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We investigate the properties of a system of superconducting filaments in a normal metal 
matrix. For low concentrations of superconducting material, the critical parameters of the 
system and their dependence on magnetic field are found from percolation theory. We show 
that when the fraction of superconducting material is appreciable, a high current density is 
achievable in strong fields due to surface pinning at the interface between normal and 
superconducting phases. We find conditions under which the system is capable of carrying a 
supercurrent with density exceeding the "pair-breaking" current density. 

1. INTRODUCTION 

Recently there has been much interest in the study of 
disordered systems in which superconducting inclusions are 
distributed randomly in a matrix made of dielectric or nor- 
mal metal. When the concentration of the superconducting 
phase is low, the average properties of the system, e.g., its 
transition temperature, critical current and critical field, can 
be found by percolation theory.' The percolation threshold 
for which an infinite superconducting-phase cluster can be 
formed corresponds to a volume fraction of superconductor 
f, ~ 0 . 1 5  (Ref. 2). Above the percolation threshold, the sys- 
tem becomes a hard superconductor, whose properties are 
determined by pinning at inhomogeneities. 

In the present paper we investigate an anisotropic disor- 
dered system in which superconducting filaments, highly 
elongated in one direction, are located in a normal metal. 
Such systems are of practical interest since they can carry 
high current densities in strong fields without appreciable 
dissipation of en erg^.^-^ Their electrodynamic properties 
are regulated by the volume fraction of superconductorf,, 
the concentration N of superconducting inclusions and the 
degree of anisotropy, which is conveniently characterized by 
the ratio of the length of a filament to its radius R = l / b .  For 
given values off,  and N, the quantity R can be varied by 
metallurgical drawing of the sample. 

In the percolation regime, when the spacing d between 
filaments is large compared to the coherence length 6, in the 
normal metal, the critical current is exponentially small (the 
exponent is -d /CN ) . Therefore, elongation ofthe supercon- 
ducting inclusions causes an increase in the surface over 
which the supercurrent can flow in and along the normal 
metal as a result of the proximity effect between relatively 
widely-spaced inclusions. As a result, the degree of coupling 
between the inclusions increases, which gives rise to the ap- 
pearance of a large pre-exponential factor in the expression 
for the critical current density. A magnetic field, whose in- 
fluence in the case of a "dirty" superconductor can be inves- 
tigated using the Usadell equations,' suppresses the proxim- 
ity effect. The coupling region is compressed transverse to 
the field direction, and the critical current density decreases 
exponentially as the magnitude of the field increases. 

Above the percolation threshold the critical current 
density is determined by the disruption of superconductivity 
in the inclusions themselves, and depends on their transverse 
dimensions. If these dimensions are large compared to the 
penetration depth A of the magnetic field, the critical current 
is determined by volume pinning within the inclusions. 
However, a situation is possible in which the critical current 
is determined by strong pinning at the boundaries between 
the superconducting and normal phases, and can be close to 
the "pair-breaking" current of the superconductor for high 
values of the magnetic field, i.e., on the order of the upper 
critical field. For this to occur, the transverse dimensions of 
the inclusions must be small compared to the magnitude of 
A, in contrast to the case of volume pinning, while the inclu- 
sions themselves should be isolated from one another (the 
supercurrent in the normal matrix must be small compared 
to the pair-breaking current). In addition (naturally) the 
filament diameters must not be smaller than the coherence 
length gs in the superconductor; this ensures that the prox- 
imity effect will not destroy the superconductivity (usually 
6 s  4 g N  1. 

Under certain special conditions, the system investigat- 
ed here can carry a supercurrent with a density even higher 
than the superconductor's pair-breaking current. This is be- 
cause the supercurrent in the "dirty superconductor" limit is 
proportional to the metallic conductivity in the normal 
state, and for the normal matrix UN is usually much larger 
than the value a, in the superconductor. Therefore, when 
the spacing between filaments is small compared to lN and 
there is some superconductivity present in the normal metal 
due to the proximity effect, the supercurrent flowing in the 
normal metal can be larger than the current in the supercon- 
ducting inclusions. However, in this case the suppression of 
the critical current by a magnetic field is stronger than for 
surface pinning. 

2. CRITICAL CURRENT DENSITY FOR LOW 
CONCENTRATIONS OF THE SUPERCONDUCTING PHASE 

If the volume fraction of superconductor satisfiesf, 4 1, 
the system consists of a normal matrix with widely-spaced 
superconducting inclusions, which are assumed to be highly 
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elongated along one direction (the z-axis), R ) 1. Let the 
spacing d between filaments be large compared to the length 
l, , so that the supercurrent between them is exponentially 
small. Under these circumstances, the critical current of the 
whole system can be studied by percolation theory. 

Each inclusion can be surrounded by a surface consist- 
ing of points a distance d,/2 from the inclusion. As d, in- 
creases, the surfaces begin to overlap; let us refer to these 
inclusions as "conditionally-coupled." For some value d, , 
an infinite cluster of conditionally-coupled inclusions forms. 
This quantity (in units of 6, ) also determines the exponent 
in the expression for the critical current density of the sys- 
tem. It is clear that the quantity dc is on the order of the 
average distance d between filaments. Its exact value is 
found from the condition that the volume external to the 
surfaces described above is equal to the quantity Bc/8N, 
where the parameter B, depends weakly on the shape of the 
coupling region; for spheres, it is close to 2.7 (Ref. 2) .  The 
case dc ) 1 differs little from a system of small superconduct- 
ing spheres in a normal matrix discussed in Ref. 1. For dc 4 1 
the volume of the coupling region equals n-d f 1/4, and in this 
case, which corresponds to strong anisotropy (R % f; it 
turns out that the critical spacing dc decreases rapidly as the 
filament length increases: 

For a cylinder-shaped inclusion, this expression can be writ- 
ten in the form 

Thus, marked elongation of a sample accompanied by a de- 
crease in the spacing between inclusions and a strengthening 
of the degree of coupling between them leads to exponential 
growth of the critical current and efficient stimulation of 
superconductivity in the system. 

The number of transverse cross-sections per unit area 
through which there flows a current of the same order of 
magnitude as that which flows through a conditionally-cou- 
pled cluster is of order d; 2(c,/dc )2v,  where the critical 
exponent for the correlation radius of an infinite cluster is 
Y = 0.9 (Ref. 2).  Therefore, we obtain the following expres- 
sions for the critical current densities 

where jc ( d )  is the critical current density between two su- 
perconducting cylindrical electrodes located in a normal 
metal at a distance d from one another. 

The critical current of an SNS contact in the dirty-su- 
perconductor limit, when the electron mean free path is long 
compared to the characteristic parameters of the problem, 
can be found with the help of the Usadell equations.' To 
calculate this current we use the expression for the supercur- 
rent density. 

where u is the conductivity of the metal in its normal state, 
and A is the vector potential of the magnetic field. The Gor- 

'kov functions integrated over the energy variable are found 
from the equations 

DB[G,aF,-F,VG,] =2a.Fn-2AG., 

where D is the diffusion coefficient for electrons and A is the 
superconducting order parameter, which is nonzero only in 
the superconductor (we treat the matrix as normal for all 
temperatures). Boundary conditions for Eq. (5 ) consist of 
continuity of the functions F,, together with their normal 
derivatives multiplied by the corresponding conductivities 
(a, is the superconductor, a, in the normal metal) .'-I0 

In the absence of an external field, the Gor'kov func- 
tions, as follows from equations ( 5 ) ,  decrease with distance 
away from the superconducting filaments according to 

wherep is the distance from the center of the superconduct- 
ing cylinder, and K, ( x )  is the modified Bessel function of the 
second kind. The coefficient C,  is found from the boundary 
conditions by matching with the Gor'kov functions in the 
superconductor, which vary over a distance -ls = (D,/ 
2n-T, ) ' I 2  and have a modulus of order unity in the interior of 
the electrodes (their transverse dimensions b are assumed to 
be much larger than gS ). The critical current density of the 
contact is estimated from the squared modulus of the 
Gor'kov function F, (which decreases most slowly with in- 
c reas ing~) ,  evaluated midway between the electrodes and 
divided by the characteristic length over which it varies: 

where 

is the pair-breaking current density of the superconductor. 
Note that the pre-exponential factor in the expression for the 
critical current of the contact depends on the relationships 
between the parameters y, b /lN and 1; for simplicity Eq. (7)  
is written for the case y max {<,/b,l)< 1. 

Thus, the critical current density of the system is pro- 
portional to exp ( - d, /{, ), and is determined by Eqs. (2) ,  
( 3 )  and 7) .  The expression for the longitudinal critical cur- 
rent density j,, clearly contains the large pre-exponential 
factor b1 /d f -R f, . Its behavior is explained by the fact that 
as the sample is elongated (R increases for a givenf, and N), 
not only does the spacing d between filaments decrease, but 
also the surface of the filaments, through which the current 
between inclusions flows, increases -bl. Therefore, for suf- 
ficiently long filaments the critical current density in each 
filament must become of orderj, (and thus the longitudinal 
current density averaged over a cross-section -jp f, ) even 
for spacings between filaments which are somewhat larger 
than 6, (by virtue of the large logarithm). The correspond- 
ing expression for the degree of anisotropy takes the form 

where a factor has been omitted from inside the logarithm 
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which contains y and depends on the boundary conditions; 
we assume that this factor is not too different from unity. As 
R increases further, for d < l N  the critical current of the 
system can become larger than the pair-breaking current 
density. At this point the mechanism of current transport 
changes; the current along the superconducting filaments is 
shunted by the longitudinal supercurrent induced in the nor- 
mal matrix as a consequence of the proximity effect. This 
case will be investigated in detail in the following sections of 
this paper. 

We also present expressions for the critical temperature 
of the system. It must be on the order of the coupling energy 
between superconducting regions': 

and is usually much lower than the critical temperature Tc 
of the superconducting inclusions themselves (ao = n-/e is a 
flux quantum). 

The last thing we will investigate in this section is the 
influence of an external magnetic field on the critical current 
density in the percolation region (the field H will be assumed 
to be directed along the y-axis). The field begins to suppress 
the superconductivity of the system when it reaches values 
on the order of @,/dl, at which point a single flux quantum 
@, can flow in the normal interlayers between inclusions. 
This leads to oscillations in the current between filaments 
and to a power-law decrease in the critical current density: 

Thus, in weak fields, until suppression of the proximity ef- 
fect itself occurs, only the pre-exponential factor changes in 
the expression for the critical current. However, the expo- 
nent also begins to change even at fields -@,/gYd 312, SO 

that the Gor'kov functions rapidly decrease as we move 
away from the inclusions. 

This effect can be analyzed to exponential accuracy 
with the help of Eqs. (5)  for the functions Fo, setting 
A = A ,  = Hx and locating the superconducting filament at 
the coordinate origin along the z-axis: 

Let us look for a solution to Eq. ( 12) in the form Fo = e -' , 
where SS 1; we then obtain the following equation for the 
function S(x,y ) : 

The critical current density, just as in the case of no magnetic 
field, is determined by the infinite cluster near the percola- 
tion threshold which is made up of surfaces of constant val- 
ues of the function S surrounding each inclusion. Twice the 
corresponding value of So yields the exponent in the expres- 
sion for jcz , and is found from the condition 

where V, is the volume excluding the interior of the con- 
stant-So surfaces. 

For H(@,/dS,, the surface of constant S is close to a 

cylinder. The correction to the value ofsconnected with the 
magnetic field is relatively small and can be found by pertur- 
bation theory. Going to polar coordinates in Eq. (13) and 
making the substitution S = ( p/g, ) + SS, we obtain the 
following expression for the correction 6s: 

~ S ( P ,  rp) =Z/3e2H2 ,03~ ,  cos2 c p .  ( 1 5 )  

After calculating the volume 

V , . - - ~ ~ S ~ ' S , ' [  I -  ( n ~ . ) - '  8 s  (d.12, rp) dcp ] , ( 16) 

So=dc/2E, 

and making use of Eq. ( 14), we find the following expression 
for the critical current density in a magnetic field: 

jcz(  H)=j , , (O)  exp I - ( n Z / 1 2 )  H2d,3ENI@02],  
(17) 

( D o / d ~ ~ , ' l l ~ H ~ O , I d ~ ~ ,  

where the left-hand inequality corresponds to the condition 
SS) 1. We see that in the field interval under discussion the 
exponent in the expression for the critical field jcz acquires a 
correction which is relatively small but is large in absolute 
value. 

As the magnitude of the field H increases further, the 
surfaces S = So are strongly elongated in they direction (the 
strongest suppression of the proximity effect occurs in a 
plane perpendicular to the field direction). For H $  @,,/dl,, 
this surface is given by the expression 

and we obtain the functional dependence for the decrease of 
the critical current from Eq. ( 14) in the form 

j , , ( H ) - j , ~ ( O )  exp [ - n ( d , l E ~ )  (9HdcE~/128(Do) '" l ,  
(19) 

Thus, in this region the exponent is determined by the mag- 
netic field, which defines the effective magnitude of the co- 
herence length in the normal metal. 

3. PROPERTIES OF THE SYSTEM FOR SIGNIFICANT 
VOLUME FRACTIONS OF SUPERCONDUCTOR 

An increase in the volume fraction of superconductorf, 
leads to a change in the numerical coefficients in expressions 
( 1 ) and (2)  for the critical spacing between inclusions dc . 
This is related to the fact that the finiteness of the volume of 
superconductor compared to the normal matrix begins to 
make itself felt, and so the percolation problem is no longer 
purely a problem of random point elements. However, the 
critical current is determined as previously by the proximity 
effect, and for dc )lN is given by Eqs. ( 3 ) and (7) .  

When the concentration of superconductor exceeds a 
critical value f, =: 0.15, the superconducting phase forms an 
infinite cluster. The current density rises rapidly, and even 
for a very small increase i n k  over the value fa, it begins to 
shunt the SNS contact; the critical current density increases 
according to3 
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where j, is the critical current density of the superconduct- 
ing inclusion. Asf, increases further, the results of numeri- 
cal calculations show2 that even forf, 2 2 f, almost all the 
inclusions enter into the infinite cluster and the critical cur- 
rent density 

If the inclusions are large compared to the penetration 
depth /Z of the magnetic field, the critical current density of 
the inclusions j, is determined by volume pinning within 
the inclusions." Here, we are investigating the opposite 
limiting case, which is specific to the system at hand. Let us 
first consider the situation where the supercurrent through 
the normal matrix can be neglected, and where each inclu- 
sion can be regarded as coupled only to the other supercon- 
ductors (in the interstice between coupled point elements, 
the electrodynamics is the same as for superconducting cyl- 
inders in vacuum). Then a strong surface pinning appears, 
and the critical current density turns out to be close to the 
pair-breaking current density jp for very large values of the 
magnetic field perpendicular to the axis of the cylinder. 

If the transverse size of the inclusion b (the radius of the 
cylinder in the simplest case) is small compared to A, then 
the supercurrent in the absence of an external field is distrib- 
uted uniformly over the cross-section. This Meissner state 
remains stable up to the current density jp , since in this case, 
just as in films, there is a barrier to the entry of vortices.I2 In 
an external field directed perpendicular to the filament, the 
current density becomes a linear function of the transverse 
coordinate. Therefore, when the current density at the boun- 
daries of the cylinder reaches the value of jp and the 
Meissner state begins to be d i s r ~ ~ t e d , ' ~ - ' ~  the average den- 
sity is smaller than jp (the magnetic field suppresses the su- 
perconductivity). In magnetic fields above the value 
H,, -Qo/bls, Abrikosov vortices are found even in the fila- 
ment located along the field. The critical value of the current 
corresponds to a steady-state scenario, in which a certain 
portion of the filament volume is filled with an immobile 
lattice of Abrikosov vortices (in this case the density of 
transported current equals zero), while the remaining por- 
tion is in the Meissner state and carries a longitudinal trans- 
port current. At the point where the density of this current 
reaches a value of jp at the edge of the filament, it already 
corresponds to a much smaller average value of the current 
density. 

In order to calculate the functionj, (H) ,  let us consider 
the generalized London equation16 for the supercurrent j, 
which for a radius b gA of the cylinder (when we can neglect 
the self-field of the current) has the form 

where n is the density of vortices and the axis of the cylinder, 
as before, corresponds to the z-axis; the magnetic field H is 
directed along the y-axis. The critical current of the cylinder 
corresponds to the current density j reaching a value jp at 
some point in the cross-section of the cylinder. 

As long as the field H is not too large, there are no 
vortices in the cylinder. The expression for the critical cur- 

rent density obtained from Equation (22) (the local current 
density peaks at x = b) takes the form 

For H > H,, the region - b < x < x, is filled with vortices; in 
it we have j = 0 for the transport current while for x > x, we 
have 

j(x) =(H/4nhZ) (x-xo) = j p f  (H/4nhz) (x-b) , (24) 
~ o = b  (I-2Ho/H), H>Ho. 

The current density equals the critical value jp once more at 
the edge of the cylinder forx = b, and for the critical current 
density averaged over the cylinder cross-section we obtain 

i.e., the critical current density decreases as a power of the 
field. 

Thus, the critical current density j, for transverse di- 
mensions of the inclusions b g/Z is of the same order of mag- 
nitude as the pair-breaking current density up to a field of 
order H, - Qo/bls. This field can attain values on the order 
of the vortex critical current H,, for inclusion dimensions 
-gs, corresponding to the beginning of suppression of su- 
perconductivity in the inclusion itself due to the proximity 
effect. 

In this investigation, the critical current is determined 
by the properties of an individual superconducting filament. 
Its isolation from other filaments ensures that the supercur- 
rent in the normal matrix will be small compared to the cur- 
rent in the filaments. However, other cases are possible, 
which we will investigate below. If the conductivity oN of 
the normal matrix is large compared to the conductivity of 
the superconductor a, in its normal state, then we see from 
Eq. (4)  that for large absolute values of the Gor'kov func- 
tions F,, in the normal metal, the supercurrent density j, in 
the normal metal can significantly exceed the current den- 
sity in the parallel-connected superconductor. When the 
spacing between superconducting inclusions is small com- 
pared to 6, and the Gor'kov functions are not exponentially 
small in the greater part of the normal matrix, the longitudi- 
nal critical current density jc of the system, thanks to the 
superconductivity induced in the normal metal, can be far 
larger than the pair-breaking current density jp of the super- 
conductor. 

Let us find expressions for the critical current of the 
normal matrix that are accurate up to a numerical coeffi- 
cient for temperatures not too close to the critical tempera- 
ture Tc of the superconductor (in the Appendix we present 
an exact calculation of the longitudinal critical current den- 
sity of a planar SNS "sandwich," which illustrates this ef- 
fect). In the absence of an external magnetic field we can set 
A = 0 in Eqs. (4) and (5 ), and assume that the phasex of the 
order parameter and of the functions F,, vary linearly along 
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the direction of the transport current (the z-axis), which is 
parallel to the inclusion. If the spacing between supercon- 
ducting filaments satisfies d 4 { , ,  then it follows from Eq. 
(5)  that the absolute value .F, of the Gor'kov functions F, 
in the normal region vary weakly, and are close to the value 
F,, , while their transverse gradients are 

where VX is the gradient of the phase X, which determines 
the supercurrent through Eq. (4). 

In the superconductor, the Gor'kov function differs in 
absolute value from F,, over distances -cs at the bound- 
ary with the normal metal up to its equilibrium value 

F,~=~A, / (O,~$ .A,~) '"  
deep in the filament, where A, - Tc is the equilibrium value 
of the order parameter (we recall that the transverse dimen- 
sions of the filaments is b S l s  ). The magnitudes of the Gor- 
'kov functions in the normal interlayer F,,, which deter- 
mine the supercurrent in the matrix according to expression 
(4), are found by matching these functions with the func- 
tions 7, in the superconductor, making use of the bound- 
ary conditions in Eqs. ( 5  ) and (26); they depend significant- 
ly on the magnitude of the parameter yd /{, ( y  = u N l S  / 

1. 
In the limit yd /{, ) 1, the Gor'kov functions in the 

normal metal are small compared to their equilibrium values 
in the superconductor: 

Substituting these expressions into Eq. (4)  and estimating 
their maximum along VX (this maximum is attained for 
VX,, - ( f ,  ) - ' ), we obtain for the critical current of the 
normal matrix 

If yd /{, 4 1, then for moderate currents (VX 4 VX, ) 
the functions F, are everywhere close to the equilibrium 
value F , , ,  and their deviations S F ,  from these values are 
given by the relations 

The critical current corresponds to that value of the phase 
gradient AX for which the ratio S F , / F , ,  ceases to be 
small, i.e., VX, - (yd{, )-'I2. For the critical current den- 
sity jcN we obtain the expression 

Here we have taken into account the fact that in the first case 
[Eq. (30) ] the sum in expression (4) for the current de- 
creases for n - ( yd /{, ) -' ( Tc /T, while in the second case 
it decreases for n - Tc /T;  in the intermediate range of tem- 
peratures T- T,, Eq. (30) has no region of applicability, 
and we must use Eq. ( 3  1 ) . A comparison of the expressions 
obtained for j,, with the pair-breaking current density j, of 
the superconductor determined by Eq. (8)  shows that when 

the spacings d between superconducting inclusions is small 
there is a very broad range of values of the parameter y for 
which jcN %jp, and practically all the supercurrent is carried 
in the normal matrix via the induced proximity-effect super- 
conductivity. In the intermediate-temperature region, using 
Eqs. (28) and (31) we obtain 

In a magnetic field H, together with the term VX in Eqs. 
(26), (27) and (29) there appears a field term -eHd deter- 
mined by the vector potential. In fields 

fIN-CDo/dT;~ for y d / E N B 1  
and 

HN-@,I( yEN)'"d" for ydlE,< I ,  
corresponding to approximate equality between the vari- 
ation in the vector potential over a distance -d and the criti- 
cal value of the phase gradient VX,~, suppression of the 
proximity effect begins (i.e., decrease of the quantities F,, 
as the field increases). A similar picture of the suppression of 
superconductivity by a field obtains in thin films of type-I 
supercond~ctor.~ As is clear from the results obtained in the 
Appendix, the critical current density decreases as a power 
law: 

which is correct in the region of moderate temperatures. 

4. CONCLUSIONS 

An anisotropic system of superconductors in normal 
metal exhibits a series of interesting properties. 

When the concentration f, of the superconducting 
phase, the coupling between individual superconducting 
filaments comes about via the proximity effect: a supercur- 
rent flows in the normal matrix between filaments. If the 
spacing between filaments satisfies d %6,, the critical cur- 
rent of the system is exponentially small and its density is 
given by Eqs. (2) ,  (3)  and (7 ) .  However, a current with 
density -jp can flow in the filaments even whenf, is small if 
the spacing between inclusions satisfies d Z 6,; in this case 
the system carries a current with density -j,f,. In this case 
the volume fraction of superconductor must not be too 
small:f, % (6, /C, )', SO that the transverse dimension of the 
filaments b exceeds the coherence length gS and supercon- 
ductivity is not suppressed in the inclusions themselves. 

The critical current density for small values off, is very 
sensitive to an external magnetic field. Suppression of super- 
conductivity begins in comparatively weak fields -@,/dl, 
where I is the length of a filament, because magnetic flux 
quanta which penetrate into the SNS contact give rise to 
oscillations in the current density and decrease its average 
value. The power-law dependence of the critical current den- 
sity given by Eq. ( 11) is a result of this effect. For large fields 
the dependence of the critical current is no longer exponen- 
tial because the magnetic field begins to suppress the prox- 
imity effect (this suppression is anisotropic). The critical 
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current density in fields larger than @,,/d 3'2f is deter- 
mined by Eqs. (17), (19). 

When the concentration of superconductor satisfies 
f, > 0.15, the current is carried in a superconducting cluster 
formed by direct contact between filaments. For these con- 
centrations the transport current density also can reach val- 
ues -jp ; when the transverse dimension b of an inclusion is 
small compared to the penetration depth A, this current is 
weakly suppressed by an external field. In this case, the 
strong surface pinning hinders the penetration of Abrikosov 
vortices into the filament and ensures stability of the 
Meissner state up to fields -@,/bcs. If the size of an inclu- 
sion is a few times f, (which is necessary for superconduc- 
tivity to exist in the inclusions themselves), the field can 
attain values on the order of H,, . Suppression of the critical 
current is described by Eqs. (23) and (25). 

It is well-known that surface pinning is weakened in the 
presence of sharp corners, which give rise to appreciable lo- 
cal increases in the current density. For example, if the sides 
of a corner form an obtuse angle a, with n < a < 2n, and the 
round-off radius of the corner and its depth - b (A, then the 
critical current density will be decreased roughly by a factor 
( b / r ) I p d a  (Ref. 14). However, a system of superconduct- 
ing filaments in a normal matrix is usually created by rolling, 
for which the probability of producing a sharp "dent," i.e., a 
region of current "concentrators," is small. For inclusions 
which occur in real systems, the complex shape of a typical 
transverse cross-section does not introduce strong gradients 
in the current distribution when the transverse dimensions 
of the inclusions are small compared to the penetration 
depth, and consequently do not weaken the surface pinning 
efficiency. 

An interesting situation can arise in the practically im- 
portant case where the conductivity UN of the normal matrix 
is much larger than crS of the superconductor. For spacings 
between filaments smaller than {,, the longitudinal super- 
current induced in the normal matrix can shunt the current 
along the superconducting inclusions because of the proxim- 
ity effect. If the characteristic parameter y = a,,,{,/a,{,,, 
satisfies the condition Cs/c, < y 4 (c,/c, ),, which is usual- 
ly fulfilled in real systems, then there is a wide interval of 
spacings d in whichj, %jp [Eqs. (28) and (30)-(32) 1. This 
effect can be detected through the characteristic tempera- 
ture dependence of the critical j,, which obtains for not too 
small y. In contrast to the pair-breaking current in the super- 
conductor, it is clear from Eq. (28) thatj,, grows as T - ' I 2  

as the temperature falls. This dependence is preserved down 
to a temperature - T, [c, ( T, ) / y (  T, )d 1, which is small 
compared to T, ; after this the current approaches a constant 
[Eq. (30) 1. The current j,,, however, is suppressed in a 
magnetic field 

In stronger fields the behavior of the system is determined 
either by the disruption of the coupling between isolated in- 
clusions (for smallf, ), after which the critical current de- 
creases exponentially with growth of the field, or by surface 
pinning ( f, > 0.15); in this latter case the critical current 

density jp is preserved up to high fields, and then decreases 
according to a power law. 

Let us note that the degree of anisotropy in practical 
cases usually is characterized by the parameter R * = (I  / 
lo) =: R , I3, where lo is the characteristic size of the inclusions 
before the sample is drawn. By rolling we can elongate the 
inclusions greatly ( R  * can reach tens of thousands) while 
leaving unchanged the volume fractionf, of superconductor 
and concentration N of inclusions, which are prescribed ini- 
tial parameters. The above investigation shows that in such 
composites it is possible to attain high "in situ" values of the 
critical current density -j, in high fields -H,,. With the 
help of the equations for the local critical current density 
obtained in this paper, we can use the Maxwell equations to 
investigate the electrodynamics of real cables for specific 
fields. 

The authors express their thanks to A. A. Abrikosov, 
A. I. Larkin, and A. S. Nigmatulin for valuable discussions 
of the results obtained. 

APPENDIX 

Let us consider a planar SNS contact parallel to the yz 
plane with S N  boundaries at x = + d /2. We will assume 
that the dimensions of the "sandwich" are small compared 
with the penetration depth of the magnetic field, so that an 
external field H directed along the y-axis is uniform and can 
be described by the vector potential A = A, = Hx. Let us 
calculate the longitudinal (along the z-axis) sup, ercurrent 
density, assuming the temperature T is close to the critical 
temperature T, of the (superconducting) edges. In this case 
the Gor'kov functions Fn are small in absolute magnitude 
(SO that Gn z l ) ,  and the Usadell Equation (5),  when we 
substitute Fn (x)  = 7 ,  (x)exp(iVxz) gives rise to the form 

DNFn1'-( VX-2eH~) 2Fn=20nFn7  1 x 1 <d/2, (A. 1) 
on=nT. (2n+l), 

DsF,"=2conFn-2A ( x ) ,  1x1 >d/2. (A.2) 

In Eq. (A.2) terms are omitted which contain the phase 
gradient and magnetic field, and which are relatively small 
due to the relation between coherence lengths 6, 46,. 

If the thickness d of the normal interlayer is small com- 
pared to the coherence length 6, , while the magnetic field 
satisfies H<@,/d *, then, as is clear from Eq. (A. I) ,  the 
function 9 ,  in the N region is slowly varying. Its value is 
found from the matching conditions on the quantity itself 
and its derivative, multiplied by the ohmic conductivity, 
with the corresponding values in the S-regions. Since the 
edges are in equilibrium, the derivatives of the Gor'kov func- 
tions have the same value at both boundaries. Solving Eq. 
(A. 1) with these boundary conditions, we can obtain closed 
boundary conditions for the functions 9 ,  in the S-region 
(henceforth it is sufficient to consider only the right-hand 
electrode x>d /2). They have the form 

In this case, deep in the superconductor 
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The coordinate dependence of the modulus of the order 
parameter A ( x )  which enters into Eq. (A .2 )  is found from 
the Landau-Ginzburg equations 

E2(T)A"+A (I-A2/Am2)=0, ( T )  = (n/2)EB7-lh ( A . 5 )  

and is given by the Eq. 

X-d/2 
A ( x ) = A ,  th ---- 2'12E (TI + I 

The constant t is found from the boundary conditions for Eq. 
(A.5)  l o :  

which, by taking expressions (A .3 )  and (A .6 )  into account, 
can be rewritten in the form 

The solutions to the Usadell equations for the conditions 
that < ( T )  $gs  have the form 

9, (z) = A  (x)/o,+B, exp [ -  (20./D.)'~(x--d/2) I .  (A .9 )  

Once we have determined the constant B, from the bound- 
ary conditions (A.3) ,  we obtain the following expressions 
for the magnitudes of the Gor'kov functions F,, in the 
normal layer, taking into account (A .8 )  : 

A m  ypf (2n+l)" th t. 
=- ( A .  10) 

On pn2 ( d / 2 ~ ~ )  + (2n+I)lk 

After finding the functions YnN by a self-consistent solution 
to Eqs. (A.8)  and (A.10),  we determine the longitudinal 
transport current density by using the following formula de- 
rived from expression ( 4 )  : 

The maximum value of this expression for a given phase 
gradient gives the critical current density jcN . It can be calcu- 
lated analytically in several limiting cases. 

In the absence of a magnetic field, as we showed above, 
the expressions for the critical current depend on yd /CN . If 
yd /<, 1 ,  then the superconductivity is strongly sup- 
pressed at the SN boundary (we have the parameter t & 1 ) .  
Taking into account that B, is always R 1 ,  and [as is clear 
from (A .8 ) ]  that the product pt = (2 '"r) - ' ,  we obtain 
from formula (A.lO) the following expression for the 
Gor'kov functions F,, 

The maximum of expression ( A .  1 1 ) equals 

( A .  12) 

For ( Tc - T )  - Tc , this formula matches with (28 ) ,  which 
is accurate to within a numerical coefficient. 

In the case yd / l ,  4 1 ,  when only small values of n are 
important in the sum ( A .  1 1 ), we have 

P n . v = ( A m / r n n )  th t, ( A .  14) 

and the Eq. for the current takes the form 

The sum in expression ( A . 8 )  for the parameterp contains a 
logarithmic divergence when substituted into the Gor'kov 
functions ( A .  14). As is clear from Eqs. (A.10),  for such 
choices of n the equality ( A .  14) is violated and the quanti- 
ties F,, begin to decrease rapidly with increasing n: 

n0 

( A .  16) 
Expressing the parameter t in terms of VX by using Eqs. 
(A .8 )  and taking ( A .  16) into account, and substituting it 
into ( A .  I S ) ,  we obtain for the critical current density 

yd/EN<71h In-' T-'. ( A .  1 8 )  

For t -  1 ,  Eq. ( A .  1 8 )  matches with Eq. ( 3  1 ), while the re- 
gion of applicability of expression ( A .  17) reduces to zero. 

Finally, let us investigate the behavior of the critical 
current density in a magnetic field, which we will assume is 
strong: H&@,Vx,/d, where VX,, is the critical value of 
the phase gradient corresponding to the maximum in Eq. 
( A .  1 1 ) in the absence of a field. In this case, as is clear from 
the definition of 0, in ( A . 3 ) ,  the maximum of expression 
( A .  1 1 )  along VX is Attained for VX, -eHd&V,y,, . There- 
fore, for n-  1 the coefficients 0, ~0 do not depend on n 
while the parameterp =;P 'd /21N. For all values of the Gor- 
'kov functions and transport current density, Eqs. ( A .  14) 
and ( A .  1 5 )  are valid when the parameter t & 1 and [ (as fol- 
lows from (A .8 )  1 equals 

t=2'h/rdE~[ (Vx)2+(eHd)2/3].  ( A .  19) 

As a result, we obtain the functional form of the decrease in 
critical transport current density in the form 

which to an accuracy of a numerical factor coincides with 
expression ( 3 3 ) .  It is valid for any value of the parameter 
~d  .dl,. 
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