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The dynamics of a quantum particle in the presence of dissipation is investigated. The cases of 
symmetric double-well and periodic potentials are considered. The quantum coherence is 
destroyed in the region 0 <a < 4 (a is the parameter characterizing the dissipation). In the 
region &a < 1 incoherent relaxation occurs, which, in the case of the double-well potential, 
proceeds according to an exponential law at sufficiently large t .  The probability of finding the 
particle in the ith minimum of the periodic potential is Wi or f - ' ; coherent oscillations of 
Wi ( t )  also occur in the region of moderate t i n  the case when a & 1. In the case of the periodic 
potential the quantity (q2(t) ) varies in time according to the power law (q2) a t *" -"' for all 
a < 1, which corresponds to a transition of the system into a localized state for a > 1. 

1. INTRODUCTION 

At present the investigation of the effect of dissipation 
on the phenomenon of quantum coherence is attracting 
much attention. There is now the possibility in principle of 
experimentally observing such a phenomenon in macroscop- 
ic systems (Josephson junctions, SQUIDS), and this is 
arousing further interest in this investigation. 

It is well known that the process of tunneling of a quan- 
tum particle through a potential barrier between two degen- 
erate (or near-degenerate) minima is a coherent process. In 
a symmetric potential this leads to the lifting of the degener- 
acy of the energy levels and to an oscillating time depen- 
dence of the correlator (q(O)q(t)) (where q is the particle 
coordinate). The coherence of the wave function is de- 
stroyed when interaction with a medium takes place. As 
shown in Refs. 1 and 2, even a fairly weak dissipation leads to 
a significant change in the behavior of the system. Thus, the 
particle can be localized in one of the potential minima at 
T-. 0. The case of a periodic potential is considered in Refs. 
3-5. In such a system there occurs at T+O and a certain 
value of the effective viscosity r] a sharp change in the mobil- 
ity of the particle, i.e., there occurs a transition between two 
phases, one of which corresponds to diffusion and the other, 
to localization of the pa r t i~ l e .~  A more accurate phase dia- 
gram of a dissipative quantum system is obtained in Refs. 4 
and 5. 

In the present paper we propose a procedure for investi- 

may also be of interest in connection with the investigation 
of the problem of the diffusion of heavy particles in a solid 
and some other problems. It should be noted that the study 
of the dynamics of a dissipative two-level system described 
by the so-called spin-boson Hamiltonian was initiated in 
Ref. 6 (see also Ref. 7).  In that paper the dissipative contri- 
bution to the tunneling amplitude is computed by separating 
out the trajectories corresponding to successive instanta- 
neous flippings of the spin. Although such an approach is a 
physically natural one within the framework of the pheno- 
menological spin-boson Hamiltonian, from our viewpoint it 
needs to be justified through a direct computation of the 
density matrix of the original dissipative system, since the 
identity (at low temperatures) of the equilibrium properties 
of such a system and those of a system described by the mod- 
el two-level Hamiltonian does not, generally speaking, yet 
imply that their nonequilibrium properties are equivalent. 
Furthermore, the trajectories used in Ref. 6, i.e., those de- 
scribing the spin flipping in real time, are not extremal tra- 
jectories for the action of a quantum particle in a double-well 
potential, and, consequently, do not make the decisive con- 
tribution to the functional integral for the density matrix. 
Nevertheless, as will be shown, the description obtained in 
Ref. 6 of the process of coherence destruction in the region 
a(j (see below) coincides in the T-+O limit of interest to us 
here with the result that is furnished by the direct computa- 
tion of the density matrix of the original system. 

gating the temporal evolution ofthe density matrix ofa dissi- 
2. OF A SYSTEM IN THE PRESENCE 

pative quantum system located in a potential with several OF 
minima. The method is then used to describe the dynamics of 
such a system for the cases of two, and an infinite number of, The dynamics of a quantum system can be studied with 

minima. These two cases are of the greatest physical interest the aid of the obvious relations 

in connection with the study of the macroscopic quantum ~ ( q + ~ ,  q-f) = j dq+' dq-iJ(q+f, q-f, q+', q - O ~ ( q + ~ ,  q-9, 
phenomena that occur in superconducting weak links and P 

SQUIDS. Furthermore, the partition function of a system I= J Bqexp{iSc), ( 1  1 
with two energetically close potential minima is, in the low- 
temperature limit, equivalent to that of a two-level system, wherep is the density matrix. The effective action functional 
which is extensively used as a model in the description var- Sc on a Keldysh contour C (Ref. 8) for a particle interacting 
ious physical phenomena. The case of the periodic potential with a heat bath has the form 
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where m is the particle mass, V ( q )  is the potential, and F i s  
the influence func t i~na l .~ . '~  The expression for the quantity 
f (t,t ') is easily found under the assumption that the heat 
bath consists of a large number of harmonic oscillators. We 
have" 

The expressions ( 2 )  and ( 3 )  for S, also follow in a number 
of limiting cases from the microscopic expression for the 
effective action of superconducting junctions with tunnel- 
ing12 and direct13 conductivity. 

In Ref. 14 the present authors propose a method of de- 
scribing the quantum decay of a metastable state in real time. 
Here we shall use this method to study the dynamics of a 
quantum system in a potential with several degenerate mini- 
ma. The state of a particle in such a potential at low tempera- 
tures can be described by a matrixpV in which the number of 
different values of i and j is equal to the number of minima. 
The diagonal element pi, of this matrix determines the prob- 
ability of finding the particle in the vicinity of the ith mini- 
mum. 

Further, we shall everywhere consider the T-0 limit, 
which is the most interesting one. At values of the parameter 
a =qq:/27r > 1 (q, is the distance between the nearest mini- 
ma) the particle is localized in one of the minima of the 
p~tent ial l -~ V(q). Clearly, the description of the dynamics 
of the system has meaning in the region of delocalization, 
i.e., in the region O<a < 1. Taken together with the condition 
Vo$wo (where Yo is the potential barrier between neighbor- 
ing minima and w, is the frequency of small oscillations of 
the particle in the vicinity of the minimum), this means that 
the dissipation weakly affects the particle motion in the clas- 
sically accessible regions, q (mu,. Let us show that in this 
case the quantity pii ( t )  can be represented in the form of a 
series in even powers of the amplitude A/2 of the tunneling 
between neighboring minima, where" 

For definiteness, we shall assume that, at zero time, the 
particle is localized in the vicinity of the ith minimum. In 
order to evaluate the functional integral ( 1 ), ( 2 ) ,  we must 
determine the contribution of the trajectories describing all 
possible transitions between the states pv .  At sufficiently 
small times t=tf - ti (but t,r0=u; ') we can, in deter- 
mining thepu ( t ) ,  limit ourseIves to considering the contri- 
butions of the transitions of the type pii -pi + l i  +pii to the 
functional integral 

N-' J ~q erp{iS,), 

where N is the normalization constant. Following Ref. 14, 
we introduce the parametrization T, ( t ,  ), which is such 
that dr * /dt * = f i. This parametrization is convenient, 

since it allows us to easily separate out the expression for A,  
an expression which goes over in the limit as 7 + 0 into the 
WKB result. The quantity A is given by the value of the 
action functional on the trajectory q ( T  + ( t  + ) ) describing 
the tunneling between neighboring minTmaTand satisfying 
the condition SS/Sg(r)  = O .  We use r+ ( t ,  - t , )  to de- 
scribe the transition pii -pi+ l i  and T+ ( t ,  - t,) 
(0 < t ,  < t ,  < t )  to describe the inverse transitionp, + ,, -pii. 
The integration over the deviations 
Sq(t)  = q ( t )  - q(r+ ( t ,  - t  ,,, ) reduces, as usual, to inte- 
gration over the coefficients of the expansion of Sq in terms 
of the eigenfunctions of the operator S2S /Sq (r )Sq  (T '  ) . The 
separation of the zero eigenvalue is carried out in much the 
same way as was done in Ref. 14; the integration over the 
remaining eigenvalues yields a preexponential factor in the 
expression for A. As a result, for the contribution to the 
functional integral ( 1 )-(3) of the trajectories describing the 
transitionsp, -pi + ,, -pi, we obtain 

The contribution of the transitions pi, -+pi, + -pi, differs 
from ( 4 )  only by the sign of the imaginary unit, and is ob- 
tained from it by making the substitution in-a - - in-a. It is 
the sum of the contributions of the trajectories describing 
these two sets of transitions that governs the evolution of the 
quantityp,, in the region of small t. The notation of the upper 
limit in the t ,  integral has, to some extent, a symbolic form, 
and indicates that the instanton trajectories g [ r ( t  - t  ,,, ) ] 
have meaning only when t ,  - t ,  $7,. We shall see below that 
the behavior of the system will not be sensitive to the choice 
of a specific method of truncation. 

For not too small t, it is no longer sufficient to consider 
just the contribution of the simplest instanton configura- 
tions of the type (4) .  Allowance for more complicated con- 
figurations leads to the appearance of terms of higher order 
in A. As a result, the quantity pi, ( t )  = W, ( t )  can be repre- 
sented in the form of a series in even powers of A. Here we 
shall consider two important particular cases: the cases of 
double-well and periodic potentials. 

3. THE SYMMETRIC DOUBLE-WELL POTENTIAL 
V(q) = V( - q )  

We shall assume in the case of a potential with two mini- 
ma iV) = 1,2 that at the initial time t  = 0 the particle is 
localized in the first well. We have 

We should, in deriving the expression for P ( t ) ,  take account 
of the pair-wise interaction between the instantons located 
both on the same, and on different, contours T+ and 7-.  

We first consider the a < 4 case. As in (4), we shall 
assume that the cutoff parameter for the interaction between 
the instantons at small distances is equal to T,. Below we 
shall investigate the question of the magnitude of this param- 
eter in greater detail. Fo ra  < 4 this question is not important, 
since the quantity P ( t )  for sucha values is determined by the 
region of large t  (i.e., the dominant contribution to P ( t )  is 
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made by the configurations in which the instantons are lo- 
cated far from each other). Finally, we have (a<;) 

~ ( t ) = x  ( - 2 ) - n A 2 n  Sd t , .  1 d  2 1 . . .  5 d t ,  

where s,, = + 1 is the "spin" variable; s,, - , = - s,, , 
r = 1, 2, ..., n. This expression actually coincides with the 
result obtained by Chakravarty and Leggett6 with the aid of 
a two-level spin-boson Hamiltonian. 

Let us compute the quantity P( t )  in the approximation 
in which only the interaction between the nearest instanton 
pairs (the instanton-antiinstanton interaction) is taken into 
account, i.e., let us retain in the sums over k and I in (5)  only 
those terms for which k = I + 1 = 2r. In this approximation 
the series (5 )  is easy to sum (see Ref. 6) : 

1 
P ( t )  =E2,1-, ,  [ - ( A , t ) 2 ( f - a ' l  = - 

1 - a  

Xexp [ - ~ . t  sin ( (6) 

A,  ( a )  = A  ( A / w , ) a / ' 1 - a ) [ r ( 1 - 2 a )  , ~ (7)  

where E, ( x )  is the Mittag-Leffler functionI6 and the func- 
tion PI ( t )  is negative and, for A, t>  1, equal to 

As shown in Appendix 1, the approximation we used in the 
A  > 1 case works well, at least at times 

A,.t<max{a-', A ) .  (9)  

At very small values of a < A  -' the difference between the 
expression for P( t )  in the region (9) and cos At is negligible, 
i.e., the dissipation is insignificant under such conditions. 
For A  - ' & a  & 1 the formulas (6) and (8)  describe both the 
coherent P( t )  oscillations, which occur at times 
t 5 ( A , a )  - I ,  and the incoherent relaxation ofP(t)  to zero, a 
relaxation which, as follows from (6) to (8) ,  is governed by 
the power law t 2'L -a)  . Practically no coherent oscillations 
occur fort 2 1/3, and the function P ( t )  coincides with P, ( t ) ,  
(8), in a broad time interval. Thus, the simple approxima- 
tion used in the evaluation of the series (5 )  for P( t )  is quite a 
fruitful approximation for the description of the evolution of 
the density matrix of the system in question. The formulas 
(6) and (8)  may not be correct when the condition (9)  is 
violated. The description of the region Art k max{a-'4) 
apparently requires additional investigation. In this connec- 
tion the fact that the problem of the computation of P(t) ,  
(5), can, as shown in Appendix 1, be precisely reduced to an 
effective-field-theory analysis may turn out to be useful. 

In the a - 4 limit P ( t )  is not described by the formulas 
(6) and (8), since for such a both large and small interin- 
stanton separations are important. 

Let us again consider the transitionsp, , +p2, -pl The 
separation of the zero mode t ,  yields, in complete agreement 
with Ref. 14, the expression 

The formal parameter r' plays the role of interinstanton 
"separation," and is the second "quasizero" mode (it is a 
zero mode only in the a -0 limit). Integrating over r', and 
then going over to the variable t,, we obtain in the case when 
a < 4 a result that coincides with (4).  At a = 1 (and in fact 
for I ; - a 1 5 1/4A in the broad time interval in which the 
principal changes in P( t )  occur) K ( r )  = ln(r(t,)/.r,). Go- 
ing over to t,, and integrating, we obtain from (10) the 
expression 

t 

The direct summation of the contributions of the transitions 
between the pU states in all orders in A2 for a = 1 yields2) 

Clearly, the expression ( 12) for A, coincides with (7)  in the 
a - 4 limit. Nevertheless, as has already been noted, the rela- 
tion (5)  does not describe P ( t )  in this limit, so that, strictly 
speaking, the formulas (12) cannot be obtained from (5)  
through passage to the a -+ 4 limit. Note also that the result 
( 12) is exact in the region t>  r,. 

Let us now consider the a > 4 case. This region of values 
of the parameter a is actually not considered in Ref. 6. The 
simplest way to compute the quantity P ( t )  is, as in the a < 1 
case, to consider only the pairwise interaction between the 
2n and 2n - 1 instantons. In this case each power-series 
term, which is proportional to A2", contains n zero and n 
"quasizero" modes. The integration over the n quasizero 
modes can be carried out in much the same way as was done 
in ( 10). As a result, as in the a < 1 case, this approximation 
yields (A, is defined in (7)  ) 

~ ( t )  =E2 , i -a , ( - (A , t )2 '1 -a ' ) .  (13) 

This function is a monotonically decreasing function when 
a>$ (for greater details, see Ref. 16), and coincides with the 
function P ( t )  a: t2 '1 -a) ,  (8) ,  when (A, t)2"-a) ) 1. We 
now go beyond the simple approximation that leads to (13). 
Let the characteristic time scale of the variation of P( t )  be 
denoted by r,, and show that those transitions between the 
p,, states which have frequencies 2 r, ' lead to the renor- 
malization of the bare parameters A and a .  This circum- 
stance, as we shall see, should be taken into account in the 
determination of the form of P ( t )  at times t 2 7,. Group all 
the possible instanton configurations in the manner shown 
in Fig. 1, i.e., divide all the trajectories into two classes, one 
of which describes the "fast" and the other the "slow" tran- 
sitions. Sum over all the trajectories differing only in the 
numbers of "fast" instantons. At tBr,  we can neglect the 
interaction between such instantons located on different 
contours r+ and T-. This enables us to sum the contribu- 
tions of the indicated trajectories on the two contours sepa- 
rately. A similar sum is evaluated in Ref. 17 by the renormal- 
ization-group method in connection with the Kondo 
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FIG. 1. 

problem. According to the renormalization-group equa- 
tions,'' the quantity a decreases in the course of the renor- 
malization (as T is increased), and attains the value E = 4 at 
T = ? = 0.783x- ( E  and are the renormalized values o f a  
and A). Renormalizing to this value T = ?, and then using 
for the sum of the contributions with larger T the exact result 
(12) fo r a=&=i ,we f ind  

n 
P (t) =exp ( - - b ~ t  ) . 2 

As follows from (14), the characteristic time scale of the 
P ( t )  variation is the quantity T, =l?- A(A/w,)"/"-"' . 
Thus, for sufficiently large values of t 2 A; ' and a > 4 the 
approximation based on considering only the interaction 
between the nearest instanton pairs, and leading to (13), 
does not allow us to obtain the correct result for P( t ) .  This 
approximation furnishes at a > 4 a good description only for 
the region oft smaller than, or of the order of, A; '. Notice, 
however, that, as a tends to unity, A, decreases, i.e., the 
expression ( 13) remains valid at larger and larger t. 

The relation (7)  gives the dependence A, (a) in the re- 
gion A2r; & 1 - a 4 1. For 1 - a 5 A'T; the nonlinear terms 
in the renormalization-group equations are important for 
the determination of the A, ( a )  function.'" It should be not- 
ed in this connection that, strictly speaking, the transition 
into the localized state occurs not at the point a = 1, but at 
the point a = 1 + 6, where 6  AT^ (see, for example, Ref. 
18). But the study of the dynamics of the system for such a 
narrow region of a values around unit is apparently not of 
great interest. 

As has already been noted, the dynamics of a dissipative 
two-level system has been studied by Chakravarty and Leg- 
gett6 (at T = 0 in the region ofvaluesofa(4). These authors 
describe the transitions between the various pii states with 
the aid of trajectories that have the form of 8 functions of real 
time. (Such trajectories are not extremal trajectories, and 
(in the absence of dissipation) do not give the correct 
expression for A.) They introduce the quantity A phenom- 
enologically, which permits the reproduction of the correct 
result at a < 4. As to the extremal trajectories for the action, 
they are close to the 8 functions in the Euclidean space with 
parameter3) T. Let us also note that for a > 4 the study of the 
dynamics within the framework of the approach employed 
in Ref. 6 meets with considerable difficulties, and in fact the 
dynamics was not investigated for T-0 in that paper. 

4. THE PERIODIC POTENTIAL V(q)= V(q+qo) 

As has already been pointed out, another physically im- 
portant case is the case of the periodic potential. Here 
i( j) = 0, f 1, f 2, ... . At the initial time t = 0 let the parti- 

cle be localized in the vicinity of the i = 0 minimum. We 
shall be interested in the temporal evolution of the diagonal 
elements Wi ( t )  of the density matrix. To determine them, 
we should, as before, consider all the possible transitions 
between the variouspU states. As a result, for a(4 we shall 
have 

Here M = M(i,n) is the number of all the possible realiza- 
tions of the transition from the zeroth into the ith minimum 
for a given n, the pk are whole numbers, and f', ( k , l )  is a 
function determining the sign of the interaction between 
each pair of instantons for a given realization. Clearly, 
Wi = W - i ,  so that below we shall assume that i>O. Simple 
combinatorial calculations of the quantity M(i,n ) yield 

For the purpose of illustrating the approximation that will 
be used in evaluating the series ( 15) for a < 4, consider the 
simplest types of configurations, which occur in fourth order 
in A (see Fig. 2).  In the configurations of the type 
+ - + - and + - - + , we shall, as in the case of the 

double-well potential, consider the interaction between the 
charge pairs 1-2 and 3-4, and in the configurations of the 
type + + - - we shall consider the interaction between 
the pairs 1-4 and 2-3. Proceeding in similar fashion in the 
computation of the terms of higher order in A, we obtain 

rn 

w i ( t )  =x (-1) "+'(Art) Z"('-a)M(i, n) 

n- i  4"I'[2n (i-a) + l ]  

As before, the approximation used in the a < 4 case will be 
valid at least up to times of the order of Art-max{a-', 
A '/'' - "' 1. But in the case of a periodic potential this restric- 
tion is not important. The behavior of Wi ( t )  at large t is also 
described well by the expression ( 17). Below we shall dis- 
cuss this question in greater detail. 

First let a = 0. In this case the expression ( 17) coin- 
cides exactly with (15), and can easily be evaluated. We 
have 

FIG. 2. 
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where the Ji ( x )  are Bessel functions.I5 For AtBi we obtain 
Wi =: (2/rAt)cos2 (At - ri/2 - r / 4 ) .  The series ( 17) for 
a < 4 is evaluated in Appendix 2. For (A, t )  -" B i (A, is 
defined in ( 7 ) )  the calculation yields 

Here $(x)  is the psi-function.I5 For i) (Art) ' -"  the quan- 
tities Wi ( t )  are exponentially small, i.e., the wave-packet 
front propagates in the case when a < 1 according to the law 
q ( t )  - (Art) '-".  For a-4 the approximation (17) ceases 
to hold, but, as in the case of the double-well potential, the 
expression (15) for Wi ( t )  can be evaluated exactly at the 
point a = 4 (and in fact for Ja - 1) 5 1/4A provided A& 1 ): 

Si+ L, i+l, -14,t) , 
(20) 

where ,F2(a,b,c,d,x) is the generalized hypergeometric se- 
ries.I5 In the limit (A, t ) ' -"  )i we have from (20) the esti- 
mate 

where Cz0.577 is the Euler constant." 
The approximation used by us in the determination of 

Wi ( t )  in the region a < 4 works well in the region a > 4 as 
well. In order to verify this, let us first determine the charac- 
teristic time over which a substantial change occurs in the 
quantities Wi ( t ) .  The direct application of the above-indi- 
cated approximation leads, as before, to the relation ( 171, 
from which we immediately obtain in the case when 4 < a  < 1 
and (A, t)" - )i the expression 

(AJ)  
Wi(t) = ---- 

nr ( a )  
I . . . ] ,  

where the expression in the square brackets exactly coin- 
cides with the expression in the first square brackets in the 
formula ( 19). As follows from (22), in the case when a > 4 
the wave-packet front also propagates according to the law 
(A, t)  ' -a. Thus, the characteristic time scale of the Wi ( t )  
variation in this case also coincides in order of magnitude 
with A; '. Now, just as we did earlier in the study of the 
dynamics of a particle in a double-well potential, we go be- 
yond the simple approximation ( 17), and sum the contribu- 
tions of all the "fast" (r < ?- A; I )  trajectories, using for 
this purpose the renormalization-group equations obtained 
in Ref. 4. Renormalizing to T = ?  in the case when 
1 - a 5 A2r02, we obtain a - A, - r. Now to verify at large 
t)  A, - ' the approximation ( 17), we must make the substi- 
tutions A - and coo+?-' in the formula (22). It is easy to 

verify that both the time scale and the law of variation 
( t )  a (A,  t)"- are left unchanged by these substitu- 

tions, and, consequently, the simple approximation ( 17) 
works well right up to 1 - a - A2r;, while the formula (22) 
determines, at least to within a number of order ucity, the 
dynamics of W, ( t )  not only in the region A, r < A  " ( I  ") , but 
also at larger t. 

Let us recall that, in the case of the double-well poten- 
tial, allowance for the renormalization of the bare param- 
eters of the system by the "fast" heat-bath oscillators (i.e., 
those with frequencies w 2 A, ) for a > ; substantially 
changed the form of the function P ( t )  in the region t>) A; ', 
causing it to decrease according to an exponential, instead of 
a power, law (cf. ( 13) and ( 14) ), even though it did not lead 
to a change in the time scale. In the case of the periodic 
potential, we verified that this change does not occur. Such a 
difference is due to the fact that the "fast" fluctuations in a 
double-well potential renormalize not only the bare tunnel- 
ing amplitude A, but also the strength a of the effective inter- 
action with the heat bath, whereas in the case of the periodic 
potential allowing for the analogous fluctuation-induced 
transitions among all the minima (and not just between two 
nearest ones) does not lead to the renormalization of a (Ref. 
4). This circumstance does not, in particular, allow us to use 
the "double-well" approximation in the construction of the 
phase diagram of a dissipative quantum system (cf. the re- 
sults obtained in Refs. 3 and 4). Furthermore, as our results 
show, the fact that the probability relaxes incoherently at 
sufficiently large t according to the exponential law ( 14) is 
by itself not, generally speaking, enough for the study of the 
dynamics of a quantum particle in a periodic potential with 
the aid of simple balance equations for the probability that 
take account of only the tunneling between nearest mini- 
ma4' (see Ref. 19 ). 

In the narrow region 1 - a 5 A2r; the expression (7)  
for A, is not valid. In this region 

Wi(t)=6io, t<o,-* exp ( e z A ) ,  ~ > 1 .  (23) 

Finally, using (17), we can easily determine the quantity 
m 

i = - m  

Substituting ( 17) into (24), we obtainz0 ( 1 - a 2 A'T; ) 

<q2it) ) = q 0 z ( A T t ) 2 ( t - a ) / r ( 3 - 2 a ) .  (25) 

The dependence (q2(t)) a t2"-" '  is obtained also in Ref. 
21, but by a different method. Thus, the quantum diffusion 
of a wave packet in a periodic potential in which there is 
friction occurs only at a = 1, and the formula (25) describes 
the transition from the free motion of the wave-packet front, 
q = ut ( v  - qoA), to the localized state for a > 1. 

5. DISCUSSION OF THE RESULTS 

In the present paper we have proposed a method of in- 
vestigating the dynamics of a dissipative quantum system 
located in a potential with several degenerate minima. Ini- 
tially the system is in an essentially nonequilibrium state: the 
particle is located in one of the minima of the potential. Gen- 
erally speaking, this circumstance makes it impossible to use 
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the well-known method of investigating weakly nonequilib- 
rium states, which is based on the analytic continuation to 
the real time axis of the linear response computed with the 
imaginary-time technique. The method developed here is 
used to describe the evolution of the density matrix of a 
quantum particle in the presence of friction in two cases: the 
cases of double-well and periodic potentials. In the first case 
such a system is equivalent in the low-temperature limit to a 
dissipative two-level system. In such a system the coherent 
oscillations of the mean value (q(t) ) of the coordinate occur 
only at small values of the dimensionless parameter a char- 
acterizing the dissipation, and occur right up to times t of the 
order of ( A , a )  -I, A, -A (A/o0)"" -"' . At large t the sys- 
tem relaxes incoherently to the equilibrium state according 
to the law (q(t))  cc (Art) -2"-a '  , where a < t .  At 
t R AA; ', where A -ln(wo/A) ) 1, the question of the time 
dependence of (q ( t )  ) requires further investigation, which, 
by the way, is of interest largely in the region of very small 
values of a 5 A - I .  Coherent oscillations do not occur at all 
for a>;, and in this region of a 

i.e., as a- I ,  the quantity T ( a )  tends to zero. In the region 
a > 1 (more exactly, for a > 1 + S, where 6 - A/@,) the par- 
ticle is localized in one of the wells, and the mean value of the 
coordinate is time-independent and equal to (q) = f qd 
2 f Sq, where the quantum correction Sq is computed for 
different values of a in the papers cited in Ref. 22: 

arctg (~" ' lq ) ,  y>O 

ln{(q+ (-y)lA)/(q- (-y)'lz)}, y<O ' 

It should be noted in this connection that such a correction 
was apparently measured recently by Schwartz el in 
macroscopic quantum tunneling experiments, the results 
obtained in which are in quantitative agreement with the 
predictions made in Ref. 22. 

In the case of a periodic potential with A, 1 and T-0, 
coherence is also destroyed in the region 0 < a  < 1. The inco- 
herent relaxation in this region of a values occurs at large 
t ,  ( a A , )  -I. In the region 4 < a  < 1 the incoherent relaxa- 
tion in a periodic potential, unlike the corresponding process 
in a double-well potential, occurs according to a power law: 
W, a t a - I .  It should be emphasized that this law is not a 
consequence of the choice of the particular approximation 
used in the summation of the series ( 15 ), and can be ob- 
tained with the aid of simple arguments. Indeed, as follows 
from (15), the probability W, ( t )  in the region a < 4 is ex- 
ponentially small when is (A, t ) '  -", and goes through its 
maximum at i- (A, t )  ' -". Thus, by the time t)  A, - ' the 
particle will be smeared over 2N(t) wells, where 
N ( t )  - (A, t)' -", from which we immediately obtain 

as well as the dependence (25) for (q2 ( t )  ). The deviation of 
( 17) from the exact expression ( 15) is small right up to 
i - A )  1, but even at large t it can only lead to corrections of 
the order of unity in the numerical coefficients in the corre- 
sponding formulas. 

The determination of the characteristics of the dynami- 
cal behavior of a dissipative quantum system in the region 
A 5 1 requires a separate investigation. Such an investigation 
in the particular case of a superconducting junction can be 
complicated by the fact that, generally speaking, the adiaba- 
ticity condition, which allows us in a number of cases to 
reduce the effective action obtained with the aid of the mi- 
croscopic t h e ~ r y ' ~ . ' ~  to the simple formulas (2)  and ( 3 ) ,  is 
not fulfilled when the junction capacitance is fairly small. 

In our paper we have investigated the TgA, case, 
which is the most interesting case. As has been shown in a 
number of papers (see, for example, Refs. 2,6,7, 18, 19, and 
21 ), for T )  A, the system relaxes to the equilibrium state, 
the relaxation being described by the rate r ( t )  cc TZa - in a 
broad range of a values. The transition region T-A, and 
also the case in which an external force Fis present need to be 
investigated further. 

The authors are grateful to S. M. Apenko, S. A. Bulga- 
daev, P. B. Vigman, A. I. Larkin, and K. K. Likharev for 
useful discussions of the various problems touched upon in 
the present paper. 

APPENDIX 1 

As follows from the expression (5) for P( t ) ,  the inter- 
action between the 2r and 2r - 1 ( r  = 1,2, ..., n )  instantons 
corresponds to an attraction between them, whereas the sign 
of the interaction between the remaining pairs of instantons 
depends on the sign of the "spin" variables s,, . The relation 
(5)  can be written in the following form (cf. Ref. 6 ) :  

1 
X exp [- s (t2i-t2i-i) + A (ti, tl) (oos na) *, 

where we have set 

and ti = ( t2,, tZi - 1, tzi - < tZi. Here we have slightly 
changed the truncation procedure at short times - r0. Such 
a change has no effect whatsoever on the form of the function 
P( t )  at t)r0. Evidently, the approximation we used in Sec. 3 
to compute P ( t )  consists in making exact allowance for the 
interaction inside n "molecules" (each of which consists of 
the 2ith and the (2i - 1 ) th instantons) and neglecting the 
interaction between these "molecules." It is not difficult to 
estimate the number n,,,, beyond which this approximation 
fails. To do this, it is sufficient to expand the integrand in 
(A.1) in a series in powers of a .  In first order in a ,  this 
expansion will contain only terms describing the interaction 
inside the "molecules," i.e., at very small values of a the 
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accuracy of the approximation of noninteracting "mole- 
cules" can be terminated only by the region of very long 
times t k (Aa)- ' .  At higher values of a we must take ac- 
count of higher-order terms in the power-series expansion in 
a. As has already been noted, the dominant contribution in 
the region a < 4 is made by the configurations in which the 
instantons are located sufficiently far from each other, i.e., in 
( 2 )  17-1 k A; '. For such configurations A (ti ,t, ) -a and 
S( t  zi - t Z i -  , ) - a A .  In the limit A  $ l the interaction 
between the "molecules" in the case when the numbers satis- 
fy n <n,,,, - A  reduces to the renormalization of r,, and can, 
for such n, be ignored. On the other hand, for a given t only 
the terms with the numbers n ,< A, t in the formula (A. 1 ) are 
important, from which it immediately follows that the ne- 
glect of the interaction between the "molecules" is legiti- 
mate at least fort < A; ' A .  Naturally, it does not follow from 
this estimate that the function P ( t )  for t k A; ' A  differs es- 
sentially from (8) .  To investigate this region of times it may 
be useful to have the exact representation of P ( t )  in the form 
of a functional integral. We therefore derive this representa- 
tion below. 

Let us define the function il(t , t l)  by the relation 

dtl A(t, t l)h(tI,  I f )=  6(t-t'). (-4.3) 

Then the function P ( t )  can be written in the form of a func- 
tional integral taken over the field p ( t ) :  

exp {-LI (cp) ) (A.4) 

= (-1)" A'" J dl.. . . dt,  e r p [ x  s ( t , ) ]  (cos na)", 

where the normalization factor No is equal to 

N . = ~ ~ q e x p [ - ~ ~ ( r p ) l .  ~ . ( v ) = J d t d t ~ ) . ( t , t ~ ) r p ( t ) p ( t ~  

and we have set 
('4.5) 

S(tj)  =S(t2j-t2j-l)+ln ch cp(tj). ('4.6) 

According to (A.4), the interaction of the molecules with 
each other can be taken into account within the framework 
of a system of non-interacting molecules by introducing a 
random interaction for the instantons forming this mole- 
cule. Ignoring the fluctuations in the field p ( t ) ,  we evaluate 
the functional integral (A.4) by the method of steepest des- 
cent. On a saddle-point trajectory we have p ( t )  = 0, and the 
results obtained in Sec. 3 can be exactly reproduced in this 
self-consistent field approximation. By going beyond the 
self-consistent field approximation in (A.4), we can take 
account of the interaction of the molecules with each other. 
To do this, we must take into account the Gaussian fluctu- 
ations in the field p ( t ) .  Allowing for the contribution of 
such fluctuations amounts to the multiplication of the ex- 
pressions ( 6 )  and (8) obtainedforP(t) in the self-consistent 
field approximation by the quantity (detK) - ' I 2 ,  where 

APPENDIX 2 

Using the integral representation" for the function 
r-' ( y ) ,  let us write the probability Wp ( t ) ,  (21 ) and (20), 
of finding the particle in the ith well in the form 

The contour C encloses the positive coordinate axis in the 
plane of the complex variable x (see Ref. 15). The asympto- 
tic (x-. cc ) value of the integral in (A.7) is determined by 
the singular points, z = 1 and z+ rn , of the function 8, (2). 

Using the asymptotic expression for the hypergeometric 
function F in (A.7), we extract the character of the singular- 
ities of this function: 

[In(-z)+2.11,(1)-2.11,(p+'/z)l7 l z l + w  

(A.8) 
To the singular points of the function 0, ( z )  correspond the 
values x . = - AFte * 'O and x - w of the integration vari- 
able in (A.7), where AT and pare defined in ( 19). Summing 
the contributions to the integral in (A.7) from the neighbor- 
hoods of the singular points, and using the asymptotic forms 
(A.8) of the function 8, (z), we find the expression ( 19) for 
the function W,, ( t ) . 

' I  Below we shall also include in the expression forA a term - vq;, which, 
for a 5 1, is of order unity, i.e., is much smaller than A .  

"At a = 4 the problem of computing the partition function for the system 
in question is equivalent to the problem of finding the partition function 
in the (exactly soluble) "Toulouse limit."17 The ground-state energy in 
this limit is equal to E, = - AZA /4w, at T <  A,. Notice that the second 
term in (1 1) for t 2  A;' can be represented in the form iA2At/ 
4w, = - iE, t .  

3' Let us emphasize in this connection that in our paper the integration 
was performed over trajectories q ( t ) = q ( r ( t ) )  in real (and not in 
imaginary) time. 

4'It can be shown that this approximation is valid for a> 1 or at high 
temperatures and (or) in the presence of a strong external force. It is 
precisely such a situation that is studied in Ref. 19. 
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