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The spin relaxation of negative ions in a degenerate 3He-4He solution and also in pure 3He is 
analyzed. Electron spin flips result primarily from the dipole-dipole interaction with the 
magnetic moments of the 3He atoms. The system is modeled as a large bubble filled with an 
ideal Fermi gas to find the longitudinal relaxation time as a function of the dimensions of the 
bubble, the temperature, and the external magnetic field. The results derived give a 
quantitative description of relaxation in degenerate 3He-4He solutions under the inequalities 
a > k , ' > f /r, where a is the bubble radius, k,  is the momentum of the quasiparticles, and f is 
the amplitude for scattering of quasiparticles by each other. The use of the results for a 
qualitative description of relaxation in pure 3He is discussed. 

I. INTRODUCTION 

An electron which enters liquid helium from outside is 
known to be repelled by the atoms of the liquid. It forms a 
spherical cavity around itself with a radius of 10-20 A, de- 
pending on the external pressure. ls2 In its ground state in the 
bubble, the electron is described by an s-state wave function. 
An external magnetic field lifts the Kramers degeneracy and 
causes spin splitting of the ground state into two levels. 
Transitions between these levels can be studied by electron 
spin resonance. 

The active experimental and theoretical research on 
negative ions has been, and still remains, aimed primarily at 
determining the transport and optical properties of these 
ions. There are two basic factors which obstruct paramag- 
netic-resonance experiments. In the first place, the spin re- 
laxation time would have to be rather long because of the 
weak magnetic interaction between an electron in the bubble 
and the atoms of the liquid. Second, space-charge limitations 
would keep the attainable ion densities at a very low level. 
Recently, these difficulties were overcome, and observations 
of ESR in liquid 4He and 3He at temperatures T > 1.4 K and 
ion densities n - 10'' cmP3 have been reported.394 

At these temperatures, the degeneracy has only a minor 
influence on the 3He, and the results of Ref. 4 can be inter- 
preted at a qualitative level in classical t h e ~ r y . ~  In the pres- 
ent paper we are concerned with low temperatures, T < 0.1 
K, at which liquid 3He is a Fermi liquid, the mean free path 
of a quasiparticle is far greater than the dimensions of a bub- 
ble, and a quantum-mechanical approach must be taken in 
calculations on paramagnetic relaxation. The relaxation of 
an electron spin results from a scattering of a quasiparticle 
by the electron, by analogy with the relaxation of a paramag- 
netic impurity in a metal. Since distances on the order of the 
dimensions of the bubble are important, as we will see below, 
it is necessary to allow for the distortions of the wave func- 
tion of a quasiparticle by the potential field of the bubble 
despite the small wavelength of the quasiparticle, A -p;  '. 

2. HAMlLTONlAN OF THE MAGNETIC INTERACTION 

The energy of the magnetic moment ( p, = - 2pB S) 

of an electron in the field set up by the magnetic moment 
( p  = 2p, I )  of the nucleus of a 3He atom is 

A A  

U ( r )  =2pBsipl-cj(3rirj-Si,)r-3+(16n/3) p , p S  ( r )  , ( 1 ) 

where the operator I represents the nuclear spin, p, is the 
nuclear magneton, the operator s represents the electron, 
and p, = 0.9.10-20 erg/G is the Bohr magneton. The first 
term in (1)  gives us the dipole-dipole interaction energy, 
while the second gives the energy of the contact interaction. 
We will show that this contact interaction can be ignored. 

The depth to which an electron with a kinetic energy 
E,-fi2/ma2 (a is the bubble radius) penetrates under a bar- 
rier of height U o z  1 eV is given by le = f i /  
[2m ( Uo - E,) ] ' I 2 .  This depth is small, 2-3 A. The region 
over which the bubble wall is spread is the same size.6 For the 
dipole-dipole interaction, the important regions are within a 
distance are on the order of the bubble radius, a > I , ,  from 
the surface of the bubble so that the wall thickness may be 
ignored. We average the first term in ( 1 ) over the wave func- 
tion of the ground state of an electron in a spherical well with 
an inpenetrable wall7: 

1 s i n n x  Azn2 
qoz(r)  = a - ' f ( + )  , f ( x )  =G(7) , E~ = - 2ma2 ' 

A t R > a  we find (2)  

U d ( R )  = 6 p B ~ i y j ( R i ~ j - S i j / 3 )  R-3. ( 3  
This expression should be compared with the expectation 
value of the second term in ( 1 ) : 

In the model of a square well of depth U,, the wave function 
of an electron at the bubble boundary would be7 
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from which we conclude that the ratio of the energies is small 
even at the boundary: 

Furthermore, the contact interaction is concentrated in the 
region in which the wave function of the electron penetrates 
into the liquid, -I,, while the dipole-dipole interaction is 
concentrated in a region with a size of order a > I,. The net 
result of these two circumstances is that the U, contribution 
during the relaxation is more than two orders of magnitude 
smaller than the U, contribution. 

The Hamiltonian of the interaction of the electron and 
nuclear moments can thus be written 

.. ,. 
v,,,,,,. ( r )  = 4 p B p , ~ a a r 7 ~ o o ~ '  ( 3 r 1 ~ - 8 ' ' )  r3. (7) 

We will use the same Hamiltonian to describe the interaction 
of the quasiparticles with an electron. Since the paramagnet- 
ic resonance frequency is far lower than the frequencies of 
optical transitions of an electron in a bubble, we can ignore 
the effect of the absorbed radiation on the orbital motion of 
the electron. Going over to the second-quantized representa- 
tion, we then find 

, e0+o;,tk; o, a  1 V 1 k'; of,  a ' ) a ~ ~ a ~ c n ~ .  
a s k a ' c ' k '  

(8)  

( k ;  0, 1 V 1 k'; o', a ' )  = J d3r $,' ( r )  Van1a.o. (l) $kc  (11 3 

where $, ( r )  is the complete set of "in" states (or "out" 
states) for the scattering of the quasiparticles in the potential 
field of the bubble,83y the operator a& creates a quasiparticle 
in the corresponding state, and the operator c: creates an 
electron in the ground state tp,(r) with a spin projection a. 

3. CALCULATION OF THE RELAXATION TIME 

If we ignore the recoil of the ion in a collision with a 
quasiparticle, we can treat the ions as a set of randomly lo- 
cated paramagnetic centers. The gyromagnetic ratio for an 
electron is far larger than that for the 3He nucleus, so it can 
be assumed that a static magnetic field H acts only on the 
electron spin. Since the expected relaxation time is rather 
long, it is clear that under the experimental conditions the 
width of the paramagnetic resonance will be determined not 
by the transverse relaxation time T, but by the variations in 
the magnetic field, so that we need calculate only the longi- 
tudinal relaxation time T I .  The time TI is expressed in the 
usual way, with the help of the population balance equa- 
tions, in terms of the probability W, ,, , for a transition of an 
electron from state 1 (with a spin directed along the field) to 
state 2 (spin directed opposite the field) as a result of a colli- 
sion with a quasiparticle, and in terms of W , ,  , , the proba- 
bility for the inverse transition: 

where 

and w, = 2p, H is the paramagnetic resonance frequency. It 
has been assumed here that the liquid is in thermodynamic 
equilibrium and serves as a heat reservoir for the ions. 

An important point is that in calculating T, we cannot 
use the method1' of approximating the two-point correlation 
function which figures in ( 10) by the contributions from two 
classical paths of the quasiparticle: a straight path and one 
with a specular reflection from the bubble. The diffraction 
region makes a contribution comparable to that of the region 
in which the geometric-optics approximation is valid. We 
should therefore calculate the transition matrix elements di- 
rectly, making use of the exact states for the scattering of a 
quasiparticle by an inpenetrable sphere of large radius. 

We describe the incident particles by the functions 
$Lt ' and the scattered particles by the functions $:- '; the 
notation is that of Refs. 7 and 9. We assume 

J (-,* 
DPq(k2 ,  k , )  = d3r$k2 (r) (rp;q-6pq/3) r-3gk, ( r )  . ( 1 1 ) 

To calculate the probability for the scattering of a quasipar- 
ticle by a bubble accompanied by a flip of the electron spin 
from state a ,  to state a?, we will need the quantity 

Mot.,= 5 d t ,  d b p q ( k 2 ,  k , )  Dpfqq* (k, ,  k . )  Tr (sqsqs) 

X Tr (ZPP,ZP' PZ) , 
h 

(12) 

where the operators P ,,, project onto states a,  and a,. In the 
case a,  = 1, a, = 2, the product of the traces in ( 12) is 

Now substituting the expansion83y 

) (r) = ( 2  i ( 2 )  e k  ( r )  ( 14) 
1 

into ( 1 1 ), introducing the radial matrix element 
w 

and assuming I- k,a $1, we find 

+3/z~(k2,1+2~r-3~ki,1)~2+3/z~(kz,1-2~r-3~k1,1)(2). (16) 

The radial matrix elements can be calculated in the semiclas- 
sical approximation, in view of the large radius of the ion 
k,a 1. The radial motion of quasiparticles with an energy 
near E, occurs in the potential 

AZ (1+1/2)2 
U ( r )  =Uo8 (a-r)  + -- 2rn, 12 ' 

which has a stopping point r ,  = (I  + 1/2)/k > a in the case 
1 > ka. At r < r,, the function R,, ( r )  decays rapidly and does 
not contribute to integral ( 15) in the leading order in k,a. In 
the classically allowed region, r > r,, the function R,, ( r )  os- 
cillates with a period k , I :  Fory 1 < ka we have 

R k l  = (4kir)Y sin[a, ( r )  + 6 [ ] ,  81=-a1 ( a ) ,  [ (kr)2-12]"' 
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while for I > ka we have the semiclassical phase'' 6,  = 0. Us- 
ing ( 18) for the radial integrals, we can derive the expres- 
sions 

I ,  = J dr r-iR.i2 ( r )  

Since partial waves with large angular momenta I- kFa are 
important, we can replace the sums by integrals in ( 16) : 

Also using the expression 

r (o ,  T ) =  5 d ~ n . ( ~ )  [ l - m ( ~ + h o )  I 

--A@ [I-exp (-AolT) I-', (21) 

we find the following result for the longitudinal relaxation 
time: 
hT,-'= [I'(o,, T)+I' ( -oo ,  T ) ]  (pBp,,ms/h'a)2. 

X 2'(ln 4-0.5)/3x.  (22) 

An important point is that the expression which we 
have derived for the relaxation time does not depend on the 
Fermi momentum of the quasiparticles or thus on the den- 
sity of the Fermi gas. The momentum kF enters the problem 
twice: First, it enters through the state density of quasiparti- 
cles,p = m3kF/2.rr2. Second, the relation between the quasi- 
particle wavelength k, ' and the bubble radius determines 
the nature of the scattering states $:* ' and thus the size of 
the matrix element from the magnetic interaction Vin ( 10). 
In the limit of a large bubble radius kFa > 1, the dependence 
on kF cancels out. This distinguishes our problem from a 
calculation of the relaxation time of a short-range paramag- 
netic impurity in a metal. It also demonstrates a need for a 
careful account of the distortion of the quasiparticle plane 
waves by the potential field of the bubble. 

Under the same conditions, the ion mobility p depends 
strongly on the density of the Fermi gas8: p - k F 4. The dif- 
ference between TI andp arises from the different structures 
of the matrix elements. The mobility contains, instead of the 
matrix elements of the long-range operator respresenting the 
dipole-dipole interaction, given by ( 7 ) ,  matrix elements of 
the short-range operator representing the force VU,,(r), 
which is exerted on a quasiparticle by an ion.' 

The very same factor which leads to the cancellation of 
k, in (22) dictates the dependence of the relaxation time on 
the radius a .  In a classical description of the relaxation, valid 
at high temperatures, the results T I  -a3 is found.4 

4. CONCLUSION 

These calculations have dealt with the case of an ideal 
Fermi gas. We will thus first consider the spin relaxation of 

negative ions in a degenerate 3He-4He solution with a 3He 
concentration c. We assume that the conditions are such that 
the following relations hold: 

a>kF-'B'>f/n, (23) 

where f is the amplitude for the scattering of quasiparticles 
by each other. The left side of this inequality means that the 
bubble size is far greater than the average distance between 
3He atoms. At a concentration c = 6% we have kF 
= k ;c'l3, where k = 0.8 A-1 is the Fermi momentum of 
pure 3He. When the external pressure vanishes, with a = 19 
A, the basic inequality kFa = 5.6,1 holds with an ample 
margin. The right side of inequality (23 ) means that the gas 
of quasiparticles can be treated as ideal. Under these condi- 
tions, the criterion for an ideal gas, ' '-I3 

kFf/n=0.15<<1, (24) 

where we have setI4 f = - 1.5 A, is satisfied to roughly the 
same extent. 

In addition to the potential of the inpenetrable sphere, a 
polarization potential acts on a quasiparticle15: 

U,, , (r)  =- ( a e 2 / 2 r 4 )  ( I -u3/u;) ,  (25) 

where a is the polarizability of the 3He atom, and u,,, are the 
volumes per 3He atom and 4He atom in solution. Since we 
have u3/u4 = 1.27 the potential Up,, creates a weak repul- 
sion; the small value of the ratio Up,, (a)/&, = 0.1 means 
that we can ignore this repulsion. 

On occasion, by analogy with a free 4He surface,I6 there 
has been a discussion of the possible formation of a layer of 
3He atoms on the surface of a bubble, due to the presence of a 
bound state. Since a quasiparticle is repelled from an ion at 
distances from the boundary greater than the atomic size, 
according to (25), such a layer-if it exists-could have a 
thickness only on the atomic scale. In nonmagnetic potential 
scattering of free quasiparticles, the presence of a layer 
would cause an unimportant renormalization of the radius a .  
Furthermore, there would be the possiblity of exchange scat- 
tering, so that the mobility might grow logarithmically with 
decreasing temperat~re.~ Spin relaxation of an electron in 
the bubble is caused by the oscillating magnetic field of the 
quasiparticles which are being scattered, so that the presence 
of a layer would have an effect on the relaxation time only if 
the exchange scattering were fairly strong. Incidently, the 
hypothesized existence of a bound state of a quasiparticle at 
the surface of a bubble has yet to receive adequate experi- 
mental verification. 

In pure 3He, the interparticle intractions cause not only 
renormalization of the mass of the quasiparticles but also 
(first) means that the field exerted on the quasiparticles by 
the bubble no longer reduces just to the potential of an inpen- 
etrable sphere and (second) gives rise to a final-state inter- 
action, i.e., an interaction between the incident and scattered 
waves. Consequently, the calculation which has been carried 
out is only qualitatively applicable to 3He, except for the 
dependence on the temperature and the magnetic field, 
which is purely a consequence of the Fermi statistics of the 
quasiparticles. Since the relaxation time is independent of k, 
in the ideal-gas model, at k,a > 1, the ratio of the relaxation 
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times in a 6% solution of 3He and also in pure 'He will be 
determined exclusively by the ratio of the effective masses of 
the quasiparticles, to the extent that the ideal-gas model is 
valid for liquid 'He. Here the product rn? TI must be approx- 
imately the same. The pronounced increase in the relaxation 
time in a solution should occur at that dilution at which the 
wavelength of the quasiparticle becomes comparable to the 
radius of an ion, k, -a .  The general approach of the calcula- 
tions remains valid in this case, but the sums over partial 
waves in ( 16) can no longer be replaced by integrals, and in 
evaluating radial matrix elements ( 15) we can no longer use 
semiclassical expressions for the radial wave functions. 

An extrapolation of (22) to the experimental condi- 
tions of Ref. 4, with T = 1.4 K, yields T, < 0.1 s and agrees 
qualitatively with the experimental data. In the case of de- 
generacy of pure 'He we would expect TI R 1 s. As the mag- 
netic field increases, T,  decreases. The reason is that as an 
electron undergoes a transition from the upper spin state to 
the lower one with increasing field, the phase volume of the 
quasiparticle excited in the process increases. 

With a further decrease in the temperature, the relaxa- 
tion time increases, but it may turn out that in the super fluid 
phase this time will again be rather short, if the magnetic 
field is chosen to satisfy the condition Cio, = 2A. This cir- 
cumstance should result from a resonance of the ESR fre- 
quency with the creating energy of a pair of quasiparticles 
undr conditions such that the state density has a singularity 
at the Fermi surface. Interestingly, such a situation might in 
principle be achieved in helium, by virtue of the strong in- 

equality p, >p, , while in ordinary superconductors mag- 
netic fields at this level would destroy the superconductivity. 

I wish to thank V. P. Mineev for a discussion. 
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