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A model for relaxation dynamics in spin glasses is investigated, in which transitions between 
metastable states are treated as thermally-activated "hops." The space of these states is 
assumed to be ultrametric, and is described within mean-field theory. Possible types of 
temporal and temperature behavior are analyzed for the time-dependent correlation functions. 

1. INTRODUCTION 

A large number of experimental papers have shown that 
at low temperatures spin glasses are characterized by a very 
wide spectrum of relaxation times. The existence of this wide 
spectrum of relaxation times can be related to the appear- 
ance of a large number of metastable states at low tempera- 
tures. However, several questions remain about the charac- 
teristics of these metastable states and the system's 
relaxation dynamics when they are present. The construc- 
tion of a dynamic theory for spin glasses is complicated by 
the circumstance that for low temperatures a phase transi- 
tion is possible. Unfortunately, the problem of phase transi- 
tions in spin glasses remains unsolved: recently papers have 
appeared, both experimental and theoretical, which argue 
for the possibility of finite-temperature phase transitions; on 
the other hand there are experimental data and theoretical 
papers suggesting that phase transitions are possible only at 
zero temperature. 

The most highly-developed method in the theory of 
spin glasses is the mean-field approximation, which for a 
model of the spin glass with an infinite interaction radius can 
be solved exactly' (the Sherrington-Kirkpatrick model2). 
Although the Sherrington-Kirkpatrick model is not realis- 
tic, there are nevertheless grounds for assuming that some 
important features of the low-temperature behavior of this 
model are also correct for more realistic models of spin 
glasses. There are already experimental data confirming the 
results of mean-field theory, e.g., the temperature indepen- 
dence of the static susceptibility in the low-temperature 
phase, and the dependence of the critical temperature on the 
magnitude of the magnetic f ~ e l d . ~ . ~  The conclusions derived 
from mean-field theory about the structure of the low-tem- 
perature phase are very important and interesting. Below the 
transition temperature, the state of a spin glass within the 
Ising-like Sherrington-Kirkpatrick model is strongly degen- 
erate. There is a large number of equilibrium thermodynam- 
ic  state^,^,^ each of which is characterized by a set of local 
magnetic moments {mi} defined by the Thouless-Ander- 
son-Palmer equations, with a free energy Fa '; the subscript 
i = 1,2, ..., N labels the spins while the subscript a labels the 
states. These states are separated from one another by high- 
energy barriers (infinite in the thermodynamic limit 
N -  CQ ). To describe the low-temperature phase of a spin 
glass it is not sufficient to use one Edwards-Anderson order 
parameter 

it is also necessary to introduce other important characteris- 
t i c ~ , ~  such as the overlap between states 

and the probability 9 (q) of finding two states with an over- 
lap q: 

where 

The overlaps qaB vary continuously within the interval 
[qO,qEa ] where q, is determined by the magnetic field. As 
was shown in Ref. 9, the space of overlaps possesses an ultra- 
metric topology; a convenient representation of this space is 
a hierarchical tree.'' 

As a starting point for constructing a dynamic model of 
spin glasses which describes the slow relaxation processes, 
we can assume that for low temperatures the space of meta- 
stable states of a spin glass possesses the same property (ul- 
trametricity) as the state space in the Sherrington-Kirkpat- 
rick model. A transition from one of these metastable states 
to another can be viewed as thermally-activated hopping 
over a finite energy barrier. A similar approach to the relaxa- 
tion dynamics of a spin glass was used not long ago in Refs. 
11-13. In Ref. 11 a model of relaxation dynamics was inves- 
tigated in a space of independent states; the free energies of 
these states were assumed to be independent random vari- 
ables with exponential probability distributions. In Refs. 12, 
13 a model of relaxation dynamics was investigated on a 
hierarchical tree with a fixed number of branches at each 
level; the energies of all the states were assumed to be identi- 
cal. In this case, nontrivial relaxation functions were a con- 
sequence of ultrametricity, and not of the randomness of the 
energy of the metastable states. 

In the present work we will investigate a model for re- 
laxation dynamics in a state space described by the Sherring- 
ton-Kirkpatrick model. An important feature of this state 
space is the fact that it can be represented by a hierarchical 

1021 Sov. Phys. JETP 64 (5), November 1986 0038-5646/86/111021-06$04.00 @ 1987 American Institute of Physics 1021 



tree with a random number of branchings at each level and 
for each branch of the tree. In addition, the energies of these 
states are randomly correlated variables. 

The plan of the paper is as follows: in Section 2, a model 
for the relaxation dynamics of the spin glass is introduced 
and solved exactly; in Section 3, the character of the relaxa- 
tion for long times is analyzed; in Section 4 we summarize 
and discuss the fundamental assumptions on which the mod- 
el is based. 

2. THE MODEL 

We assume that a transition between metastable states 
can be treated as a thermally-activated "hop." Then the 
equation for the function Pa ( t ) ,  which gives the probability 
for observing the system in the state a at a time t, takes the 
form 

Taking into account the detailed-balance condition, we can 
choose the quantity wap in the form 

where fap = fp, ; vo is some characteristic microscopic fre- 
quency. Let us measure the energy of a state a from the 
system free energy, i.e., Fo = - T ln Z. The symmetric ma- 
trix fap is not determined within the framework of the pres- 
ent model. We will assume that fap is a function only of the 
overlap quo between the states a and 8, i.e., 

fa6=f ( Q = B ) .  (7)  
The assumption ( 7 )  implies that for any pair of states a and 
/? whose overlap is q, the quantity fap which determines the 
transition frequency between these states always takes the 
same value, i.e., fap = f(q).  The assumption (7)  allows us to 
include in the dynamics the extent to which two metastable 
states differ, which is determined by the magnitude of the 
overlap qap, in a very simple way. If f(q) is a monotonically 
increasing function, then this implies that the smaller the 
overlap gap between states a andP, i.e., the more they differ 
from one another, the smaller the transition frequency 
between them. 

Before we turn to the solution of Eq. 5, let us briefly 
recall the basic properties of the state space in the Sherring- 
ton-Kirkpatrick model which are necessary to solve this 
e q ~ a t i o n . ~  The ultrametricity of this space implies the fol- 
lowing: for any three states a,/?, and y, the overlaps between 
the qaB, qay, and qyp are either equal to one another, i.e., 
gag = qay =gyp, or only two of them are equal, e.g., 
qa8 =gay,  while the third overlap gyp is larger, i.e., 
gyp > qap = qav . Let us define the cluster I,,, as the set of all 
states /? for which qap>q. Then under the conditions de- 
scribed above, either the clusters I,,, and Iq,p coincide fully 
or they are disjoint, i.e., have no state in common. It is ob- 
vious that as q increases the number of states in the clusters 
I, increases (from here on, the subscript a for the cluster 
I,,, will be omitted). For any q' > q, the cluster I, can be 
represented as a set of nonintersecting clusters I,, of smaller 
size. Let us introduce the statistical weight of the cluster I, : 

where the statistical weight Pa of the state a is determined 
from Eq. (4).  We will solve Eq. (5 )  for the probability 
P(Iq ;t) of observing the system in any state adq at a given 
time t: 

It is convenient to go from the continuous variable 
q~ [qO,qEA ] to a discrete variable q, ; go < q, < q, < . . . < q, 
= qEA. In the end we will set R -  W .  Equation ( 5 )  for 

P(I i ; t ) ,  where Ii =Iqi,  can be cast in the form 

where4 =f(qj ) and Ii CI i - ,  C C I ,  CI,. Since go is the 
minimum overlap, it follows that I, contains all states in 
itself; hence, 

This latter equation is the normalization condition. Equa- 
tion ( 10) can be solved exactly, and its solution has the form 

i-i 

j -0  

- P ( I j ;  0) l W (Ij) ] exp ( - t l ~ , ) ,  (12) 
1-1 

(T,v,)-'= Z ( w ( 1 0 -  ~ ( b + ~ ) ) h + ~ ( b ) f ~ .  (13) 
1-0 

where Ii CIi - , C . . . CI, CI,. Let the system be in state a at 
the initial time t = 0, i.e., 

Then the probability of finding the system at a time t in the 
same state a equals 

Let us average ( 14) over all initial states a ,  taking into ac- 
count their statistical weights Pa ,  and introduce the auto- 
correlation function 

A (I) c 2 P, [Pi ( t )  - P;] 

= P w I +  - W I ~  e x -  I -  ( 15) 
j=O 

We define the function 
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Since adR _ , CIR - , C . . . CI, CI,, obviously the inequal- 
ity 

holds. Using the function F( W,, ..., WR ), Equation ( 15) can 
be written in the form 

Up until now, all calculations have been carried out for fro- 
zen-in configurations of the random exchange integrals Jij . 
The weights of the clusters W(I, ) are randomly-correlated 
variables. The function F( W,, ..., WR ) determines the joint 
distributions of the weights for clusters which are sequen- 
tially subsets of one another. Let us investigate the temporal 
behavior of the autocorrelation function A ( t )  averaged over 
all configurations J i j .  This problem reduces to calculating 
the average value of the function F (  W,, ..., WR ). Using the 
averaging method discussed in Ref. 9, which consists of cal- 
culating moments of F( W,, ..., WR ) 

i R 

and then reconstructing the function F( W,, ..., WR ) from 
these moments, we obtain the following result: 

where Wo = 1,8( W) is a step function and xi is the value of 
the Parisi function x(q)  at the point qi , i.e., xi = x(qi ), 
O<xo<xl<x2. . .<xR =x, < 1. T h e p o i n t s ~ ~ a n d x ,  are 
the points which define the edges of the plateau in the func- 
tion q(x) .' Substituting ( 18) into ( 17) and integrating over 
the variables WR , WR - , ,... Wj + , , (rj- ' does not depend on 
these variables; see ( 13 ) ) , we obtain 

where the function 
R 

is determined by Eq. ( 18) with the subscript j replacing R.  
So as to calculate the integral over W,, we perform a Laplace 
transform on the function 

9 wt Wl-, 

for the variablep. We obtain 
j- 1 

T, (s, t) = (tb+s) -" (rtI+s) -*+%~n (rfl+s)xt-zt+* 9 (22 ) 

where i = v0t is a dimensionless time. When we perform the 
inverse Laplace transform and deform the contour of inte- 
gration around the negative real half-axis, we are led to the 
result 

jl 

The function x (s) is defined by the equation 

Let us now go to the continuum limit R - cc . It is convenient 
to consider all functions as functions of the variable x: 

Xj+X, Xi'Xo, q,+q(x), 

f ~ = f ( ~ , ) + f ( ~ ( x ) ) = f ( ~ ) ,  T,(t)+T,(t). 

Using Eq. (19), we can rewrite the expression for the auto- 
correlation function z ( t )  in the form 

x exp (-ffo). 
(26) 

Let us now investigate the time variation of the average over- 
lap between an initial state iE at time t = 0 and states f l  in 
which the system finds itself at the instant t: 

Averaging over all initial states E ,  we are led to the function 

where 

From the definition of q( t )  it is obvious that 
1 

1023 Sov. Phys. JETP 64 (5), November 1986 A. V. Gol'tsev 1023 



The calculation of the function ij(t) is fully analogous to the 
calculation of x ( t ) .  Therefore we present only the final re- 
sult 

Thus, the time dependence of the functions A(t) and ij(t) is 
determined by the time dependence of the function T, ( t )  
(Eq. (23)). 

3. ANALYSIS OF THE NATURE OF THE RELAXATION FOR 
LONG TIMES 

In the continuum limit R - UJ , Eq. (23) for the function 
T, ( t )  has the form 

where the integral over s' is understood in the sense of a 
principal value. We will assume that for long times - 
t = tv,) 1, the basic contribution to the integral comes from 
a saddle points*(t), at whichx(s*) ( 1; naturally x(s*) <x. 
If this condition is fulfilled, then Tx ( t )  depends very weakly 
onx forx > x*. In this case, Equation (26) can be cast in the 
form 

1 ( c )  

For simplicity, we will consider the case of zero magnetic 
field, when x, = 0 and the minimum overlap is q, = 0. In 
Section 2 we already discussed the fact that the function f(q) 
can plausibly be assumed to be a monotonically increasing 
function; since q(x)  is also a monotonically increasing func- 
tion of x on the interval [x,,~,], the function 
f(x)  =f[q(x) ] is a monotonically increasing function of x. 
Let us consider the case f(0) = f,((tv,)-'(1. In the inte- 
gral (30), the main contribution for large times t & 1 comes 
from the regions ( 1. This means we can confine ourselves to 
investigating the behavior of the function x(s) for small s. 
Let us analyze two cases: 

x (s) -asT, y>o, (31) 

x (s) -asP exp (- bs-7) , y>O. (32) 

We will calculate the integral (30) by the saddle-point meth- 
od. To leading order in i -' 4 1, the equation for the saddle 
point has the form 

2=d In x (s) Ids, (33) 

since the contribution from the function (pX (s)  can be ne- 
glected. For the asymptotic forms (31) and (32), Eq. (33) 
gives a value s* =:? -' for the saddle point. The power-law 
asymptotic form (3 1 ) leads to a power-law decrease 

The asymptotic behavior (32) leads to a "stretched" expo- 
nential law: 

where 0 < n < 1 since y > 0. In the exponent of (35) we have 
retained only the leading term, discarding terms of order 
In t. 

The long-time behavior of the function ij(t) defined by 
Equation (28) can be analyzed in an analogous manner. It 
turns out that the asymptotic behavior of ij(t) is the same as 
that of l ( t ) ,  i.e., it is described by the functions (34) and 
(35). 

The "stretched" exponential relaxation function (35) 
was recently observed for the remanent magnetization of a 
spin g 1 a ~ s . l ~ ~ ' ~  This relaxation law is observed over a broad 
temperature interval T <  T,. The temperature behavior of 
the exponent n is interesting15: in the temperature range 
0.5gT/Tg g0.8, n is almost constant, while outside this in- 
terval it begins to increase, eventually approaching unity. 
This behavior of the exponent n can be explained in terms of 
the dynamic model described above, if it is assumed that the 
degree of the exponent y depends on temperature. From Eqs. 
(25) and (32), it follows that the function f (x)  for small x 
takes the form 

f (x)-exp[-U(x)/yl, (37) 

U (x) =In [ b-' ln (alx) ] . 

Ifwe assume that for low temperatures (far from Tc ) contri- 
butions to the function f(x) are related to jumps over the 
barrier U(x), then we must set 

In this case, Eq. (36) takes the form 

i.e., n- 1 as T-0. For T close to T, we set 

Y=Y~~(T,-T)/T,. (40) 

This dependence of y on temperature corresponds to an as- 
sumption about the critical decrease of the transition fre- 
quencies between metastable states for T close to Tc . In this 
case 

i.e., n - 1 as T- T, . 
In Ref. 16, the character of the remanent magnetic mo- 

ment relaxation was studied as a function of waiting time in 
the spin glass CuMn. It was observed that the law (35) de- 
scribes the relaxation only within the limited time interval 
5(t< lo3 sec. For longer times the relaxation law has an- 
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other form. At the same time, for the spin glass CsNiFeF, a 
similar investigation1' showed that relaxation of the reman- 
ent magnetization for a broad range ofwaiting times is given 
by the function 

for all times in the range 1OP'<t< sec. The function 
(41 ) can be obtained in terms of the present model by setting 
the exponentp = a - 1 in (32) .  

The results of Ref. 16 show that the relaxation function - 
(35) (or (41 ) ) may not be universal for spin glasses, and 
that deviations from it are possible. 

4. CONCLUSION 

In this paper we have considered relaxation in spin 
glasses as diffusion in an ultrametric space of metastable 
states with hierarchical energy barriers. The features of this 
type of diffusion are presently being widely discussed as pos- 
sible descriptions of slow relaxation phenomena not only in 
spin glasses but also in other  system^.^'^^^ Below, we will 
discuss the assumptions which underly our use of Eqs. (5 ) -  
( 7 )  to describe relaxation in spin glasses. 

The presence of a degenerate ground state in the various 
models of a spin glass with short-range interactions between 
spins is repeatedly confirmed by numerical methods. Inves- 
tigations of the properties of the space of equilibrium config- 
urations have only begun. In Ref. 19 a complete-frustration 
model was investigated with Heisenberg spins on a simple 
cubic lattice. This model had a strongly degenerate ground 
state, and in numerical calculations a phase transition was 
observed to the spin-glass state. The analysis in Ref. 19 
showed that equilibrium spin configurations possessed ul- 
trametric properties. Further investigations are required to 
determine whether or not ultrametricity is a general proper- 
ty of other spin-glass models. 

We have considered the transitions between metastable 
states as thermally-activated "hops" over finite energy bar- 
riers. Each metastable state was characterized by a set of 
average local magnetic moments mi. This approach is valid 
when the time T, for establishing a quasi-equilibrium state is 
much smaller than the time T, for a transition through the 
minimum energy barrier separating two states. The time T, is 
usually microscopic, whereas T, can be macroscopic since it 
can be related to the flipping of a large number of spins. In 
this case, the quantities mi must be understood as values of 
the local magnetic moments averaged over a time interval 
r1 4 At 4 T, . If T~ <T, and we are interested in the time scale 
t > T, , then the relaxation dynamics in the spin glass can be 
described by Eq. ( 5 ) ,  i.e., as diffusion in the space of meta- 
stable states. 

Let us consider a possible basis for Eq. ( 7 ) .  Usually the 
characteristic energy E  which determines the relaxation 
time T - T ~  exp(E /kT) of a cluster ofNspins is proportion- 
al t o p ,  where the exponent Y is related to the dimensional- 
ity of the cluster. In our case the number of spins which must 
be flipped in order to go from state a to state0 is proportion- 
al to the quantity 

where q, and gap are defined by Eqs. ( 1 ) and ( 2 ) .  Conse- 
quently, the quantity Map, which we assume is macroscopic 
but finite, is a function of the state overlap gap. It is natural 
to assume also that the energy barrier Eap which determines 
the transition frequency between the states is a function of 
6, i.e., a function of gap; then we are led to Eq. ( 7 ) .  It is 
clear that f (gap ) must decrease as gap decreases, since this 
corresponds to growth o f N a p ,  which implies an increase in 
Eap . 

We have described the energy distribution of metasta- 
ble states within the mean-field approximation, using exact 
results obtained from the Sherrington-Kirkpatrick model, 
which, as we already noted in the Introduction, gives results 
that describe certain experimental data rather well. Of 
course, in realistic models of spin glasses, the character of 
the energy distribution of metastable states can differ from 
the mean-field distribution; this is related to spatial fluctu- 
ations which are not included in the mean-field approxima- 
tion. However, at the present time it is not possible to go 
outside the framework of this approximation for the distri- 
bution function ( 16) .  

One feature of diffusion in an ultrametric space should 
be pointed out; it is necessary to admit the possibility of 
"hops" over any "distance," defined as dap = q, - gap .9 
If "hops" were possible only for distances d  smaller than 
d '  = q, - q', then the system would not be able to grow 
beyond the limit of some cluster I,. of metastable states. This 
result is a consequence of ultrametricity, since the whole 
space can be decomposed into nonintersecting clusters of 
states of size q'. 

As we showed in Section 3, to determine the long-time 
behavior of the autocorrelation function, it is sufficient to 
know the asymptotic behavior of the function 
f ( x )  = f l q ( x ) ]  for smaller x.  Let us recall that physical 
meaning attaches not to the function q ( x )  but to its inverse 
function x(q). ' f9 That is, it is x ( q )  which represents the 
probability of finding two metastable states with overlap 
ql(q. This definition of the function x  ( q )  allows it to be used 
also in describing the structure of the space of metastable 
states of a realistic spin-glass model. 

The assumptions about the asymptotic behavior (32)  
and the temperature dependence of the function f ( x )  (Eqs. 
( 3 8 )  and ( 4 0 ) )  lead to results in agreement with certain 
experimental data.'4.15.'7 In principle, the different temporal 
behavior of the relaxation in various time intervals, as was 
observed in Ref. 16, can also be explained in terms of this 
model, if we assume that there are two ranges for the variable 
x  over which the function f ( x )  behaves differently. Unfortu- 
nately, in order to define the function f ( x )  for a realistic 
spin-glass model, it is necessary to go beyond the framework 
of this model of relaxation dynamics. 

'G. Parisi, Phys. Rev. Lett. 43, 1754 (1979); J. Phys. A13, L117, 1101, 
1887 (1980). 

'D. Sherrington and S. Kirkpatrick, Phys. Rev. Lett. 32, 1792 (1975). 

1025 Sov. Phys. JETP 64 (5), November 1986 A. V. Gol'tsev 1025 



'R. V. Chamberlin, M. Hardiman, L. A. Turkevich, and R. Orbach, 
Phys. Rev. B25,6720 ( 1982). 

41. A. Campbell, N. de Courtenay, and A. Fert, J. de Phys. Lett. 45, L565 
(1984). 

'C. de Dominicis, M. Gabay, T. Garel, and H. Orland, J. de Phys. 41,923 
(1980). 

6A. J. Bray and M. A. Moore, J. Phys. C13,419 (1980). 
'D. J. Thouless, P. W. Anderson, and R. Palmer, Phil. Mag. 35, 593 
(1977). 

'G. Parisi, Phys. Rev. Lett. 50, 1946 (1983). 
9M. Mezard, G. Parisi, N. Sourlas, G. Toulouse, and M. Virasoro, J. de 
Phys. 45, 843 ( 1984). 

"'M. Mezard and M. Virasoro, J. de Phys. 46,1293 ( 1985). 
"C. de Dominicis, H. Orland, and F. Lainee, J. de Phys. Lett. 46, L469 

(1985). 
"A. T. Ogielski and D. L. Stein, Phys. Rev. Lett. 55, 1634 (1985); G. 

Paladin, M. Mezard, and C. de Dominicis, J. de Phys. Lett. 46, L985 
(1985). 

"S. Grossmann, F. Wegner, and K. H. Hoffman, J. de Phys. Lett. 46, 
L575 (1985); B. A. Huberman and M. Kerszberg, J. Phys. Al8, L331 
(1985). 

I4R. V. Chamberlin, G. Mozurkewich, and R. Orbach, Phys. Rev. Lett. 
52,867 (1984). 

I5R. Hooaerbects, Wei-Li Luo, and R. Orbach, Phys. Rev. Lett. 55, 11 1 
(1985)- 

'9. Nordbald, P. Svendlindh, P. Lundgren, and L. Sandlund, Phys. Rev. 
B33,645 (1986). 

I'M. Ocio. M. Alba, and J. Hammann, J. de Phys. Lett.46, L1101 (1985). 
''S. Teitel and E. Domany, Phys. Rev. Lett. 55, 2176 (1985). 
I9H. T. Diep, A. Ghazali, and P. Lallemand, J. Phys. C18, 5881 ( 1985). 

Translated by F. J. Crowne 

1026 Sov. Phys. JETP 64 (5), November 1986 A. V. Gol'tsev 1026 


