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The applicability of the replica method is elucidated using the example of two-dimensional 
exactly solvable theories; for the case in which the replica procedure has been found to be 
correct, perturbation theory in 1/N ( N  is the number of colors) is constructed. The connection 
between the models investigated and the experimental situation is discussed. 

INTRODUCTION 

Many results obtained in recent years in the theory of 
disordered systems owe their origin to the replica method, 
formulated independently by Edwards and de Gennes. ' The 
basis of this method lies in the fact that the average over 
fluctuations is performed in a system that is repeated R 
times; in the final result it is necessary to let R tend to zero. 
Of course, all the calculations are performed for integer 
R > 1; therefore, the correctness of the replica limit (i.e., the 
limit R + O )  is unclear and evidently depends on the specific 
problem. Searches for exactly solvable models might clarify 
the situation. The first such model was solved by Kardar and 
N e l s ~ n . ~  

In the present paper we give examples of two-dimen- 
sional theories of disordered systems that can be solved by 
means of the Bethe method. Some of these have a replica 
limit and others do not, and this is not apparent, of course, in 
the framework of perturbation theory. 

The plan of the paper is as follows: In Sec. 1 we recall the 
content of the replica method and formulate the models, Sec. 
2 is devoted to an exact solution by means of the Bethe meth- 
od, and in Secs. 3 and 4 we develop perturbation theory in I/ 
N ( N  is the number of colors) for the particular model that 
has a replica limit and is, at the same time, the most physical; 
here we also calculate the density of states and estimate the 
conductivity. 

1. FORMULATION OF THE MODELS. THE REPLICA METHOD 

in terms of which the conductivity at frequency E can be 
expressed. 

We write the Green's function (2)  in the form 

6' In Z {v, e )  
G ( ~ ;  x, x l )  =A-i j DV exp( -is uzdzz), (4)  

6e ( x )  6e ( x ' )  2 g  

where 

is a generating functional of the fermion fields $. (Since the 
particles do not interact with each other, we can also write 
the Green's functions in the form of a functional integral 
over boson fields, but fermions seem to us to be more conven- 
ient. ) 

The replica method consists in using the limit 

ZR-1 
l'nZ = lim- 

R - 4  R ' 

for the average over v(x, y )  in formula (4).  
Ascribing to the fields $ the replica indices 

a = 1, ..., R +O, we obtain 

6 ' ( o ; x , x 1 ) = ~ ~ u 1 i m -  ' I  S Z  
rI .,, R 68 ( x )  6 e ( x f j  

XJ exp [ -  (z $a(x)  [im6 ( x ,  X I )  - R ( x ,  X O  ] $ a  ( X I )  

a-i 

We shall consider a 1 + 2-dimensional theory of nonin- +$a ( x )  8 (x) 
teracting particles situated in a random field u ( x ,  y )  distrib- 
uted in a Gaussian manner: 1 

+e ( x )  ( x )  ) ] D $ ~ D ( %  }exp ( - --.I u' d'x) 
2/57 

P{v) =A-' exp ( -J 8 x  v2(x, y)  / 2 g )  . 

As a rule, in the theory of disordered systems we are interest- 
ed in the following Green's functions. The first is 

~ ~ ( 0 , )  =--' (2)  

(the bar denotes averaging over the rangom field v distribut- 
ed in accordance with the law ( 1 ) , and H is the system Ham- 
iltonian and depends linearly on v), and this function can be 
used to describe the thermodynamics of the system. The sec- 
ond Green's function of interest is 

The effective action already contains a term of fourth order 
in $,; this term has appeared as a result of averaging over the 
disorder, and the replica indices in it are interchanged. 

We remark once again that the existence of the limit as 
R + 0 in formula ( 5 ) is certainly not obvious. Below, for the 
example of exact solutions, it will be seen that models that 
apparently differ only slightly from each other can have dif- 
ferent behavior as R -0. 

We shall formulate the models with which we shall be 
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working. We consider a 1 + 2-dimensional massless relativ- 
istic color Fermi field $, (w, x ,  y ) ,  transforming according 
to the fundamental representation of a group G in an exter- 
nal static random vector potential1' A T~ (TO are the gznera- 
tors of the algebra of G), distributed in accordance with the 
Gaussian law 

A," (x, y) A /  (x', y') =gSebSUvGa (x-x') 

The two-dimensional action for the Fourier harmonics 
lC,O (henceforth we shall omit the subscript w) is given by the 
formula 

After averaging over the replicas in the spirit of formula 
(5 )  and going over to the Hamiltonian formalism, we obtain 
a system described by the effective Hamiltonian 

(here the indices R and L denote the right-handed and left- 
handed components of the two-dimensional spinors). 

For w = 0 the model (7)  is integrable for all simple 
groups; for a finite R > 1 it was considered in Ref. 6 for the 
group G = SU(N) and in Ref. 7 for all the other simple 
groups. The S-matrix of the theory (7)  has the symmetry 
G XGL(R) (R is the number of replicas); a generally ac- 
cepted hypothesis, of which a rigorous proof exists at present 
only for G = SIY(N),~ is that one can replace this theory by 
the theory with the S-matrix of the group G in the represen- 
tation with the dominant weight (R, 0, ..., 0).  (This hypoth- 
esis was used in Ref. 7 to calculates-matrices of chiral fields; 
the results obtained coincide with the formulas of pheno- 
menological scattering theory.) 

2. EXACT SOLUTION 

We shall consider in detail the solution of the model 
with symmetry SU(N) xSU(R) .  The Bethe equations in the 
massive sector (we shall discuss the Goldstone mode sepa- 
rately in Sec. 3)  have the form6.' 

~ ( 2 )  

[eR (kg) + I]g)]N* [eR ( k g )  - l /g)]N~ rl[ el (12) - A!)) 
p=1 

where No is the number of right-handed particles, equal to 

the number of left-handed particles, 
~ N , > M " ' >  ... > M ' ~ - " ,  and 

The equations (8)  are written for the bare-particle 
vacuum. In order to take the limit R -0, it is necessary to 
rewrite them in terms of the rapidities of the excitations and 
to let No-+ co. The limit R -0 exists only for excitations 
above a filled vacuum. The vacuum in the model (8)  consists 
of strings of all colors ( j = 1, ..., N - 1 ) with label R. Fol- 
lowing the procedure described in Refs. 6-8, we shall write 
out the Bethe equations over the physical vacuum (a de- 
tailed derivation for precisely this case was first given in Ref. 
6)  : 

n 

exp [IML sh (2nA,}N)] = S (Aa - Ap) 
P-1 

m(1) l(1) 

x II el (A, - $9 II sh [nR-l (A, - u$) - i /2)]  
,(9a) 

0-1 pal sh [n  R-l (ll, - uf)  + i@)]  

where {A ( O ' ) r  {A), j = 1, ..., N - 1, and 

l ( j )  sh lnR-1 (&' - u$) - '11 , { ~ ( o ) )  {a], 
a=1 sh [nH-l (ug) - uf' + i)] (9c) 

where 
n 

E M  2n& No  
( ) ,  L R 0-1 .=-ex" L -*) N g  ' (9d) 

sin o A  
~ ( A ) = e x p { 2 i j  doT 

0 

The equations (9)  and (10) have been derived for 
R > 1. Analytical continuation into the regionR < 1 requires 
care. The fundamental particles for R > 1 have mass M /R 
(as R -0 the energy per replica should be finite, and that is 
why R is present in formula (9d), i.e., at first sight the mass 
of the particles tends to infinity as R -0. However, as R 
passes through unity the spectrum acquires a new branch of 
excitations: bound states with rapidities A and 
A (I),..., A (n  - 1 ) .  

The mass of this bound state is equal to 
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and remains finite in the replica limit. 
Thus, as R -0 the former fundamental particles cease 

to be excited, since their mass tends to infinity like 1/R, and 
it is their bound states, whose mass is finite as R -0, that are 
excited. Formally, what is operating here is the same con- 
finement mechanism that was discovered by Wiegmann in 
his solution of the problem of the 0(3 )-symmetric o-model.' 
It was Wiegmann who noticed that the solution of this model 
can be obtained by taking the limit R-+O in Eqs. (9) for 
N = 2 .  

Substituting (1 1) into Eqs. (9) and (10) and letting 
R -0, we obtain equations for the rapidities of the bound 
states: 

exp [imL sh (2nea/N)] 

These equations, which determine the spectrum of the 
effective Hamiltonian, are a proof of the mathematical cor- 
rectness of the replica procedure for the model ( 6 )  with the 
group SU(N). 

We now consider the same problem but with the group 
O(2N). The Bethe equations have almost the same form as 
Eqs. (9), but in place of the last two equations [the 
( N  - 2)th and ( N  - 1 )th equations], we have 

The equations over the physical vacuum are 

The rapidities {A ('I, ..., A ' * '} are determined by Eqs. (9b) 
and ( 13), while the rapidities {u"', ..., u' * '1 are determined 
by the same equations but with the trigonometric kernels 

m 

sin oA 

o 

The energy of the system is 

The most important difference from the preceding case 
is the absence of the factor of two in the argument of the 
hyperbolic cosine in formula ( 15). Because of this, the mass 
of the bound state 

N+ 1 
A *  ( -  ) k = i l . .  . , N ,  

is equal to 
N-I 

and does not have finite limit as R -+ 0. Confinement does not 
occur, and the replica procedure is not correct. 

An analogous situation obtains for the group 
0( 2N + 1 ) . As regards the last classical group Sp(2N), here 
there is also no replica limit, but for a different reason. From 
the equations obtained in Ref. 4 it can be seen that in this case 
the strings with labels R - 1 and R + 1 drop out into the 
condensate. Correspondingly, the trigonometric functions 
in the equations over the physical vacuum have the form 

Here, bound states appear, although not as R -+O but as 
R-1. 

We shall not investigate exceptional groups. 

3. THE 1/N EXPANSION FOR THE MODEL WITH THE GROUP 
SU(N). CALCULATION OF THE DENSITY OF STATES 

We shall reformulate the theory (7)  with the group 
SU(N) in a form convenient for the 1/N expansion. Intro- 
ducing the tensor field QaP, we rewrite the effective action of 
the theory 

(17) 
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in the form that the contribution of q, to the Lagrangian Y(U,A,q,) is 

since a calculation with the saddle-point Green's functions 
(a  calculation valid for N- co ) gives 

Integrating over the fermions, we obtain the effective 
action for the tensor Quo : 

Thus, at small momenta the field q, is decoupled from 
the other fields. This decoupling also occurs in the term 
wg-'cos q, Tr A. As we have seen, the exact solution for 
w = 0 gives masses - Q for all excitations except the Gold- 
stone field q,. Therefore, for lw l/gN< Q, when the mass of 
the field q, is much smaller than the masses of all the other 
fields, we can replace R -'Tr A by Q. In this case the effec- 
tive action for the field Q is 

the 1/N expansion presupposes that the functional S,, (Q) 
has a minimum. This minimum is realized at Quo = Qs,, 
where Q is determined from the equation 

It can be seen from Eq. (20) that the natural scale for 
measurement of the frequency is the quantity NgQ,/.rr, 
where Q, = A exp( - 7r/Ng). If is convenient to rewrite Eq. 
(20) in the form 

This result can also be generalized to N- 1; in this case, 
however, we can no longer be certain about the value of the 
numerical factor multiplying (dp p)'. 

For N q  co the correlator 

Q I Q I  on --In-=- 
Qo Qo NgQo ' 

.f (9 ( x )  (p (0) ) e i p  d2x= (Np2/8n+wQ/2g) (28) 

has the form of the propagator of the diffusion mode familiar 
in the theory of localization. The diffusion coefficient in our 
case is equal to 

For / w  / <NgQ,, 

The asymptotic form of the correlator ((Qap (x)Q,, (0) ) ), 
in terms of which, in particular, the density of states can be 
expressed (see below), can be calculated for w = 0 for all N 
and for N +  and w #O: 

((Qae(~)Qrb(O) 

= s a , s , ~ Q o Y Q o l ~ l - " "  ( Q o - ' ~ l ~ l " Q o - ' [ Q o ~ ~ g / l  o 11%) ; 

-this is the result of summing the parquet diagrams. 
The expansion about the saddle point is formulated 

conveniently by writing the tensor Quo in the form 

Q=U+AeiVU, (24) 

where U + U = 3, U is the matrix of the group SU(R ), A is a 
diagonal matrix, normalized by the condition 

for N) 1 and small momenta. The tensity of states is ex- 
pressed in terms of the correlator TrQ: 

and q, is a general phase; 
R R 

We note that the bare density of states (in the absence of 
disorder) vanishes as E -+ 0: 

P(&)=NI&I. (30) 

The transformation $--exp(iy5p/2)$ takes q, out of 
the mass term in the expression ( 18) but adds to the action 
the term id,pJ:R. Thus, in lowest order in a,q, we find 

A comparison of formulas (29) and (30) shows that 
the change of regime occurs, as we should expect, at E - Qo/ 
Ng. 
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FIG. 1. 

4. ESTIMATE OF THE CONDUCTIVITY 

Since the conductivity is expressed in terms of retarded 
and advanced Green's functions, it is necessary to introduce 
into the effective action ( 6 )  a further fermion-field index; 
the fermion now carries three indices: 

, i=R, A. 

Generally speaking, the R and A fermions have differ- 
ent frequencies, but we shall limit ourselves immediately to 
calculating the conductivity at zero frequency: 

The saddle-point condition for the tensor 6 has the form 

(d  is a Pauli matrix). 
For the field q introduced by formula (24), the effec- 

tive action coincides with (27). The first nonvanishing dia- 
gram in 1/N for the conductivity is depicted in the figure. A 
wavy line corresponds to the correlator ((el+""'e - '9"))). 

If instead of this correlator we had the correlator 
( ( q  (x )q  (0) ) ), this diagram would contain a logarithmic 
divergence - N -'ln(Q,/w). But since, for w <q< Q,, the 
behavior of the Green's function is different: 

the logarithm is cut off and the whole diagram remains of 
order unity. Thus, the small factor 1/N disappears and the 
conductivity cannot be calculated by means of the 1/N ex- 

pansion. Nevertheless, it seems plausible to us that, because 
of the effective cutoff of the logarithm, the conductivity re- 
mains finite: a ( 0 )  -e2N. 

CONCLUSION 

Thus, we have considered several models in which the 
particles carry two indices-a color index and a replica in- 
dex. These models differ only in their symmetry group. We 
have calculated the spectra of the Hamiltonians for an in- 
teger number of replicas R> 1, and have then made a formal 
analytical continuation into the region R -0, i.e., we have 
followed the standard replica procedure. In the framework 
of this approach it turns out that the limit R -0 exists only 
for the group SU( N) . In this case we have constructed the 1/ 
N expansion for the calculation of the density of states. 

Unfortunately, we do not know of a physical realization 
of the theories that we have considered, although two-di- 
mensional fermions with a relativistic spectrum are encoun- 
tered in the description of many solid-state systems (see 
Refs. 3-5). It is possible that the models that we have consid- 
ered have some relation to systems of charge-density and 
spin-density waves. 
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E. Khmel'nitskiy, P. B. Wiegmann, N. Yu. Reshetikhin, M. 
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