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A classification is given for spin antiferromagnetic structures which induce a pseudoproper 
toroidal current state (TCS) in crystals in proportion to the relativistic interactions. Specific 
antiferromagnets in which a pseudoproper TCS should arise are listed, and a number of 
unusual mechanisms are considered which cause rearrangement of the magnetic structure and 
alter the antiferromagnetic resonance frequencies in the system. 

1. INTRODUCTION 

From the standpoint of a group-theoretical classifica- 
tion, antiferromagnets (AFM) are systems having Shubni- 
kov white and black-white spatial symmetry with zero aver- 
age moment (we will not be considering long-period 
structures).' The phase transition to the AFM state is de- 
scribed by a suitable order parameter-the antiferromagne- 
tism vector. However, unlike ferromagnets (both spin and 
orbital), for which the choice of the magnetization vector M 
(with its characteristic space-time symmetry) as the order 
parameter is quite natural, for AFM there is no universal 
way of choosing the order parameters. 

In the extreme case of AFM with localized spins a con- 
structive approach is to break the system up into magnetic 
sublattices, whereupon the order parameter is taken to be the 
vector L, which is a linear combination of the sublattice 
magnetizations and consequently has an additional symme- 
try associated with the permutation of the atoms of the var- 
ious sublattices. If there are many sublattices, however, this 
approach is difficult, and in the limiting case of systems with 
delocalized spins it is altogether impossible. 

A convenient mathematical apparatus for describing 
spin magnets without introducing the concept of magnetic 
sublattices was proposed by Dzyaloshinkskii2 and Andreev 
and Marchenko3 and was later developed by Bar'yakhtar 
and Yabl~nskii .~ The basic idea of these papers is to classify 
magnets according to exchange symmetry groups (the crys- 
tal space group augmented by three-dimensional rotations 
and reflections in spin space). The AFM order parameters in 
this approach24 are the coefficients of the expansion of the 
spin density function S ( r )  in irreducible representations of 
the space group of the crystal symmetry. 

In orbital AFM the initial microscopic quantity for de- 
scribing magnetic ordering is the electron current density 
j ( r )  . In particular, the symmetry properties of the function 
f ( r )  determine the magnetic space group to which the mag- 
net belongs.' Since j ( r )  is transverse, it is very convenient to 
represent it in the Neumann-Debye form5 

andx(r )  is a scalar function; "rot" denotes the curl. Neither 
of the functions N(r )  and R ( r )  is reducible to the other, 
since they describe current configurations that are topologi- 
cally different. The representation ( 1 )-(3) permits a com- 
plete multipole parametrization of the current j ( r )  in classi- 
cal electrodynamics, with N( r )  generating the magnetic 
family of multipole moments and R(r) a toroidal 
The generators in these families are the magnetic dipole mo- 
ment M and the toroidal dipole moment T, respectively: 

(in the notation used in these equations, AB = A-B and 
[A,B] = AXB).  

In this approach the preferred ordered states of orbital 
magnets are obviously a ferromagnetic and a toroidal state," 
which are described by the vectors M and T, respectively (in 
what follows the toroidal dipole moment T will simply be 
called the toroidal moment). The characteristic scale for the 
averaging ofp, in (4)  depends on the structure of the elec- 
tron currents and can be of the order of the unit cell dimen- 
sion or it can be much larger. For example, in the model of 
Ref. 7 the dimension of p, is of the order of the coherence 
length of an electron-hole pair. 

From the standpoint of magnetic symmetry, toroidal 
systems are AFM (the antiferromagnetism vector T of 
which is polar, changes sign under time reversal, and is char- 
acterized by the limiting magnetic symmetry group m /  
m'mm, i.e., it transforms like the velocity vector v ) .  Of the 
122 magnetic symmetry classes, 3 1 admit the existence of a 
vector M and 3 1 admit the existence of T (Ref. 8) .  From 
these numbers alone it is clear that toroidal systems are not 
exotic objects. 

It should be stressed that the introduction of a polar 
vector, which is odd under time reversal, for describing anti- 
ferromagnetic structures in crystals is not in itself anything 

j (r)  =C rot f ( r ) ,  ( 1 ) new (in particular, the spin order parameters which arise in 
the schemes of Refs. 2-4 transform like T, and the antisym- 

f (r) =N (r) +rot R (r) , (2 )  metric component of the magnetoelectric tensor is the dual 

N =r$ (r) , R (r) =r% ( r ) ,  ( 3 ) of T )  .9.'0 However, the specific dynamical properties of the 
toroidal current state (TCS) and various microscopic char- 

where c is the speed of light, $(r)  is a pseudoscalar function, acteristics of the formation of the toroidal order parameter 
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mm2, 4mm, 3m 6mm 
4', 4'2'm, 6', 6';n2', I f ,  ?/mf, 2'/m, 
mmm', 4 'mf ,  4/mfmm, 3 , 3 'm ,  6/mr, 

TABLE I. Magnetic classes which admits a toroidal current state 

Type of ordering 

weak FM I I 

Magnetic class 

M 
M 

L, M ,  
weak FM 

L. M. 

put toroidal systems in a special class of magnets. It is thus 
necessary to make a detailed analysis of the particular AFM 
structures that admit a toroidal current state for the purpose 
of finding possible objects of experimental study. It is this 
problem which we address in the present paper. 

According to the general theory of second-order phase 
transitions, a toroidal moment T can arise all by itself as a 
result of spontaneous symmetry breaking (proper toroidal 
ordering). A microscopic model of such a transition was 
proposed in Ref. 7. At the same time, it makes sense to con- 
sider situations in which a TCS arises as a result of some 
other kind of ordering. 

It is possible to have pseudoproper TCS (e.g., due to the 
presence of bilinear invariants of the form T*L or T-M in the 
thermodynamic potential of an AFM or FM, respectively) 
and improper TCS [e.g., due to invariants of the form 
T*(PXM) in ferroelectric magnets, where P is the polariza- 
tion vector]. In this paper we consider the formation of a 
TCS against the background of the spin antiferromagnetic 
ordering as a consequence of invariants of the type T.L. In 
this case the TCS is not accompanied by a change in the 
symmetry of the AFM structure, so it seems reasonable to 
use the term "pseudoproper" for this state. 

The conditions under which a proper TCS can arise in 
orbital AFM are rather strict and apparently are seldom sat- 
isfied.' On the other hand, a pseudoproper TCS should ine- 
vitably arise in proportion to the relativistic interactions in 
crystals with the ordinary spin mechanism of ferromagne- 
tism or antiferromagnetism if the symmetry of the system 
admits the coexistence of T with M or L, respectively. 

The possible types of coexistence of the vectors T, M, P, - - 
and P ( P  is the antiferroelectricity vector) can be classified 
on the basis of the results of Ref. 8, which are tabulated in 
Table I. We see that 18 magnetic classes admit the coexis- 
tence of L and T but do not admit weak ferromagnetism, 13 
classes admit the coexistence of M and T, and 7 classes admit 
a TCS and/or weak ferromagnetism for certain orientations 
of L. Neither the onset of weak ferromagnetism nor the ap- 
pearance of a pseudoproper TCS changes the magnetic sym- 
metry of the system. 

Toroidal systems are interesting objects of study be- 
cause the orbital character of the TCS gives rise to a number 
of features (anomalies of the magnetic susceptibility1 ' and of 
the optical,12 magnetooptical,13 and rnagnetoele~tric~*'~ 
properties). According to Ref. 14, a proper TCS possibly 
arises in Ni-I boracite. It is shown below that a pseudo- 

proper TCS can occur in many real AFM of various struc- 
ture types. 

Some of the results of this study were reported briefly in 
Ref. 15. 

P 
P 
P 

P 

2. COEXISTENCE CONDITIONS FOR VECTORS T and L 
6lm'mm 
3 , 4 , 6  
42'2', 32', 62'2' 
1 ,2 ,m,2 ' ,m' ,n tm'2 '  

22'2' 

Let us consider an extremely simple model which illus- 
trates clearly the mechanism which gives rise to at toroidal 
moment as a result of the establishment of AFM spin order- 
ing. Suppose we have a two-sublattice spin magnet whose 
magnetic sublattices are related by the inversion transforma- 
tion (i), so that the AFM structure which arises is odd with 
respect to i. We shall assume that in the absence of spin 
order the orbital microscopic "current loops" formed by 
itinerant electrons are randomly oriented and cancel one an- 
other, so that there are no orbital magnetic or toroidal mo- 
ments on the scale of the unit cell. The establishment of spin 
AFM ordering (MI  = - M,, where M,,, are the spin mag- 
netizations of the sublattices) leads to imbalance (stratifica- 
tion) and deformation of the current loops in proportion to 
the spin-orbit or magnetic dipole interaction. Let us illus- 
trate this with a pair of identical current loops oriented in the 
magnetic-ordering plane o passing through magnetic atoms 
1 and 2 (the axes of the current loops lie in the plane o, and 
the currents are oppositely directed; see Fig. l a ) .  The mag- 
netic field h arising from ordering pulls the loops in the di- 
rections of the magnetic atoms 1 and 2, depending on the 
directions of the currents (see Fig. lb) .  The toroidal mo- 
ment of the pair of displaced current loops is given in order of 
magnitude by [see (4)  1 

where x is the displacement of the loops, 1 is the characteris- 
tic dimension of a loop, and j is the current density in a loop. 
The value ofx is determined from the condition for equilibri- 
um of the system of current loops in the field of the jXB 
force; in order of magnitude 

where h is the average field on the scale of the current loop, 
and k is the stiffness of the pair of loops that governs their 
mutual cancellation in the absence of field. Since h oc L, by 

FIG. 1 
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substituting x from (6) into (5)  we get 

where e is the charge, v is the average velocity, and n is the 
volume density of the electrons. Thus the appearance of a 
pseudoproper TCS is a relativistic effect in a spin AFM. 

Even in this extremely simplified model we see the fun- 
damental difference between toroidal ordering and magnetic 
quadrupole ordering. The latter would correspond to a shift 
of the current loops along their common axis, and not per- 
pendicular to it as in the toroidal case. 

In what follows we use a method that permits formula- 
tion of the conditions under which a TCS can arise in a spin 
AFM. Specifically, we are referring to the conditions im- 
posed by the presence of some symmetry element in the crys- 
tal space group of the magnet, the position of the magnetic 
atoms in the lattice, and, finally, the character of the magnet- 

ic spin ordering (the orientation of the vector L with respect 
to the crystallographic directions). All the crystal space 
groups are tabulated, permitting classifications of pseudo- 
proper toroidal magnets according to the type of invariants 
that give rise to the TCS. Following the weak ferromagne- 
tism theory of Dzyaloshinskii,16 or task is to analyze 
whether the corresponding invariant combinations of vec- 
tors T and L can exist. In its main features this approach is 
similar to that taken by Turov" in classifying weak ferro- 
magnets. 

We recall that an AFM structure is called even with 
respect to a given symmetry element if the transformation 
corresponding to this element permutes the magnetic mo- 
ments within a single magnetic sublattice, and odd if it inter- 
changes the magnetic moments of different magnetic sublat- 
tices. In view of the symmetry properties of the vector T, we 
can conclude that toroidal ordering is possible only in AFM 
structures which are even with respect to all translations and 

TABLE 11. 

*Of the improper symmetry elements we have included only the center of inversion. For the 
remaining elements (with allowance for the parity condition) the invariants are easily obtained by 
the following rule. The invariants corresponding to an even (odd) structure with respect to some 
improper n-fold axis are the same as the invariants for an odd (even) proper n-fold axis of the same 
order n. 
**The invariants for symmetry elements coinciding with other coordinate axes are obtained by 
cyclic permutation. 
***Beginning with the threefold axis, the terms cubic in L are included for the purpose of con- 
structing Table 111, where the invariants cubic in L are nonzero for groups of intermediate and 
higher symmetry. 

Symmetry Parity of 1 element I structure I Invariant 
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+ I  - 
LxTx, LxTy,  LxTz, L,,Tx, LJU* L,,Tzv L,T,, LzTD, 

- lLzTz 

I - 
2 I* 

3 - 
4 

5 

- 
6 

7 

- 
8 

+ jLzT,. L*T,+L,,T,,. L,Tv-L,,T, 

10 - I T ,  (L ,  + 8LJ3, (TX k ITV) (LX + lLy)=Lz 

+ ( L , T , . L , T ~ .  L,,T,. LuTv. LzTz 
2? 1 

- I L , T , .  LJ, .  LzT,. LzTu 

3y 

4z 

+ I LZTZ, LxT, + LyTu, LxTy - LJ,; 
T ,  (L ,  + iL;I3, (L,  + iL7,)= (T ,  +iTv) L, 

- I - 

+ 

- 

L,T, + L@T,,, LITZ' LzTu - L,,T,; (L,T,, - LJ , )  X 
X + Lit'), (LxTv - LuT,) L,', (L,T, + LyTv)L,'. 
T,L;, (L,Tx + L,,T,) (LxS + L;), T,L, (L,s + L:). 
(L,T, - LYTD) LXLU' (LJ, ,  + L,,T,) L,L,,, (L,Tv -I- 
+L2/TX)(L,"LLv"), (L,T,-L, ,T,)(L,a-Lua) 

L,T,--LDT7,, L,T,,+ LJ,; (L,T,- LVT,)X 
X (LX2+Lua) ,  (L,T,-- LUTv)L:, (L,T,,+LDT,) X 

X (LX2 + L,,? 7 (LXa - Lu') (L,T, + LuTv), (L,T, + 
+ LuT,) L:, (LXTX + L,,T,,) L,L,,, (LXr - L;) LJ, ,  
(L,T,, - L7,Tx) L,Lu, L,T,L,Lu9 --LIT,) X 
X (LxZ - Ly2) 



TABLE 111. 
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2 
- 

3 
- 

4 
- 

5 

6 
- 

7 
- 

8 
- 

9 
- 

10 
- 

11 
- 

12 
- 

13 
- 

14 
- 

15 

16 
- 

17 
- 

18 
- 

1y 

- 
20 
- 

21 

- 
22 

- 
23 
- 

24 
- 

25 
- 

26 
- 

27 
- 

28 
- 

L!,Txf Ly TZ, LZTX* LZTV 

Monoclinic 

Orthohombic 

3-5 1 2 -  I L ~ T ~ . L , , T ~ . L ~ T ~ . L ~ T ~  

6-9 I z!;i / L~T , .  LzlTI,  LiTz. LxTv. LyTx 

10-15 

10-15 I , 2 LxTz. LvTz,  LzTx,  LzTyl 

16-24 

I 

16-24 

16-24 

25-46 1 2?),2") lLxTx ,  LyTy ,  LzTz 

25-46 

Tetragonal 

LzTv,  LyTZ 

LxTx, LyTI ,  LzTz 

25-46 I 2 2 )  

47-74 

121-122 1 Z 2 LxTx+ LuT,,, L,T, I I 2 :  ( L x T I - L u T ,  

75-80 I 4:-) / L ~ T .  - L,,T~.  L ~ T , ,  + L ~ T ~  

81-82 1 4;" 1 LxTx + L,,T,,. LzTz9 LxTu - L I T x  

f(-), 2!+), 2p)  

83-88 

83-88 

89-98 

LxTx $. LYTu, LzTz ,  LxTy -LvTx  

I ,  4 

4:). 2 5 )  

89-98 

89-98 4(-), L ~ T u  + LyTx I z  -- 

LxTx - LyTy ,  LxTv + LyTx 

L,Tv - LITr  

99-110 

4 ,  2:) I LxTx + LyT,,, LzTz  

4:-)), 2p )  LxTy + LVT, 



TABLE 111. (continued) 

'ytal I Omup no. I Typof  1 'system structure Invariant 

29 Tetragonal 
- 

Hexagonal 

37 
- 

38 
- 

39 
- 

40 
- 

41 
- 

42 
- 

Trigonal 
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iT, [ ( L ,  + iLv)S - ( L ,  - i L J 7  
iL, [ ( T ,  + i T y )  (L ,  + iLy)' - 
- ( T ,  - i T y )  (L ,  - iLy)*] 



TABLE 111. (continued) 

Type of 
structure I Invariant 

6!-))aL-) (G:)) iTl [(L,  + iLJs - (L, - iL,)s] 
iLz [(T, + IT,) (L, + - 
- (T,  - iT,) (L, - iL,)'] 

%?)G$-) iT, [(L= + iL,,)S - (L, - 
iL, [ (T ,  + iT,) (L, + iLy)* - 
- (T,  - iT,) (L, - iLg)a] 

- -  

6 f  )21;) 

6?)2b-) 

T ,  [(L,  + iLJS f (Lx - iLkY] 
Lz [ (T ,  + iT,) (L, 4- iL")a + 
+ (T, - iT,) (L, - iLy)=1 

tTz [(L,  + iLJ3 - (L, - iLJa]  

iL, [ (T ,  + iT,) (L, + iLy)* - 
- (T,  - iT,) (L, - iLJa] 

i(-)6:)2?) (2;)) L,T, + L,T,, L,T, I 
? 6 f 2 g  L,Tu - L,T, I 
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- (T,  - iT,) (L, - iLJS]  

T ,  [(L, + iLJ + (L, - iL,)S] 
Lz [(T, + iT,) (L ,  + iL,)* + 
-+ (T,  - iT,) (L, - iL$] 

~ - ) 3 & ; 2 ~ )  (L,T, + L,T, + L,T, 



odd with respect to the center of symmetry if the system has 
one (in describing specific structures below, we denote the 
parity by the sign ( f ), e.g., a: + ',i' * ',21* '1. 

We thus have the following conditions for an AFM 
structure to admit a TCS: a )  The magnetic and crystal- 
chemical unit cells must be the same, b) the directions of the 
magnetic moments at all sites belonging to the same Bravais 
lattice must be the same, c) the directions of the magnetic 
moments at sites which map into each other under spatial 
inversion must be exactly opposite. 

The invariant combinations of L and T for the proper 
and improper rotations characteristic of crystal lattices are 
tabulated in Table 11, by means of which, if one knows the 
specific crystallographic structure of a magnet, one can find 
the AFM structures which admits a TCS and also the direc- 
tions of the vectors L for which T #O. In the general case one 
must use Table I1 for the corresponding generators of the 
groups and thereby determine the invariant in the thermody- 
namic potential that gives rise to the TCS. We note that if the 
magnetic atoms are located on a simple (nonscrew) rotation 
axis or on a simple (nonglide) symmetry plane, the AFM 
structure is always even with respect to these elements. 

Triclinic system(i) 

If the positions of the magnetic sites are of multiplicity 
one, AFM ordering cannot occur without an increase in the 
dimensions of the unit cell, and, accordingly, no TCS can 
arise. If the positions of the magnetic sites are of multiplicity 
two, connected by a center of symmetry, then a TCS is possi- 
ble (No. 2 in the Fedorov classification). 

Monoclinic system (2,m,2/m) 

a)  No center of symmetry (2,m). There is only one 
independent symmetry element (a  plane of twofold axis), 
with respect to which the AFM structure must be odd. (Nos. 
3-9). The magnetic sites must occur in general positions. 

b) There is a center of symmetry (2/m), and since the 
AFM structure must be odd with respect to it, the structure 
can be even or odd with respect to the axis 2 (Nos. 10-15). 
The magnetic sites can be in general crystallographic posi- 
tions or in particular positions that do not coincide with the 
center of inversion (as we know, general positions include 
not only those lattice points through which no symmetry 
element passes but also positions lying on screw axes and 
glide planes). 

Orthohombic system (222mm2,mmm) 

a)  No center of symmetry (222,mm2). In such groups 
the two independent symmetry elements are two mutually 
perpendicular axes 2 or two mutually perpendicular planes 
m. In the case of the two axes 2, which generate a third axis 2 
perpendicular to them, the structure must be even with re- 
spect to one axis and odd with respect to the other two (Nos. 
16-24). In the case of the two planes, the AFM structure 
must be odd with respect to the axis 2 and even with respect 
to the planes m or else even with respect to the axis 2 and to 
one of the planes m but odd with respect to the other (Nos. 
25-46). In both the first and second cases the magnetic sites 

can occupy general or particular positions in the lattice. For 
example, if the magnetic sites lie on a rotation axis 2 or mir- 
ror plane m, only one AFM structure admits a TCS, namely, 
that for which the two other symmetry elements take sites 
having antiparallel magnetic moments into one another. On 
the other hand, if there are magnetic sites lying at intersec- 
tions of rotation axes or mirror planes, there can be no AFM 
structure and no TCS. 

b) There is a center of symmetry (mmm).  For general 
positions the possible structures, as in case a, are odd with 
respect to one axis 2 and even with respect to the other two; 
in addition, an AFM structure that is even with respect to all 
the axes 2 can exist, but it must be odd with respect to the 
inversion center (Nos. 47-74). For particular positions, 
when the sites lie on a rotation axis or mirror plane, only two 
types of AFM structures are possible (even or odd with re- 
spect to the other two axes or planes). If magnetic sites lie at 
points of intersection of two reflection axes or on the line of 
intersection of two mirror planes, the AFM structure must 
be even with respect to all the rotation elements. 

For crystals of higher symmetry (the tetragonal, tri- 
gonal, hexagonal, and cubic systems) the treatment becomes 
more awkward but in principle can be carried out in an anal- 
ogous way. The results are collected in Table 111, which gives 
the number of the space group in the first column, the possi- 
ble types of AFM structures which generate a TCS in the 
second column, and the explicit forms of the invariants in the 
third column. If the number of a group is missing from the 
table, it means that no TCS can exist in that group (at least 
on account of linear or cubic invariants). Formally, situa- 
tions are possible in which T is generated by some invariants 
of higher order in L, but we are not considering such systems 
in this paper. Therefore, conclusions as to the possibility or 
impossibility of a TCS should henceforth be taken to mean 
the presence or absence in Table I11 of invariants linear (or 
cubic) in L. 

3. SPECIFIC SAMPLES OF ANTIFERROMAGNETS WITH A 
TCS 

Before applying the approach developed in the previous 
section to the analysis of specific AFM compounds, let us 
make the observation that it can be pointless to discuss a 
pseudoproper TCS without reference to the specific AFM 
structure that generates it. The reason is that in listing in the 
corresponding column of Table I11 the types of AFM struc- 
tures which generate a TCS for each crystal system, we have 
implicitly understood that the magnetic atoms occupy gen- 
eral sites in the lattice. In turning to real corn pound^,'^ how- 
ever, we see that in the majority of cases the magnetic atoms 
lie on some symmetry elements (rotation axes or symmetry 
planes); in other words, they occupy particular positions. 
The transition from a general to a particular type of site can 
lead to a violation of the sufficient conditions for the exis- 
tence of a TCS. 

Let us begin with the space group D :: (Pnma), which, 
for methodological reaons, we shall elaborate in greater de- 
tail. If we place the magnetic atom in the general position 
8d(x,y,z) (Ref. 18) and use the eight existing symmetry ele- 

1016 Sov. Phys. JETP 64 (5), November 1986 S. S. Krotov and V. V. Tugushev 1016 



ments (in the point-group notation these elements are E, 2,, - 
2,, 2,, 1, a x ,  a,, and a, 1, we obtain eight atoms in the unit 
cell, with coordinates 

We denote the corresponding local spin moments as Si 
( i  = 1 ,... ,8). The presence of the inversion transformation, 
which connects the pairs of sites 1-5,2-6,3-7,443, and 
the condition that the AFM structure be odd with respect to 
the inversion center imply that S, = - S,, S2 = - S,, 
S, = - S,, and S, = - S,. With allowance for the permu- 
tations of the atoms under the remaining symmetry ele- 
ments, we obtain four types of collinear AFM structures 
which admit a TCS: 

There are also three types of particular positions of the 
magnetic atoms, each of multiplicity 4. The positions of the 
first two types19 (4a and 46) coincide with a center of sym- 
metry having coordinates (0,0,0) for position 4a and (0,0,1) 
for position 4b. The third position, 4c, with coordinates 
(x,i,z), is found in the plane u, . In going from the general 
position 8d to the particular positions 4a and 46, sites 1-4 
become superposed on sites 5-8, and the spin AFM structure 
generating the TCS disappears. Such a situation arise, for 
example, in yttrium orthoferrites with the structure YMeO, 
(Me is a 3d transition element), where the magnetic atoms 
Me occupy 46 positions. 

In going from position 8d to 4c, the points connected by 
the plane a, become superposed, ie., 1-7,2*8,3-5,&6, 
so that instead of eight sites in the unit cell there are four: I 
(in place of 1 and 7), I1 (in place of 3 and 5 ) , I11 (in place of 
2 and 8 ), and IV (in place of 4 and 6).  In particular, this 
happens in the compound a-FeOOH, in which the Fe ions 
occupy 4c positions. The AFM structure which arises is of 
the type 

and admits a TCS with invariant L, T, (see Table 111). In- 
terestingly, three compounds in this group, LiCoPO,, 
LiMnPO,, and LiNiPO,, in which the magnetic atoms Co, 
Mn, and Ni also occupy 4c positions, have a structure - 
1' - '21 - '21+ '. Here the antiferromagnetism vectors are di- 
rected along the axes y (Co), x (Mn), and z (Ni),  and the 
corresponding invariants are different. A similar situation 
arises in Co2Si04 and KFeCl,, where the magnetic ions Co 

or Fe also occupy 4c positions, but the AFM structure here is 
even with respect to the center of inversion and no TCS can 
exist. 

Let us now turn to a systematic study of the compounds 
belonging to all the crystal systems, beginning with mono- 
clinic (we know of no real antiferromagnet belonging to the 
triclinic system, although for space group No. 2 the exis- 
tence of a TCS is not forbidden by symmetry). 

A compound belonging to the group C:, 

ErOOH, where the Er ions, whose magnetic moments are 
directed along they axis, occupy the particular positions 2e, 
having multiplicity two. According to the general classifica- 
tion, the AFM structure is of the form 

and, according to Table 111, admits a TCS corresponding to 
the invariants L, T, and L, T, . In the isomorphic compound 
DyOOH the magnetic moments of the Dy ions also occupy 
2e positions but lie in thexz plane. In this case the invariants 
are of the form L, T, ,L, T, . 

The groups of interest in the rhombic system, in addi- 
tion to the group D :: considered above, are D :: (Pbna)-- 
the compound CrU0,- and D :l (Cmcm)-a representa- 
tive of which is y-FeOOH. For CrUO, the magnetic ions Cr 
and U occupy the particular positions 4c. The spin AFM 
structure is of the type i' - '21 - '2: + ', with the moments 
having only a component along they axis (L, ), 

and admits a TCS with the invariant L, T,. 
For y-FeOOH the Fe ions occupy positions 4c, the 

AFM structure is of the type i'-'2i-'21-', (S,((S,) 
= - (S211S4), and the TCS is due to the invariant LxT, 
(since the spins are directed along the x axis). We note that 
in the compound CrVO,, which belongs to the same group 
D i:, the Cr ions occupy positions 4a, the AFM structure is 
even with respect to the center of inversion, and no TCS can 
exist. 

Let us turn to the tetragonal system. The group 

D ii P 2 nm is represented by Cr2W06. The Cr ions occu- ( :  ) 
py positions 4e, the magnetic moments lie in the basal plane 
xy, the structure is of the type 

and the TCS is due to the invariant Lx T, - L, T,. 
The group C g  (I4cm) is represented by KCrF,. The 

Cr ions occupy positions 4e, the magnetic moments lie in the 
xy plane, the structure is of the type 

and the TCS is due to an invariant of the form L, Tx - L, T, . 
In the compound Fe,TeO,, which belongs to the same sym- 
metry group, the AFM structure is of the type 
1' - '41 + '2:- ', and there is no TCS in this case, since the 
magnetic moments of the Fe ions are directed along thez axis 
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and the necessary invariants are lacking. For this same rea- 
son there is no TCS in the compound CeCz (group 

D :; I - mm ), although the AFM structure is of the type 
- 1 ( - ) 4 ( + ) 2 ( - )  (i 1 

Z X .  

In the hexagonal system, let us consider the group 
D;,, ( R S C ) ,  represented by V20,. The V ions occupy posi- 
tions 4c (on the threefold axis). Strictly speaking, the mag- 
netic moments in this compound cannot be considered well 
localized, but neutron-diffraction  measurement^'^ of these 
moments imply that the maximum spin density is distribut- 
ed at the V sites, and the spin vectors at the sites are oriented 
along the threefold axis. The antiferromagnetism vector for 
the V20, structure is of type 1 (Ref. 20): 

The sole invariant that admits a TCS is of the form ( L ,  T, ), 

i.e., the symmetry of the vectors Land T is the same in V,O, 
(this is due exclusively to the nature of the spin density dis- 
tribution). 

Crystals of the cubic system are in a special category. In 
all the wide variety of cubic AFM we could not find a single 
one in which the conditions for the existence of a TCS would 
be satisfied. At the same time, we see from Table I11 that 
there is no fundamental reason why TCS should not form in 
cubic AFM. 

4. ANTIFERROMAGNETIC RESONANCE AND 
REARRANGEMENT OF THE SPIN STRUCTURE IN 
PSEUDOPROPER TOROIDAL SYSTEMS 

By itself, the appearance of a pseudoproper TCS does 
not lead to any new effects beyond those associated with the 
proper TCS discussed previously7 (in the latter the toroidal 
ordering arises in the exchange approximation and is not 
relativistically small). On the other hand, pseudoproper to- 
roidal systems have the distinctive feature that the spin 
AFM structure of the ground state can be influenced 
through the toroidal subsystem, as can the collective spin 
excitations, i.e., antiferromagnons. The latter possibility is 
due to the intermixing of the antiferromagnons and the to- 
roidal oscillations. A phenomenological theory of toroidal 
oscillations (oscillations of the orbital moment density) was 
constructed in Ref. 12, and certain microscopic aspects were 
investigated in Ref. 21. 

Let us first discuss the rearrangement of the spin AFM 
structure in pseudoproper toroidal systems. In the model of 
a uniaxial AFM with two magnetic ions in the unit cell, in 
neglect of spatial dispersion and in the absence of external 
fields, we write the thermodynamic potential 9P of the system 
near the NCel point to lowest order in the vectors L and T as 

where the square brackets denote the vector (cross) prod- 
uct, K is the magnetic anisotropy constant, f = fz, z is a vec- 
tor in the direction of the principal axis, the coefficients 0 
and d are positive, and the coefficient a changes sign at the 
NCel point (a a 8 - 8,,8, is the NCel temperature); K 

and f are relativistically small [ IK I, f - (v/c)'], while the 
remaining quantities are nonzero in the exchange approxi- 
mation. 

Minimizing ( 15) with respect to T and then substitut- 
ing the equilibrium value To = - (fXL)/d, we obtain 

It is clear from ( 16) that in the absence of external sources 
the onset of a pseudoproper TCS has practically no effect on 
either the position of the NCel point or on the value of the 
magnetic anisotropy; in what follows we therefore neglect 
the corrections - ( u / c ) ~  to a and K. 

The situation is much more interesting ifa uniform TCS 
is induced by external influence. The means by which a TCS 
can be induced have been discussed previously7.'0: 

1)  the application of crossed electric and magnetic 
fields, giving rise to a vector T through the magnetoelectric 
effect: 

2)  the excitation of a TCS through the photovoltaic 
effect by an external Ohmic current jo (not only in metallic 
magnets but also in semiconductors and insulators in the 
presence of nonequilibrium carriers) or by a photocurrent in 
crystals lacking a center of inversion: 

3) the induction of a TCS by an electric field E through 
the disturbance of the phase of the electronic states forming 
the toroidal moment in the presence of electron-impurity or 
electron-phonon collisions: 

where v is the collision rate. Effects ( 17) and ( 19) occur 
even in the exchange approximation, whereas ( 18) is relati- 
vistically small. 

It follows from ( 15) that for f#O an AFM ordering in 
the xy plane will be induced above the NCel point: 

For an easy-axis AFM (K<O), ILoI reaches a value 
-To at the NCel point (a - K = 0), i.e., it is not relativisti- 
cally small in the case of mechanism ( 17) or ( 19). Below the 
NCel point the structure becomes canted in the xy plane. For 
an easy-plane AFM (K > 0)  the induction of a TCS leads to 
anisotropy in the xy plane; by changing the direction of the 
external fields in ( 17)-( 19), one can reorient the spin sub- 
lattices (LOIT,). Because of the temperature dependence of 
the coefficients of proportionality1° in ( 17)-( 19), all the 
effects mentioned can have extremely specific behavior as 
functions of temperature [for example, in case ( 19) one has 
Lo a v ( 8 )  - eP , where the exponent p depends on the par- 
ticular electron damping mechanism]. For "soft" toroidal 
systems one has d a 8 - 8, ( 8 ,  is the temperature of the 
proper toroidal transition) and even for 8, > 8, the effects 
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of induction of a spin AFM structure can increase anoma- 
lously, since To cc d - ' cc (8 - 8, ) - '. 

It should be stressed that the "current" mechanism 
(18) is ineffective from the standpoint of inducing a spin 
AFM structure, since ( 18) occurs together with the stronger 
mechanism of direct induction of a current jo through the 
magnetic field H (curlH = 477j0/c). Actually, even in the 
exchange approximation the potential @ should contain 
terms of the type M2, LcurlM (Ref. 18 ), and - M-H, 
which, after minimization with respect to M, lead to terms in 
@ which are linear in v/c [in case ( 18 ) a contribution of 
order (v/c) appears]. The contribution of mechanism ( 17) 
is apparently noticeable only in soft toroidal systems, in 
which 8, is close to 8,. 

Let us now turn to the influence of the induced TCS on 
the AFMR frequency for 8 4 8,. The thermodynamic po- 
tential of an easy-plane AFM can be written 

where @, is the contribution containing exchange terms of 
the type L2, L4, etc., and M is the magnetization vector. 
Neglecting magnon damping, we write the Landau-Lifshitz 
equations for the oscillations of L and M: 

where y is the gyromagnetic ratio. 
The variation in (22) is done under the condition 

ILI =Lo = const. Under steady-state conditions equations 
(22) are satisfied identically for Mo = 0, 

Linearizing (22) with respect to the corrections 
SL = L - Lo and M and then evaluating the determinant of 
the system, we obtain the spectrum of AFMR frequencies to 
lowest order in ( v / c ) ~  as 

for the oscillations of the component L, , and 

for the oscillations of the component of L in the xy plane: 
6L, lLo. 

For an easy-axis AFM it is easy to show that to first 
order in f there is no renormalization of the AFMR frequen- 
cies. Thus, the induction of a TCS causes an increase in the 
stiffness of the antiferromagnons in an easy-plane AFM, and 
for branch (24) the spectrum develops a gap in proportion 
to To. 

Another interesting effect can occur in the excitation of 
low-frequency toroidal oscillations (by light, for example). 
In this case the bilinear invariant in (2 1 ) leads to the induc- 
tion ofa low-frequency component of the vector L, i.e., to the 
generation of magnons. The detailed treatment of this effect 

requires an analysis in the spirit of the toroidal dynamics of 
Ref. 12 and will not be given here. 

5. CONCLUSION 

This investigation of the pseudoproper toroidal current 
state in antiferromagnets has yielded the following conclu- 
sions. 

1. There is a large class of specific compounds of various 
symmetry types (predominantly of lower to intermediate 
symmetries) in which toroidal ordering is induced by a spin 
antiferromagnetic ordering in accordance with the type of 
magnetic structure. Thus the formation of a pseudoproper 
TCS is no more exotic than weak ferromagnetism. 

2. Even if a compound has a favorable crystal symmetry 
the formation of a TCS is subject to important constraints 
imposed by the type of magnetic atoms, the orientation of 
their magnetic moments, and their positions in the unit cell. 

3. In this paper we have considered only the simplest 
(bilinear) kinds of invariants which intermix the spin anti- 
ferromagnetic and orbital TCS structures. Allowance for in- 
variants of higher order in Land for the contributions due to 
striction excitations might expand the number of crystals 
which admit a TCS. Here the system in which the TCS has 
arisen will, of course, belong to one of the 3 1 magnetic sym- 
metry classes in Table I. 

We have considered collinear AFM structures and the 
uniform TCS which they generate. Going to more complex 
(canted, long-period, etc.) structures may lead to more 
complicated types of TCS. For example, in rare earth ortho- 
ferrites, where the unit cell contains two kinds of magnetic 
ions (4f and 3d metals), a canted AFM structure can arise in 
the rare earth metal sublattice as a result of competition 
between the intrasublattice and intersublattice exchange and 
relativistic interactions. Since the rare earth metal ions occu- 
py the 4c positions, which are favorable for the TCS (the 3d 
metal ions are found in the unfavorable 4b positions), a non- 
uniform structure arises which is described by higher toroi- 
dal multipoles. 

Long-period AFM structures have different parity re- 
quirements: Incommensurate TCS can now be generated on 
account of invariants of the type TcurlL (here L can be even 
with respect to the inversion center). The class of systems in 
which it is worthwhile to search for TCS is thus broadened. 

We have not touched on AFM structures in which there 
is multiplication of the period of the unit cell. It is easy to see, 
however, that the TCS structures corresponding to them, if 
such structures exist, should be of the antitoroidal type and 
can be described only with the aid of higher toroidal multi- 
poles. 

It follows from Table I that a TCS can also arise in 
ferromagnets on account of invariants of the form TOM. A 
classification of the ferromagnets (including weak ferro- 
magnets) that admit a pseudoproper TCS can be done in the 
spirit of the present study for the case of antiferrornagnets. 
Here, too, the invariant T-M will clearly be of a relativistic 
nature. 

Since the symmetry properties of M are the same as 
those of the angular velocity vector 0, one suspects that such 
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systems will exhibit gyrotoroidal phenomena-interconnec- 
tions between the microcurrents generating the toroidal mo- 
ment and the macroscopic rotation of the crystal (the toroi- 
dal analogs of the Einstein, de Haas, and Barnett effects). 

One could try to observe the gyrotoroidal effects by ap- 
plying crossed electric E and magnetic H fields to the system 
[T and M are due to the presence of the invariants 
T * ( E x H )  and M*H] and then turning off E. By virtue of the 
conservation of angular momentum and the presence of the 
invariant T-Q, the vanishing of T should import a mechani- 
cal rotation to the sample. 

We are grateful to L. V. Keldysh and Yu. V. Kopaev for 
discussing the results of this study and for valuable com- 
ments. 
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