To exclude perturbations that increase linearly with the time 
t (the secular terms), it suffices to put 

These equations provide the actual reduced description of 
the soliton (BL) in terms of the coordinate x, of its center 
and of the velocity u . ~ '  

Substituting expressions ( 14b), ( 16), ( 11 ), and ( 12) in 
( 18) and integrating, we get 

a,P+ 2au ( 1  f n2u2/8b) =2h,, (19) 

duPatx0=(h,sin YB,Y), (20) 

where P is the adiabatic action invariant, defined as 

The BL mass is defined by 

m = a , ~ = m ~ [ i + 3 ~ ~ + 0  (u4) 1. (22) 

Equation ( 19) is the conservation law for the system's adia- 
batic invariant, which in the present case is the BL momen- 
tum density. A striking feature of this equation is that the 
viscous friction acting on the BL depends strongly on the 
velocity u,  since b 4 1. This dependence is due to the addi- 
tional dissipation caused by the bending of the DW in the 
course of the BL motion. The kinetic nonlinearity (the ve- 
locity dependence of the BL mass) is weaker here. 

Equation (20) determines the increase of the BL-center 
coordinate when the BL passes through an inhomogeneous 
field region h,. If the field h, is independent of the coordi- 
nate x, we have d,x, = 0. 

$4. BL MOTION DUE TO GYROSCOPIC FORCE 

Turning on the field h, causes a DW displacement that 
leads in turn to gyroscopic motion of the BL. In the presence 
of h, the points q = 0 and $ = 0 and n- are no longer equilib- 
rium points of the system. Far from the BL center, when the 
derivatives with respect to x can be neglected in Eqs. (3),  
these equations take the form 

where and $ are the values of the variables q and - + as 
I X  I - 03. Putting w = w, + 'iiS + w,, where 'iiS = (q,$),  as- 
suming that $(T, and then expanding Eq. (4) up to terms 
linear in and $ and eliminating these terms with the aid of 
Eqs. (23) and (24), we arrive at Eq. ( 14a) from which the 
field h, has been eliminated but whose right-hand side con- 
tains instead the additional external force 

0 
2i$ sin' I +ha$ cos V 

Substituting this force in the solvability equation (18) and 
integrating with respect to x in the weakly inhomogeneous 
case when d,x,--,O, we obtain the reduced BL equations: 

dtP+ 2au (l+n2u2/8b) =2h-n1l$, P=mou (l+u2). (26) 
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The term - r,a on the right-hand side describes the gyro- 
scopic pressure exerted on the BL by the DW. At a .( 1 Eqs. 
(23) and (24) can be transformed into 

and the gyroscopic force takes in this case the usual form 
- .rrqij. Allowing for the smallness of the perturbing terms 
taken into account in Eqs. (3)  and ( 14), the conditions for 
the validity of the reduced-description equations ( 19), (20), 
and (26)-(28) reduce to 

h,, h,, u, l i / b ,$ ,$ , c t ,  b , Q - ' 4 1 .  

$5. VELOCITY LIMIT; DYNAMIC TRANSFORMATION OF A BL 
INTO A CLUSTER 

We have considered so far the nonlinear properties of a 
BL at relatively low velocities, and have confined ourselves 
to corrections quadratic in the velocity. A question of funda- 
mental importance is that of the velocity limit of an isolated 
BL and its structure at high velocity. This question was con- 
sidered in Ref. 10, where it was indicated that two critical 
velocities u. = 1 b exist, at which bifurcation takes place 
in the system (7).  Bifurcation analysis, however, does not 
indicate existence of integral curves (separatrices) that join 
the equilibrium points of the system. We have investigated 
the separatrix solutions of Eqs. (7) by using a qualitative 
and numerical analysis method that is described in detail in 
Ref. 12 and provides the answer to our problem.13 

We return to the dissipationless equations (7)  that de- 
scribe BL motion in the absence of a magnetic field, H = 0. 
Figure 2a shows one of the solutions of the system (7), ob- 
tained for b = 0.5 and u = 0.4. The solution agrees in gen- 
eral form with the analytic equations ( 11 ) and ( 12). We call 
attention to the humps, which increase with velocity, on the 
tails of the magnetization distribution Y (<). The topologi- 
cal charge is conserved in this case, but the amplitude of the 
untwisting of the angle in the moving isolated BL exceeds 
n-. On going through the bifurcation value u = u- = 1 - b 

FIG. 2. Solitary wave describing an isolated Bloch line: a-for u = 0.4, 
b = 0.5; b-for u = 1.0, b = 0.5. 

FIG. 3:Solitary wave describing a moving cluster of five Bloch lines: a- 
f o r u =  1.0, b=0.5;&foru=0.4,  b = 0 . 5 .  

the singular points a, and a, turn into saddle-focus singular 
points which the integral curves enter and leave in oscillat- 
ing form. Numerical integration of the system (7 )  for 
b = 0.5 has shown that a very simple integral curve that joins 
the singular points a, and a, exists only in the velocity region 
u < u, < u,, where u, is the maximum BL velocity. At 
b = 0.5, in particular, we have u, = 0.5. It can be seen that 
the humps on the Y ({) tails are larger than in the solution 
for u = 0.4, but the topological structure remains on the 
whole unchanged. 

Obviously, the velocity limit u, depends only on the 
parameter b. Since 1 - b < u, < 1 + b, recognizing that in a 
real situation b 4 1, the assumption u, = 1 is a good enough 
approximation. Of greater interest here is the following fun- 
damental question: why cannot the solution that describes a 
single BL be continued into the region u > u, ? It is important 
to note that no anomalies occur at the singular points a, 
when u = u,. A numerical analysis for b = 0.5 has shown 
that there exists one more separatrix solution that joins the 
points a,, and a ,  and merges at u = u, with the solution that 
describes a single BL. This solution, obtained for u = 1.0, is 
shown in Fig. 3a. This type of solution describes a moving 
cluster consisting originally of five BL. This is clearly seen in 
Fig. 3b, which shows the structure of this solution at u = 0.4. 
Since at u = 0 the separatrix solutions take the form ( 5  1, the 
solitary wave breaks up as u -0 into five isolated BL with 
arbitrarily large distances between them. This reason why it 
is impossible to continue the separatrix solution describing 
an isolated BL has its analog in the dynamics of Bloch and 
NBel domain walls in a ferromagnet. When the Walker ve- 
locity limit is approached in the latter, two initially (at 
u = 0)  different solutions in the form of Bloch and NCel DW 
are merged. Thus, when a velocity limit is reached, solutions 
that have different structures at low velocities become dyna- 
mically degenerate. 

Other separatrix solutions were also obtained; they de- 
scribe a cluster of three or seven BL of maximum velocity 
U,' > Uc . 
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FIG. 4. Velocity dependence of the energy of moving Bloch lines. 

What are the physical singularities acquired by a BL at 
u = u, ? We calculate the energy of a solitary wave, using the 
equation 

where a(Y,q) is given by Eq. (2)  with h, = h, = h, = 0. 
Figure 4 shows a plot of E ( u )  obtained from Eq. (29) with 
b = 0.5. As u - 0 the energy E-+ 2k, where k is the number of 
BL in the cluster. The mass m, = d 'E  /du2 of an isolated BL 
increases with velocity and m, - oo as u -u, .4' The energy 
of a cluster of five BL has a maximum near u ~ 0 . 8 ~ ~ .  In this 
velocity region the cluster has a negative mass, meaning that 
it is unstable at high velocities. 

We estimate now the maximum magnetic field that 
blocks stationary motion of Bloch lines in a DW. This can be 
done by using the momentum-conservation (or energy-bal- 
ance) equation for a system with the Lagrangian ( 1 ), which 
reduces in this case to 

Figure 5 shows the field dependence of the velocities of an 
isolated BL and of a cluster of five BL. This dependence was 
obtained from (30) by using numerical solutions of the sys- 

FIG. 5. Field dependence of the velocity of Bloch lines in a weakly 
dissipative medium. 

tem (70), and is valid for weakly dissipative systems, when 
a < 1. The maximum value of the magnetic field that reverses 
the DW by the stationary motion of a BL, is in this case h z' 
=; 7.4a. 

The effect described here, dynamic transformation of 
an isolated BL into a cluster of five BL when a velocity limit 
is reached, can serve as a new mechanism for multiplication 
(generation) of BL in a moving DW.5' Obviously, the action 
of such a mechanism can be facilitated by the presence of 
defects in the sample. It is possible that this effect is the cause 
of the BL multiplication observed by Nikitenko et aZ.I4 in 
Y,Fe,O,, acted upon by high-frequency magnetic fields. 

$6. CONCLUSION 

We present the reduced equations for a BL in dimen- 
sional form: 

where v is the BL velocity and q the DW displacement, in 
dimensional units, from the equilibrium position far from 
the BL, 

(the expression obtained for m, agrees with that obtained 
for the mass earlier9', 17 is the topological charge defined in 
Eq. (5a), P =  2Ms/p, ,u = yha-I is the DW mobility, m, 
is the Doring mass of the DW, and k = 2M, H '. The velocity 
and the magnetic field limits are v, z s  and h z ' z60aMs .  
We list below the main BL parameters calculated for typical 
experimental conditions: 

-4 =4 10-' erg/cm, K = 5  10' erg/cm3,in,=50 G, 

d=lO-& cm, Q=3, a=O, 1, b=0.08, 

A=3.10-8 cm, AL=5.10-6 cm, s=6.104 cm/s, 

mL=lO-"g/cm, ~ ~ = 2 . 1 0 - ~  S, Hc(C)=300 Oe. 

The gradient of the displacement field is given by H :  
= 2Msd, where d is the film (plate) thickness, assumed 
equal to lop4 cm. 

Equations ( 3  1 ) and (32) are our main results. They 
contain two nonlinearities: kinetic-the dependence of the 
BL mass on the velocity, and dissipative-the dependence of 
the viscous deceleration force on the velocity. The second 
type of nonlinearity is stronger than the first. The physical 
cause of these nonlinear dependences is the local bending of 
the domain wall by the moving BL. One manifestation of 
such nonlinearity can be generation of multiple harmonic 
oscillations of the BL in an harmonically oscillating DW. 
We have also determined the limiting values of the dynamic 
characteristics of the BL, such as the velocity limit and the 
critical DW-magnetization-reversal field that limits the sta- 
tionary steady-state motion of the BL. The singularities ob- 
served in the motion of a BL near the velocity limit demon- 
strate the possibility of dynamic transformation of an 
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isolated BL into a cluster, i.e., the possibility of BL multipli- 
cation in the dynamic regime. 

"The other limiting case b )  1 was considered in Ref. 10. 
')The function W, is defined here by Eq. (6).  We note also that 
a, W, = tax W, + a, W,, where the second term depends on the time 
only via x - ut. The first term in the conditions ( 18) can be omitted, 
since the convolution t (a, W, f )  vanishes by virtue of the first condition 
(18),i.e.,atj= 1 (seealsoRef. 11). 

)'The derivation of Eqs. ( 18) is equivalent to the approach described in 
Ref. 11. 

4'The mass definition given here coincides with (22). 
''A well-known mechanism of BL generation in magnetic films with per- 

pendicular anisotropy is initiation of horizontal BL (Ref. 2). 
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