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Two possibilities for an NMR determination of the temperature of the superfluid transition of 
'He in a 3He-4He solution are discussed: measuring the spin diffusion coefficient in weak 
magnetic fields at ultralow temperatures, and measuring the ratio of the spin diffusion 
coefficient to the spin-wave absorption coefficient in strong magnetic fields, at temperatures 
which are not very low. The transition temperature is estimated from the experimental data 
available. A study has been made of the effect of the superfluid transition in the 'He 
quasiparticle system on the propagation of transverse spin waves and longitudinal spin-sound 
waves in 3He-4He solutions. There is a range of weak magnetic fields, bounded at both ends, in 
which weakly damped spin-sound waves can propagate. 

1. INTRODUCTION 

One of the most interesting problems in ultralow-tem- 
perature physics is observing the superfluidity of 'He in a 
3He-4He solution. All previous attempts to observe 
superfluidity in a system of 3He impurity quasiparticles in 
solutions have been unsu~cessful , '~  despite cooling of the 
solutions below 1 mK. As a result, the % I H ~ - ~ H ~  solution 
remains the only liquid with a significant entropy and heat 
capacity at T < 1. If the temperature of the superfluid transi- 
tion in the system of 3He quasiparticles turns out to be signif- 
icantly below 100pK, then any attempt to observe this tran- 
sition at the present state of the art in low-temperature 
techniques will be hopeless. 

Experience in work at ultralow temperatures, in partic- 
ular, in research on superfluid 'He, has shown that the most 
promising methods for studying 3He-4He solutions at ultra- 
low temperatures are NMR methods. In the following sec- 
tion of this paper we discuss how a reliable estimate of the 
temperature (T, ) of the superfluid transition in the system 
of 'He impurity quasiparticles can be extracted from NMR 
data on a solution. Apparently the most convenient way to 
observe this transition would be to measure the temperature 
dependence of the susceptibility or that of spin-dynamics 
parameters. In the last two sections of this paper we accord- 
ingly examine the propagation of transverse spin waves 
(Section 3 )  and of longitudinal spin-sound waves (Section 
4) when superfluidity is present in a system of 3He impurity 
quasiparticles. 

In the absence of a 'He superfluidity, spin waves of two 
types can propagate in a 'He-He11 solution in a magnetic 
field: transverse (Silin) spin waves with a quadratic disper- 
sion law w a k and high-frequency longitudinal Fermi-liq- 
uid spin waves with a linear dispersion law.5 Clearly, the 
superfluidity of 3He in solution, at least near the transition, 
will have essentially no effect on the transverse spin waves; it 
could only give rise to some change in the coefficient of k in 
the spectrum. The situation regarding longitudinal spin 
waves is slightly more complicated. The propagation veloc- 
ity of longitudinal spin waves in solution, like that of any 
high-frequency Fermi-liquid oscillations in slightly nonideal 

Fermi systems, is exponentially close (as a function of 'He 
concentration) to the Fermi velocity, so that there is a com- 
paratively strong collisionless damping of the waves, even at 
low temperatures. For systems of this sort, with a weak Fer- 
mi-liquid interaction, the appearance of superfluidity is 
known (Refs. 6 and 7, for example) to cause a sharp increase 
in the collisionless damping and to make it essentially impos- 
sible to observe such waves at any temperature below Tc. 
The situation changes slightly, however, when a magnetic 
field is imposed. On one hand, a magnetic field causes the 
wave propagation velocity to approach the Fermi velocity 
(at a fixed temperature, this would mean an increase in the 
damping), but on the other hand the field sharply reduces 
the transition temperature T, ( H ) .  A question which arises 
here is whether there is a temperature region T?  T, near the 
transition in which weakly damped longitudinal spin waves 
can propagate. Furthermore, ' ~ e - ~ ~ e  solutions differ from 
ordinary slightly nonideal Fermi systems in that longitudi- 
nal spin waves are accompani~d by oscillations of the density 
of the He11 Bose background in an external magnetic field. 
This effect will also be manifested significantly in the condi- 
tions for the propagation and damping of the spin waves. 

2. SPIN DYNAMICS IN 3He-4He SOLUTIONS; TEMPERATURE 
OF THE SUPERFLUID TRANSITION 

At present there is a very large scatter in the estimates of 
the temperature at which 3He goes into a superfluid state in a 
3He-4He solution. At comparatively high 'He concentra- 
tions, the estimates for T, range from lo-' to lo-' K and 
are thus somewhat reminiscent of the scatter in the estimates 
of T, for pure 'He before the transition was observed. This 
scatter in the estimates should not be surprising since the 
transition temperature Tc is exponentially small as a func- 
tion of the 3He concentration in comparison with the degen- 
eracy temperature (To) of 3He in solution. (The limiting 
concentration of 3He in solution in the limit T-0 at the 
saturation vapor pressure is about 6.5%.) The argument of 
the corresponding exponential function is determined by the 
effective attraction of 3He quasiparticles. However, we do 
not have a systematic elementary theory which describes the 
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interaction of 3He in a solution with an arbitrary 3He con- 
centration. Studies of solutions thus usually resort to one of a 
variety of model or phenomenological descriptions of the 
interaction, with parameter values determined from a com- 
parison with experimental data on the thermodynamics and 
kinetics of the solutions. The use of various descriptions of 
the interaction-descriptions which have not yet been com- 
pletely justified at the elementary level-has the conse- 
quence that the parameter values for the interaction which 
enter the argument (large in magnitude) of the exponential 
function for T, differ significantly from model to model, 
with the further consequence that there is a huge scatter in 
the estimates of T, . 

Regarding the transition of 'He in solution to a super- 
fluid state it is possible to make one precise assertion: At 
sufficiently low temperatures and 3He concentrations, the 
system of 3He quasiparticles in solution is a dilute degener- 
ate gas of slow fermions, for which the BCS theory gives not 
a model description but an exact description of the super- 
fluid t ran~it ion.~ Some questions which remain open are the 
exact value of the s-scattering length of the ,He quasiparti- 
cles, which determines the coupling constant (the argument 
of the exponential function for T, ) in the BCS theory; the 
maximum ,He concentration at which the BCS theory re- 
mains valid for calculating T, ; and the transition tempera- 
ture at higher concentrations. The first of these questions is 
discussed in the present section of the paper. 

The s-scattering length of 3He quasiparticles in solu- 
tion, a, should be determined from experimental data on the 
characteristics of dilute solutions at temperatures low 
enough that the number of phonons and rotons in the system 
is negligible, and the 3He impurity quasiparticles are the 
only excitations of the system; the He11 is a superfluid Bose 
background ( a  physical vacuum). It is not very convenient 
to extract the values of a from thermodynamic measure- 
ments. The reason is that for the thermodynamic parameters 
of dilute solutions the interaction of 3He quasiparticles 
yields only small corrections (for the nonideal nature of the 
situation) to the thermodynamic characteristics of a nearly 
ideal gas of impurity quasiparticles. The value of a can be 
found most accurately from the values of the transport coef- 
ficients in the gas of 3He impurity quasiparticles; these coef- 
ficients are proportional to l/a2 at a sufficiently low 3He 
concentration. In principle, suitable experimental data for 
this purpose would be the values of the viscosity coefficient 
7, the thermal conductivity tt, and the spin diffusion coeffi- 
cient for both degenerate T g  T,, and nondegenerate (Boltz- 
mann; T 3  To) solutions (in the intermediate temperature 
region, there have been essentially no calculations of the ki- 
netic coefficients). For an accurate determination of a we 
need to use the results of measurements for solutions with a 
very low 3He concentration, x 5 lo-,, for which the values 
of the kinetic coefficients can be calculated reliably in the 
kinetic theory of gases (Ref. 8, for example). 

For such dilute solutions, however, attempts to mea- 
sure and interpret data in the degenerate and Boltzmann 
regions run into some specific difficulties. In the Boltzmann 
region the primary difficulty in interpreting experimental 

data on the kinetics of dilute solutions is that collisions of 
3He quasiparticles with phonons and rotons are still playing 
a significant role at comparatively high temperatures T& To: 
If the 3He quasiparticles collided with each other at T& To, 
the kinetic coefficients of the solution vary as the square root 
of the temperature, 7, X ,  D m  T 'I2  (Ref. 8, for example). 
Experimentally, in contrast, a square-root dependence T ' I 2  

is essentially not observed over any significant temperature 
interval (see, for example, the data" on the viscosity 7). 

For degenerate solutions, T g  To, the difficulties stem 
primarily from the low value of the degeneracy temperature 
To =p;/2M [p, = ( 3 ~ ~ N , ) " ~ f i  and M are the Fermi mo- 
mentum and effective mass of the 'He quasiparticles in the 
solution, and N3 is the number of 3He particles per unit vol- 
ume of the solution; at saturation vapor pressure we would 
have Mz2,3m3, where m, is the mass of the We  atom] at a 
low 3He concentration in the solution, x (numerically, 
T0~2 ,6x2"  K) .  This means that forx 5 lop3  measurements 
would have to be carried out at ultralow temperatures, and 
over a fairly broad temperature interval, since in this tem- 
perature region the only possibility for verifying the thermo- 
metry (the equality of the phonon and impurity tempera- 
tures) and the presence of degeneracy is to observe the 
characteristic temperature dependence ( To/T) for mea- 
sured transport coefficients. To the best of our knowledge, 
there has been essentially no systematic study of transport 
phenomena at such low temperatures and 3He concentra- 
tions. 

There is an alternative way to determine a, without car- 
rying out measurements at extremely low temperatures. 
This method is based on the occurrence of the Leggett-Rice 
effect1' in a Fermi system in a magnetic field at low tempera- 
tures. In a magnetic field, the spin dynamics of Fermi system 
is known to be described by two parameters: the spin diffu- 
sion coefficient D and the dimensionless parameter flint r 
(flint is the typical precession frequency of the magnetiza- 
tion in the molecular field, r is the exchange relaxation time, 
and the quantity l / f l intr  determines the damping of spin 
waves; the parameter a,,, r is frequently denoted a s p  M, as 
in Ref. 10). The equation of the spin dynamics in the case of 
a low-density Fermi gas is essentially the same in form for 
any degree of degeneracy of the gas." The parameters D and 
flintr are easily found from pulsed NMR experiments, 
through measurements of (for example) the dependence of 
the amplitude of a spin-echo signal on the time delay 
between pulses. If the parameter flint r is to be comparatively 
large, so that it can be measured accurately, it is necessary to 
lower the temperature or raise the magnetic field H. Infor- 
mation on D or flint T independently is not very informative 
for solutions with x 5 10V3 since, as we mentioned earlier, 
the phonon contribution to D and r may be significant at 
TZ To, while the region T<  To is difficult to reach. Further- 
more, in strong magnetic fields the diffusion rates and the 
relaxation times in the directions along and across the mag- 
netic field H are very different. While the properties D, and 
a,,, r, are measured in pulsed NMR measurements, all of 
the calculations which have been carried out refer exclusive- 
ly to D and flint rl, (Ref. 8).  All of these difficulties fade 
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away, however, if the ratio a,,, rL/D1 is extracted from the 
experiment. According to Refs. 8 and 11, for a low-density, 
low-temperature gas of fermions under the conditions 

TI To<<fi2/Ma2, (1)  

the ratio a,,, r1 /Dl is 

7 ,, \ I' MITI T To, 

where N, and u + are the numbers of fermions per unit 
volume and the Fermi velocities for 3He quasiparticles with 
spin projections + 1/2 on to the field direction, e = H/H, 
and (v2). is the average square velocity of the fermions, 
found from n . , the distribution functions of particles with a 
certain spin projection in an ideal gas: 

Here p are the momenta of the particles, 0 = 0.08 mK/kOe 
is the magnetic moment of the 3He nucleus, andp + are the 
chemical potentials of quasiparticles with a certain spin pro- 
jection (if the spin polarization of the gas of 3He quasiparti- 
cles is an equilibrium polarization and is determined by the 
value of the external magnetic field, then we would have 
p+ = I - - ) .  

We wish to stress that Eq. (2)  is a universal function of 
the temperature and does not depend on a possible anisotro- 
py of the spin dynamics or on the mechanism for the scatter- 
ing of the 3He quasiparticles (e.g., it does not depend on the 
role played by the scattering of impurity quasiparticles by 
phonons) . Furthermore, function (2)  can be calculated 
easily for any degree of degeneracy of the 3He quasiparticle 
system, and it can be used to describe experimental data over 
a very broad temperature range, ( 1 ) . The only conditions on 
the applicability of expression (2)  are that the solution be 
dilute, N3a3< 1, and condition ( 1 ). 

Data on the a,,, r1 /DL can be found from the experi- 
mental results of Ref. 12 for fl , , ,~,  and Dl (Fig. 1) for 
x = 3.7. 10W4 and H = 89 kOe. The theoretical curves in this 
figure correspond to function (2)  with a = - 0.5 A (curve 
1 ) and a = - 1.5 A (curve 2).  We see that curve 1 gives an 
excellent description of the experimental data over the entire 
temperature range. The data of Ref. 12 on a,,,, T, and Dl, 
taken separately, cannot give a satisfactory description over 
the entire temperature range, no matter how we choose a. At 
high temperatures, the difficulty comes from collisions with 
phonons and the violation of condition ( 1 ), while at low 
temperatures the difficulty comes from the anisotropy of the 
spin dynamics (Ref. 8, for example). 

Because of the uncertainty in the data of Ref. 12 on the 
ratio a,,, rL /Dl, we can make only the following estimate of 
the scattering lines: a = - 0.5 +0.7) A. It is clear, however, 

FIG. 1 .  Values of the parameters a,,, T, /DL. Points: Experiments! results 
of Ref. 12. Traces: Results of the present study. l-At a = - 0.5 A; 2-at 
a = - 1.5 A. 

that the value of a = - 1.5 A, taken from Refs. 5 and 13, is 
definitely too high. The value a = - 1.5 ..&was found in Ref. 
13, primarily from the experimental values of D and x for 
solutions which were degenerate and not very dilute, 
x 2 lo-'. The expression for the kinetic coefficients in Ref. 
13, which were used to analyze the experimental data, are 
too high (by a factor of two for 7 and x and by a factor of 
eight for D; cf. Ref. 14). The apparent reason why these 
values are too high is that Ref. 13 ignored the fact that parti- 
cles with different spin projections participating ins scatter- 
ing are not identical, and that the integration in the collision 
integral should be carried out over the entire phase space, 
rather than over only half of it. When we take this circum- 
stance into account, we find that the difference between the 
experimental values used in Ref. 13 and the theoretical val- 
ues of D and x for the lowest-concentration solutions with 
a =  -0.7Aisthesameasin~ef .  13witha= - 1.5A(the 
theoretical curve for D in Ref. 13 actually corresponds to the 
value a [A]  = - 1.5/8lI2- - 0.5. 

Table I shows data on a found from an analysis of ex- 
perimental data on the kinetics of degenerate solutions. 
Since these results correspond to solutions with comparati- 
vely high 3He concentrations, x > lop2, the data given for a 
are not very reliable. 

Substituting the values a = - (0.5-0.7) A found from 
an analysis of the data of Ref. 12 into the expression for T, 
(Refs. 5 and 19, for example) leads to the estimate 

TABLE l 

Experimental 
data, x = 0.013 T,, mK 

x=O.U3 
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Tc = 6 lop4 - 2. lo-' mK for a solution of concentration 
x = 3. lo-'. This figure does not look very optimistic (by 
wave comparison, with a = - 1.5 A and x = 3.10-' the 
value is T, = 1.4 mK [Refs. 5 and 19; this estimate for T, is 
clearly too high, according to the experimental data of Refs. 
1-4 and 121. Unfortunately, at present it is totally impossi- 
ble to telljust how large the concentrationx can be before the 
BCS theory will no longer give a satisfactory quantitative 
estimate of Tc or how Tc will behave at high concentrations 
(see, for example, Refs. 20 and 21 for some arguments re- 
garding this point). If it turns out that detailed and accurate 
measurements yield (a (  20.7 A, then attempts to observe a 
transition will be justified, while if la I is significantly smaller 
than 0.7 A, such attempts would be pointless at present. Ac- 
cordingly, it would be desirable, before the development of 
studies on cooling solutions to temperatures well below 1 
mK, to first attempt to estimate a as accurately as possible in 
NMR experiments by one of the two methods which have 
been proposed. Another possibility is that effort should be 
focused not on an attempt to directly observe a transition to a 
superfluid state but to observe fluctuational effects above the 
transition (more on this below). 

In summary, it can be concluded that the most promis- 
ing and most accurate methods for determining the coupling 
constant are two methods for experimentally studying dilute 
x 5 solutions. The first method is measuring the spin 
diffusion coefficient in a dilute solution. The measurements 
would have to be carried out over a comparatively wide tem- 
perature range at ultralow temperatures, T 5  5 mK, and in a 
weak magnetic field pH& To (to eliminate an anisotropy of 
the spin fusion). The second method is to measure the ratio 
(2) .  This method does not require exceedingly low tempera- 
tures, but it does require comparatively strong magnetic 
fields, in order to achieve measurable values of Clint T ,  . 

To conclude this section we note that in experimental 
studies of the transition to the 3He superfluid state in a solu- 
tion at T S  1 mK there are two circumstances to be kept in 
mind. First, the experiment should be carried out in a com- 
paratively weak magnetic field H (at a small degree of spin 
polarization P) : T$ /T, pH /T( 1 (for a greater polariza- 
tion, s pairing becomes impossible; see Ref. 5, for example). 
At T, < 1 mK this limitation becomes important. The sec- 
ond circumstance stems from the fact that the BCS transi- 
tion occurs only if the spin-lattice relaxation is fairly slow ti/ 
T* < T,. In a 3He-4He solution, the time r* is determined 
either by an extremely weak nuclear magnetic dipole-dipole 
interaction, in which case there would be no limitations in 
practice, or-a more important consideration-by colli- 
sions of 3He impurity quasiparticles with the wall with 
T* -L  */wD, where L is a length scale, and w is the spin acco- 
modation coefficient at the surface. The latter circumstance 
turns out to be important at T, 5 0.1 mK, expecially for ex- 
periments in a bounded geometry, in which the solution is in 
a fine-pore medium for more effective cooling. 

3. TRANSVERSE SPIN WAVES 

The equations of spin dynamics for superfluid 3He in a 
3He-4He solution, as in the absence of superfluidity of 3He 

(Ref. 5), break up into two separate systems of equations: 
equations of the transverse spin dynamics (the dynamics of 
the components of the magnetic moment perpendicular to 
the external magnetic field, e )  and the equations of the longi- 
tudinal spin dynamics for the magnetic moment component 
M, (the z axis is directed along e) .  In this section of the 
paper, we are concerned with the transverse spin dynamics. 

There are several ways to describe phenomena close to 
equilibrium in superfluid Fermi systems. For long-wave pro- 
cesses, with ka < 1, the simplest is a semiclassical description 
of superfluid systems on the basis of a kinetic equation for 
the matrix distribution function (see, for example, the re- 
view by Serene and Rainer2'). Since we are interested in the 
magnetic properties of a system of spin-1/2 particles, this 
kinetic equation will be a 4 X4 matrix equation. It is more 
convenient for our purposes, however, to use a slightly more 
complicated description method, based on Green's func- 
tions. A description of this sort makes it a simple matter to 
generalize the results to the case of spatially inhomogeneous 
states of the solution (more on this below). This approach is 
actually equivalent to deriving a kinetic equation for such 
states. 

We will describe the dynamics of a superfluid low-den- 
sity gas of 3He quasiparticles in solution by means of the 
system of Gor'kov equations for temperature-dependent 
Green's functions. In this case the coupling constant in the 
BCS theory, i.e., g, and the Fermi-liquid function are ex- 
pressed in terms of the same quantity, a, i.e., the s-scattering 
length for 3He quasiparticless: 

g=4nJaJA2/M, 
(4)  

where i'is the unit spin operator, and Bare the Pauli matri- 
ces. The f-functions in (4)  do not depend on the momenta of 
the interacting quasiparticles because thes-scattering ampli- 
tude of slow particles does not depend on the momenta. 

The Gor'kov equations with the Fermi-liquid interac- 
tion, (4) ,  are derived in the usual way: 

h h 

where G and F a r e  the spin operators for the normal and 
anomalous temperature-dependent Green's functions, 
Cl, = 2PH / f i  is the usual ordinary NMR frequency of 3He, 
and the Fermi-liquid interaction is 

In this section of the paper we are interested in equations for 
the circular components of the Green's functions, 

G* =Tr,(? t i 9 ' ) 6 a n d ~ +  : 
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i " OD 

a + + ji - -ha ) G++~EF*++~E+F*'-~~,~~G'=O, (-dr 2M 2 A-T J drG-'F+*', B=T drF-*'G+', 

A h  

where B 7 F*(X$) is the order parameter, a 

G = Tr, (I _+ 8) G (there is an analogous expression for 2 
F *), andb and 6 are the chemical potential and NMR fre- E=T .--- C ~ d l . ~ - ' ~ + ' + - - ,  g 

quency, renormalized to incorporate the interaction and giv- 
en by a 

.- pk2 - 2nah2 
p = p - T r , I ~ ~ , ~  = - + f - ( N - - N + ) ,  D=T J dI' F-*'F+", dI'=d3p/ (a&) 3. 

,--m 

(12) 
2M M 

A A 4nafi2 a ='i&-SZinil . = Tr ,  ~ J ' E ~ , , ~  = - - 
M 

( N + - N - )  (8)  

Here p + = (6a2N+ ) ' I3 are the Fermi momenta of parti- 
cles with spin projections f 1/2 on the z axis, i.e., on e. 

After linearization in terms of small perturbations and a 
Fourier transform, system ( 7 ) ,  (8)  reduces to 

S++A'F-"G+~+ A"G-'F+'~-~E~~~G-'G+~-~E~, F-"F+*2=01 

F++A*'G-'G+'+ A ' F - * ' F + * ~ - ~ E : ~  F - * ' G + ~ - ~ E ~ ~ , G - ' F + * ~ = O ,  

(9)  
where 9 and 3 are small deviations of the functions G and 
F from their equilibrium values, and G +  "' and F ,  "' are 
the equilibrium Matsubara Green's functions of the super- 
fluid Fermi gas of 3He quasiparticles, given by 

Here Cs = aT(2s + 1 ) is the Matsubara frequency, and at 
A' = gEt is the deviation of the energy gap from its equilib- 
rium value A. Since both A' and E,,, , (on the one hand) and 
A*' and E:, (on the other) appear in Eqs. (9),  these equa- 
tions must be supplemented with conjugate equations for 
9* and 9. 

Since thef-function in (4)  does not depend on the mo- 
menta, it is an elementary matter to solve (9) ,  a system of 
four integral equations. As a result, the spectrum of trans- 
verse spin waves, w(k),  can be described implicitly by the 
equation 

For arbitrary A/T the spin-wave spectrum w ( k )  found 
by solving Eqs. ( 1 1 ) is rather complicated. Near the transi- 
tion, at A/T< 1, Eq. ( 11) simplifies significantly. We are 
interested in the spin-wave spectrum near the NMR fre- 
quency, w - S1,<52,, . At A = 0, the corresponding spec- 
trum is determined by the equation C = 0. At 0 < A/T< 1, 
Eq. (1 1) reduces, to within terms (A/T12, to the following 
equation near the NMR frequency: 

CE=2A2. (13) 

At A/T< 1, it is an elementary matter to evaluate the 
integrals in (10) and (12). As expected, the appearance of 
an energy gap A does not shift the frequency of the uniform 
NMR: w (k  = 0)  = R,- 2pH / f i .  The appearance of a gap in 
the long-wave region leads to corrections of the type A2k to 
the spectrum. In principal, the terms A2k in Eq. ( 13) have 
several sources and differ by factors on the order of la1 N :'3. 
Since our equations are written in the first approximation in 
laIN:/3, we should retain in the spectrum only the leading 
term in this parameter. 

We are interested in the long-wave region, kv, < Clint, in 
which the spectrum is quadratic: w - 0, cc k '. At these fre- 
quencies, the damping of the oscillations is determined by 
the parameter a,, T and does not depend on w r  (Ref. 8, for 
example). The integrals of the Matsubara Green's functions 

1 which appear in ( 13) can always be evaluated in this case, as 
in ordinary low-frequency hydrodynamic problems, and re- 
sults can be found by expanding in kvo/S1,,, , (w - f l , ) /~ , , ,  . 
As a result, spin-wave spectrum (13) takes the following 
form, at our accuracy level: 

CC'EE*+D(CC*+EE*) + (AA*-BB*)' In the case A = 0, spectrum ( 14) is evidently the same as the 
spin-wave spectrum in a degenerate, low-density Fermi gas5 

+{ [-CEA*2-BB*CE'+DA'(CB*+CB+EB*+EB)]+ c.c.) =0, in a weak magnetic field, (N, - N- )/N, = 3pH /To g 1. 

where 
( 11 ) The magnetic field has been assumed to be weak on the scale 

of To, but not of T,, in ( 14). 
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We should stress that the correction (A/T)2 in (14) 
results from a change in the equilibrium degree of spin polar- 
ization of the solution in a static magnetic field as a result of 
the appearance of superfluidity. The degree of polarization 
of the solution changes only as a result of extremely slow 
processes of a magnetic dipole-dipole interaction or as a re- 
sult of collisions of 3He quasiparticles with the walls. Conse- 
quently, the superfluid transition first occurs at a constant 
magnetic moment of the solution, and, at our level of accura- 
cy, there are no corrections on the order of A2 in the spec- 
trum. Such corrections arise only after the equilibrium mag- 
netization is established (the typical time T* may prove very 
long if the magnetic coupling of 3He quasiparticles with the 
walls is not good). 

In magnetic fields which are not too weak, and at 
T 5 T, , the relation a,,, T $1 usually holds. The damping of 
spin waves (14) in this case is w" = l /fl intr,  and the real 
part of the spectrum also has small corrections of order 1/ 
R,,, T for the Leggett-Rice effect.'' 

In the absence of superfluidity, A = 0, the temperature 
dependence of the frequency shift and of the attenuation of 
the NMR results exclusively from the temperature depen- 
dence r( T) . Under the conditions a,,, r$ 1 and A = 0, the 
frequency shift does not depend on the temperature. As the 
temperature is lowered further, a temperature dependence 
of the frequency shift due to A ( T) # O  reappears near the 
superfluid transition. Near the transition this temperature 
dependence is determined by the second term in (14): 
A2 c~ T, ( T, - T). However, a temperature dependence of 
this sort can also be observed slightly above the transition, 
because of superfluid fluctuations above the transition, for 
which we have the following: 

16n2T 
A' = - (2"-T,) { [ I  + 75  (3) A3kT ] '* 

75 (3) 2 M V p p  (T-T,) 

The apperance of a specific temperature dependence for the 
NMR frequency shift would therefore be one of the clearest 
indictations of an approach to a superfluid transition. It is 
possible that the temperature dependence of the frequency 
shift which was noted in the experiments of Ref. 23, at the 
extremely low temperatures attained there, is evidence of an 
approach to a transition. 

These results can be generalized easily to the case of 
spatially inhomogeneous phases of 'He in solution at 
OH> 1.06Tc (H = 0 )  (Ref. 5).  In this case the order param- 
eter is 

A (r) = X A n  exp (iQnrlti), I Q n I  =Q(H), 

and the second term in braces in ( 14) should be replaced by 
the following expression at k 4 Q /fi: 

(36~)" '  Fi  (H) I  Am 12, -- 
8 (pH)' 

where the function 
m 

q,=Qvo/2n (2s-1) T, (Q, H), 

is plotted in Ref. 5. It is a simple matter to use ( 15) to recon- 
struct the macroscopic equation of motion of the magnetic 
moment of the solution in inhomogeneous phases at k 4 Q /fi. 

4. LONGITUDINAL SPIN-SOUND WAVES 

In the absence of superfluidity of %e in a solution in a 
weak magnetic field, coupled spin-sound waves may propa- 
gate with a linear dispersion law, w = ck. These waves would 
be determined by simultaneous solution of the coupled high- 
frequency kinetic equation for the scalar distribution func- 
tion of the 3He quasiparticles and the longitudinal compo- 
nent (parallel to e)  of the distribution of the magnetic 
moment. When 3He superfluidity is present, the correspond- 
ing equations for the Green's function reduce to the follow- 
ing system of four equations, according to (5 ) :  

9 1 , Z + ~ l , 2 F ~ ' * 2 G : ' 2  + A , i , 2 ~ ? 2  FYs2 ,-2E 1" G:~ ~ 2 '  
~ n f  

where 9, 3 and Ala2 =gE1,2 are the deviations of the 
Green's functions and of the gap %om their equilibrium val- 
ues, determined from X '.* = T r ( I  f 3 )g. 

System ( 16) should be supplemented with four adjoint 
equations. However, the system of eight equations which 
arises is degenerate since the quantities A'.2 appear only in 
the combinations A' + A*' and A2 + A*2. For this reason, 
the spin-wave spectrum is determined by sixth-order deter- 
minant. It should be kept in mind that the waves in which we 
are interested are high-frequency waves, and in calculating 
integrals of the Green's functions we should draw a distinc- 
tion between retarded and advanced functions (no signifi- 
cant complication results). 

In the absence of superfluidity of 3He and in the absence 
of a magnetic field, in a solution with a < 0, high-frequency 
spin waves may propagate at a velocity c which is exponen- 
tially close to the Fermi velocity u, at low 3He concentration, 
p,lal/fi< 1: 

In(I/ao) =hn/p,(al =.>I, a,=(c--u,) /v,>O, c ~ o l k .  ( 17) 

Correspondingly, near the superfluid transition, A/T< 1, 
and in weak magnetic fields, we should restrict the calcula- 
tion of the coefficients in the dispersion relation exclusively 
to the lowest-order terms according to the large logarithms 
ln[u * / (c  - v. ) ]  [to incorporate the terms of higher or- 
der according to these logarithms, which correspond to the 
coefficients of the exponential functions in ( 17), would be to 
go beyond the accuracy of this treatment for the f-functions 
in (4)  1. 

In the absence of a spin polarization, p +  = p -, the dis- 
persion relation reduces to ,' 

This expression holds only near the transition, at A/ 
T<a1I2 4 1. The result ( 18) is not very interesting, however, 
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since we known6,' that the appearance of superfluidity for a 
slightly nonideal system would lead not only to a pro- 
nounced change in the spin-wave spectrum (a- ' I2)  Iln a /  ) 
but also to a rapid increase in the collisional damping of 
waves, determined by the parameter exp(2T&/T). This 
damping would not be small even at T>,T,. Collisionless 
damping prevent the observation of high-frequency spin 
waves over essentially the entire temperature range, both 
above and below Tc . 

Imposing an external magnetic field changes the situa- 
tion fundamentally. First, the polarization of the solution 
reduces the temperature of the superfluid transition, thereby 
complicating an experimental study below the transition. 
Second, it may, however, cause a pronounced decrease in the 
collisionless damping near the transition. At fiR,$A, 
T, ( H ) ,  for example, the dispersion relation becomes 

Expression ( 19) shows that as the magnetic field is in- 
creased the propagation velocity of the spin waves, c, rapidly 
approaches u,; the correction for A is most important in the 
argument of the logarithm. In strong magnetic fields (or  at 
substantial values of A 0  we find a + - 0 ,  
a-  - ( u +  - U -  )/u-, and 

These results determine the maximum values of A/Ro at 
which the waves can still propagate ( a +  > 0 ) .  Collisionless 
damping does not prevent an observation of spin waves ( 19) 
in magnetic fields (H > H,) in which the temperature of the 
superfluid transition, T, ( H ) ,  is quite low: 

The function T, (H) /Tc  (H = 0 )  is plotted in the review by 
Bashkin and Meyer~v ich ,~  among other places 
(Tc(H=O)-Toexp[-n-/2~a~(3~2~3)"3]). In princi- 
ple, since s pairing would be totally impossible in fields 
H >  H,, pH, = 1.33Tc ( H  = 01, theoretically there would 
always be a region of parameter values in which weakly 
damped longitudinal spin waves could propagate. Unfortu- 
nately, the relation Tc (H,) 4 T, ( H  = 0 )  holds, and the ob- 
servation of weakly damped ( H  > Ho) longitudinal spin 
waves in a solution seems unlikely at  present. 

However, expression ( 19) determines the propagation 
velocity of spin waves in an ordinary slightly nonideal Fermi 
gas. In a 3He-4He solution in a magnetic field, the propaga- 
tion of longitudinal spin waves is known5 to be accompanied 
by oscillations of the Bose background. To take this circum- 
stance into account, we should supplement system ( 16) with 
a continuity equation and an equation for the superfluid mo- 
tion. The corresponding linearized equations are (cf. Ref. 5)  

where s, is the sould velocity in pure ,He, v, is the superfluid 
velocity of ,He, SN4 is the oscillatory increment in the ,He 
density, p, = m4N4 + (m, - M)N,, N, is the number of 
,He atoms per unit volume, m, is the mass of the ,He atom, 
and E~ is the lowering of the energy of He11 due to the addi- 
tion of one 3He atom, (N,/rn,~,~) x (d&,/dN4) - 1.28. In 
this case we should add to the Hamiltonian of the 3He quasi- 
particles a term describing the change in the energy of a 3He 
quasiparticle due to a change in the ,He density, (a&,/ 
dN4)SN4, and due to the appearance of superfluid motion of 
,He, pv, ( 1 - m3/M). Correspondingly, we would add 
terms 

to the first of Eqs. (16) and add analogous terms to the 
second two equations (16).  A system of equations of this 
sort, describing the propagation of coupled spin-sound 
waves, turns out to be rather complicated. I t  can be shown 
that near the transition the propagation velocity of the spin- 
sound waves is given by the following equation under the 
conditions fiRo$A, Tc (H) [cf. ( 19) ] : 

where x is the 3He concentration, and functions L + are 
determined by expression ( 19) (at  the saturation vapor 
pressure, we would have p,, = 24.2). A t  A = 0, Eq. ( 2  1 ) has 
a solution5 c > u + only in magnetic fields H < H, : 

This result is equivalent to the following numerical relation 
at  the saturation vapor pressure 

H, [Oe] -10'2" exp[-78.4/1al(43.6+ la] )xIh], 

where a is expressed in angstroms. I t  is not difficult to see 
that at x< 1 the field H, given by (22) is far higher than not 
only the field Ho in (20) but also the field 
pHs = 1.33Tc ( H  = O), 

H, [ O e ]  -107x" exp [-1.8/x'"lal], (23) 
above whichs paring is totally impossible. We thus conclude 
that weakly damped spin-sound waves in a solution can be 
observed in a finite field interval H, > H >  H c .  At  
Ho > H > H, , these waves can be observed near the transition 
and in the superfluid phase of 3He. For H > H ,  , we should 
not retain terms with A2 in L+ in (21 ): 
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For H < H, , we can incorporate in this equation for a correc- 
tions of order A2, which correspond to the replacements 
x1l3 + x ' I 3  ( 1 + A2/2?i2002), a + +a + + A2/2fi2nO2. The 
dependence Tc ( H )  is of such a nature that the condition 
2PH) Tc (H)-a necessary condition for the expansion in A 
to be carried out in terms of the parameter A/fin0-corre- 
sponds to the case in which the field H should not be much 
weaker than H, . 
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