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A new technique is proposed for studying nonlinear effects in nonequilibrium plasmas. The 
technique is based on an expansion in perturbations of the particle paths. In this approach, 
both the nonlinear interaction of the waves and oscillations of plasma particles (on the one 
hand) and the effect of the average force exerted by the field on the particles (on the other) are 
taken into account. Some specific examples of nonlinear process in an unstable beam plasma 
are considered. In particular, the example of multimode excitation of waves, in the case in 
which turbulence arises in the plasma, is examined. The particle distribution function in a 
slightly nonlinear plasma is constructed, and its structure studied. 

The effects of nonlinear wave interactions' and of the 
average force, quadratic in the wave amplitudes, on the 
charged particles2 have been studied in some detail in non- 
linear plasma  electrodynamic^.^ In a nonequilibrium plasma 
these effects may be important if nonlinear saturation of in- 
stabilities which occur in the plasma develops. In the present 
paper we adopt the case of a beam plasma for a systematic 
analysis of the interaction of waves and of the average force. 
We offer a nonlinear theory for the radiative instability of an 
electron beam in a slow-wave system. The theory is based on 
a technique of expanding the characteristic system of the 
Vlasov equation in perturbations of the particle paths. This 
technique makes it possible to construct a chain of nonlinear 
equations for the wave amplitudes which incorporate the 
slowing of the beam caused by the average force. The pres- 
ence of a small parameter, determining the resonant interac- 
tion of a plasma wave of the beam and the radiation, makes it 
possible to truncate this chain of equations for the ampli- 
tudes and to find several analytic solutions. We will show 
that the average force and the nonresonant interaction of 
harmonics of the plasma wave of the beam disrupt the syn- 
chronization of this wave with the radiation. In a resonant 
interaction of the harmonics of the plasma wave, the wave 
energy becomes redistributed over the spectrum. We also 
examine the structure of the distribution function of the 
beam electrons and the dynamics of the radiation over a 
broad spectral range. The only limitation which is of impor- 
tance ot the discussion below is the assumption that the den- 
sity modulation of the beam is small; in our case, this as- 
sumption is equivalent to the assumption that the electron 
velocity field is single-valued. The latter assumption means 
that we can eliminate from consideration resonant wave- 
particle interactions. Such interactions, however, will have 
no effect at all on the dynamics of the system in which we are 
interested here, since the beam electron velocities differ sub- 
stantially from the wave phase velocities. 

1. FIELD EQUATIONS WHICH EXPLICITLY CONTAIN 
EQUATIONS FOR THE PATHS OF THE BEAM PARTICLES 

An important property of a beam-plasma system is its 
instability in the field of a slow electromagnetic wave 
("slow" here means that the phase velocity is below the ve- 
locity of light). In a monoenergetic electron beam, an insta- 
bility sets in at essentially arbitrarily small amplitude of an 
initial electromagnetic wave. Such a wave initiates a stimu- 
lated emission of beam electrons and itself increases in am- 
plitude over space or time. Since the instability occurs in a 
comparatively narrow interval of wave numbers, the wave 
which is radiated may be regarded as approximately mono- 
chromatic. 

An electromagnetic wave is excited as a result of its 
resonant interaction with plasma oscillations of the beam. 
Furthermore, the interaction of the fundamental mode of 
plasma oscillations with their higher harmonics is impor- 
tant. All of these processes can be described as a nonlinear 
wave interaction. There is, however, yet another process, 
which results from the average force exerted on the plasma 
electrons by the radiation field. This effect shifts the symme- 
try point of the electron distribution function and strongly 
influences the nonlinear dynamics of the instability. To take 
these processes into account in a systematic way, we will 
derive nonlinear equations which explicitly contain equa- 
tions for the electron paths. 

We denote by n, the unperturbed density of the beam 
electrons, by u their unperturbed velocity, directed along the 
z axis, and by 2 r / k  the wavelength of perturbations along 
this axis. We assume that the system is immersed in a longi- 
tudinal magnetic field strong enough that we can treat the 
electron motion as one-dimensional: 

Here z(t,z,) is the path of an electron which begins (at 
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t = 0)  at the point z,,, while F( t ,z)  is the force, which in- 
cludes both the effect of the field of the high-frequency space 
charge of the beam (i.e., the field of the plasma waves) and 
the field of the electromagnetic wave which is excited. 

Knowing z(t,z,), we can find the perturbation of the 
electron velocity: 

%=nb {I 6 [z -z ( t ,  z.) ]dz.-I} . (1.2) 

It is this perturbation which determines the high-frequency 
space charge. Expanding ( 1.2) in a Fourier series, 

and determining the space-charge field of the electrons from 
the Poisson equation, we can finally put Eq. ( 1.1) in the 
form 

m 

Here we have switched to the dimensionless variables y = k 
x (Z - u t ) ,  yo = kz,, 7 = Ob t, where S1, is the frequency of 
the natural oscillations of the electrons in the frame of refer- 
ence of the beam, and we have taken the geometry of the 
problem into account.') This geometry is also incorporated 
in the coefficients a, for n 2> ( a ,  = 1).  The second term on 
the right side of ( 1.4) reflects the force exerted by the elec- 
tromagnetic wave. Here v, = (w - ku) /Rb ,  where w is the 
frequency of the electromagnetic wave, E is its dimensionless 
amplitude, and the dimensionless quantity Y depends on the 
mechanism which couples the electromagnetic wave with 
the beam.*' 

Equation ( 1.4) should be supplemented with the equa- 
,tion for the excitation of an electromagnetic wave by the 
beam. We write this equation in the form 

Equations (1.4) and (1.5) constitute the equations which 
we are seeking for the nonlinear electrodynamics of a non- 
equilibrium beam plasma. These are the equations to which 
we will apply the technique of an expansion in electron 
paths. These equations are completely equivalent to the Vla- 
sov-Maxwell equations with a self-consistent field. 

Linearizing (1.4) and (1.5), we can easily show that if 
the beam is coupled only weakly with the electromagnetic 
wave, and the relation Y 1 holds, the growth rate is a maxi- 
mum at 7, = - 1 or, equivalently, at 

The condition corresponds to a synchronization of the elec- 
tromagnetic wave with a beam wave of negative energy.6 The 
(dimensional) growth rate is given by the expression 
(w-w + i s )  

which determines the physical meaning of the parameter v. 
We will be analyzing only this case of weak coupling ( v g  1 ) 

below, since in this case the electron velocity field is single- 
valued, and our path expansion technique is valid. 

2. TECHNIQUE OF EXPANSION IN PARTICLE PATHS 

We write the path of an electron as 

where W(T)  is the displacement associated with the transla- 
tional motion and due to the average force; f (yo,r) is a peri- 
odic function of yo, with a period of 27~, which is a conse- 
quence of the waves and their interaction. The technique 
which we will be presenting below is essentially one of ex- 
panding the nonlinearities of Eqs. ( 1.3)-( 1.5) in powers of 
the perturbation 2, which is assumed to be small. We write 
X(yO,r) as the Fourier series 

substitute (2.1) and (2.2) into (1.4) and (1.5), and expand 
the exponential functions in these equations in power series 
in 2. Equating the coefficients of einycl for n = 0, 1, 2, ..., we 
find an infinite hierarchy of equations for a , ,  E ,  and w: 

Here E, is the initial wave amplitude (a t  r = O), and the 
coefficients ank are expressed in terms of a, (n,k = 0,1, ... ) : 

2n 

We can also write an expression for the amplitudes of the 
harmonics of the charge density: 

m 

Equations (2.3), which constitute an infinite chain of equa- 
tions, are equivalent to system ( 1.4), ( 1.5) and are therefore 
just as complicated. We can simplify the equations consider- 
ably by assuming the following hierarchy of values of the 
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small quantities in (2.4) : a ,  and E are small quantities of first 
order, a, is a small quantity of second order, a, is a small 
quantity of third order, and so forth. Under this assumption, 
we can prove several important assertions. 

1. The coefficients a,, (n,k> 1) are small quantities at 
least max (n,k). 

2. The amplitudesp, and the equations for a, contain 
only terms of the following orders: n, n = 2, n = 4, ..., 
n = 2k, where (n,k))l .  

3. The amplitudes p, and the equations for a, do not 
contain a, in a linear way in an order (m > n) higher than n. 

The last two of these assertions justify our assumption 
above regarding the order of the small quantities E and a,, 
and they give us a recipe for cutting off the infinite chain of 
equations (2.3). Specifically, to find a closed system of equa- 
tions for E ,  a ,,..., ap - l we set a, =O at npp. We substitute 
the values of a,, calculated from (2.2) and (2.4) in this 
case, with (m,k) ~ p ,  into system (2.3), written for n<p - 1. 
We retain terms ofup to orderp inclusively. System (2.3) for 
E, a , ,  ..., a, - I now contains all terms which are small quanti- 
ties of order up to p, while p, is expressed in terms of these 
quantities by means of (2.5) with n<p - 1. To findp, we 
must use system (2.3) to higher order and incorporate the 
amplitude a,. The amplitude a, itslef does not contribute a 
small quantity of order p to the system for E,  a ,,..., up-, . 
Following this recipe, we write the system (2.3) to fourth 
order in the quantities E,  w, a l ,  a,, and a,: 

d&/d~=v (ial+'/2al*a2-'/sil a, 1 'a,) e'"'-'", 

d~ldT=-'/&(I& (2- (~o12) ,  (2.6) 
~ a ~ / d ~ ~ = - a ~ + i ( l - a ~ ) a , * a , - ' / ~  (1-a2) la, ('a, 
+V[E (I-'/, 1 a, I ') e-'*'+iw+ (ia2+L/,a,2) ~'e'"'-'w 1, 

1 i 
+ & a  (-fa3 - -a,a2 + - a.') ei%T-iw] , 

2 24 

It can be seen from expressions (2.7) that the amplitude 
p, contains a term a;. It can be shown that this is true for 
arbitrary n. It follows that for \ a , \  > 1 series (1.3) contains 
all the terms and cannot be truncated. The inequality3' 

is therefore a necessary condition for the applicability of sys- 
tem (2.3). The truncated system of equations (2.6) is appli- 
cable under the strong version of inequality (2.8), i.e., for 
la, 1 ( 1. Numerical calculations have shown that with 
a,  = a, =a, = 1 and Y (0.16 the solution of system (2.6) 
is of such a nature that the relation la, 1 < 1 holds. For larger 
values of v, on the other hand, this method is not applicable. 
For other values ofa,,  the applicability condition reduces to 
a similar restriction on the parameter v (in the case a, = 1, 
a, = 4, a, = 9, e.g., the restriction would be v<0.27). 

In this particle path expansion technique, the only thing 
we are assuming to be small is therefore the oscillatory mo- 
tion of the electrons which is a consequence of the waves and 
their interaction. The average motion, described by w(T), in 
contrast, is not assumed to be small, as can be seen directly 
from the system (2.61, (2.7). The quantity w( r )  also de- 
scribes the average effect of the field of the electromagnetic 
wave on the plasma, while a, represents the amplitudes of 
the waves interacting in the plasma. 

To finally solve the problem to fourth order, we may 
need the amplitudep,, which can be shown to be given by the 
expression 

while a, satisfies the equation 

d%, /d~~=-a~a~+ ' /~ve  (ia3-'/2ala2-1/2;ia13) e-irlor+fw 

Solving the latter equation is totally unnecessary for solving 
the basic system (2.6). The quantities E, a, ,  a, and a,, on the 
other hand, unambiguously determine a, according to Eq. 
(2. lo),  as a forced vibration (the case a, = 16 is exception- 
al, in which there is no dispersion of the plasma waves, and 
small terms of order higher than fourth must be taken into 
account). 

Equations (2.6) and (2.10) have yet another curious 
property: In the case a, = a, = a, = a, = 1, all the expres- 
sions in parentheses containing these coefficients vanish, 
and the equations simplify substantially. 

From (2.5) we find 

pl=-i[(l-i/slal lz)al-'lzial'az]e-'", 3. EXAMPLES OF NONLINEAR WAVES 

p2=-2i [(I-  1 a1 1') a,-'/,ial2] e-2", (2.7) 3.1. We begin our analysis of system (2.6), (2.7), which 
can be solved analytically in a quite general case, with a con- 

p3=-3i(as-s/2iaia2-3/8a13) e-'lW. sideration of the simplest solutions. For example, if there is 
The system (2.61, like (2.7), contains all the small terms of no coupling ofthe electromagnetic wave with plasma waves, 
fourth order and thereby describes all possible wave interac- i.e., if v = 0, and if the oscillations are strictly one-dimen- 
tion processes in a nonequilibrium beam plasma. sional, i.e., a, E 1, so that we have 0, = a,, then it follows 
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from (2.6) that we have E = E,, w = 0, and for all n we can 
write 

This result means that for an arbitrary amplitude of the plas- 
ma waves, regardless of their wavelength, their frequency 
will be7 w2 = 0:. The wave itself contains multiple spatial 
harmonics in this case. Even if we have a, = 0 at n > 2 and 
a,#O, we can find the structure of the harmonics of the 
space-charge waves from (2.7) : 

In the case v = 0, the average force exhibited by the radi- 
ation vanishes, and the analogous process just reduces to a 
nonlinear interaction. 

We now turn on the interaction between the electro- 
magnetic wave and the plasma wave, i.e., we set v#O. Again 
assuming a,  = 1, and restricting the analysis to small terms 
up to third order, we find a solution of system (2.6) in the 
following form (in this case, a, is a forced vibration which is 
a consequence of the interaction with the electromagnetic 
wave) : 

We are assuming that a ( r )  and b ( r )  are slowly varying 
functions of the time, i.e., 

Making the substitution E-~e'",  and eliminating the func- 
tions b ( r )  and W ( T )  from system (2.6), we find the follow- 
ing system of equations for the case of the maximum instabil- 
ity growth rate (1.6), i.e., in the case 77, = - 1: 

This system of equations has the first integral 

The left sides of Eqs. (3.5) contain nonlinear frequency 
shifts: i ((&('  - ( E ~ ( ' ) E / ~ ,  which is the shift due to the aver- 
age force (the slowing of the beam on the average), and 
~ ~ j a 1 ~ ~ / 1 2  and ~ ~ I ~ 1 ~ a / 2 4 ,  which are shifts due to the inter- 
action of the waves. The two latter shifts are insignificant 
because of the small value of v. 

We further assume that the field E is turned on adiabat- 
ically as r -  - oo, i.e., E, = 0. Assuming 

in this case, we find from (3.5) the following equations and 
phase integral: 

We then find one equation for x=a2/8: 

Determining the maximum root of the right side of Eq. 
( 3.9 ) , we find the maximum value of the amplitude a: 

If we now impose the condition for the applicability of the 
path expansion, (2.3), and the (stronger) condition for the 
applicability of system ( 2 . 6 ) ,  a < 1, we reach the conclusion 
that weak coupling, v < 1, is necessary. Under this condition, 
Eq. (3.9) has the soliton solution 

which agrees with the requirement of weak coupling, v < 1, 
when the inequalities (3.4) are taken into account. Accord- 
ing to Eqs. (3.11 ) and (3.6), saturation of the wave ampli- 
tudes results from a nonlinear frequency shift due to the 
average force. Solution (3.1 1 ) was derived in Ref. 8 by a less 
rigorous approach. 

3.2. We turn now to an analysis of system (2.6) in the 
case of multidimensional plasma waves, with a,  f. 1. If there 
is no radiation ( Y  = O), Eq. (2.6) reduces to the following 
equations to third order: 

(3.12) 
d ' a , / d ~ ~ + a ~ a ~ = - ' / ~ i ( l - a ~ )  a12. 

Here, in contrast with (3.1 ), the second harmonic a, is cou- 
pled with a, ,  with the result that there is a nonlinear correc- 
tion to the frequency R,. Since a, is a forced vibration with 
respect to a,, we seek a solution of (3.12) in the form 
a , = ~ e i 8 '  -e2'8' 

7 a2 , where A = const. As a result, we find 
from (3.12) the nonlinear spectrum (for IA I < 1) 

which determines the dependence of the frequency of the 
plasma waves (w2 = S2Rb ') on their amplitude. 

We now consider the interaction between a multidi- 
mensional beam wave (a2 # 1 ) and an electromagnetic 
wave. Repeating almost literally the derivation of (3.10) 
and (3.11 ), we find the solutions 

a m a 2 = 2 7 / ~ ' h [  [az-4(/(az+5) I"', (3.14) 

While (3.10) and (3.1 1 ) incorporate only a nonlinear fre- 
quency shift, due to a change in the beam velocity caused by 
the average force, Eqs. (3.14) and (3.15) also include a non- 
linear correction4' to the spectrum (3.13). In the case 
a,= 1, Eqs. (3.14) and (3.15) become (3.10) and (3.11). 

959 Sov. Phys. JETP 64 (5), November 1986 Kuzelev eta/, 959 



3.3. In thecasea, = 4, solutions (3.13)-(3.15) do not 
apply, and the case a, = n2 will in general require special 
treatment, since it pertains to a linear dispersion law for a 
plasma beam wave,5' R, -k, and it requires that the reso- 
nant interaction of plasma wave harmonics be treated. We 
will examine this interaction (with Y = 0) in the simplest 
case, with a, = 4 and a, f 9. In this case we can restrict the 
analysis exclusively to those equations which have a cubic 
nonlinearity, i.e., system (3.12). Substituting (3.3) into 
(3.12) under the condition a, = 4, we find the following 
equations for the slow amplitudes of the harmonics: 

These equations have the first integral 

where a, is the amplitude of the first harmonic at r = 0 
(b = 0 at 7 = 0). Now introducing the real amplitudes and 
phases 

we find from (3.16) the following equations and phase inte- 
gral 

d a / d ~ = - ~ / ~ a b  cos @, d b / d ~ = ~ / ~ a '  cos 0, 
(3.19) 

sin @=(a4-ao4) /4aZb- -  (ao2-az ) 'h (aoz+a2) /2a2 .  

Using (3.17), we can now easily find one equation for the 
quantity s = a2  (so = aO2) from (3.19): 

The latter equation is easily integrated under the condition 
s, 4 1, which is the same as the condition for the applicability 
of the entire method. The final solution is 

s=s0 cn2(z, p )  ti/,soJ'" sn2(z. p ) ,  (3.21) 

where z = 3/8s,''2,~, p = 1 - 1/,~0112. We see that the first 
harmonic of the plasma wave decays. Its amplitude de- 
creases, and at 

it reaches a minimum value 

Since we have s,,, /so = s0'I2/2 1, the decay of the first 
harmonic is extremely important. 

If a, = 4 and a, = 9, then energy is also pumped to a 
resonant third harmonic. This process can be analyzed with 
the help of Eqs. (2.6) (with Y = 0).  If in addition the condi- 
tion a, = 16 holds, then energy is also pumped to the fourth 
harmonic. Equations (2.6) and (2.10) are no longer suffi- 
cient for studying this process, since small terms of fifth or- 
der must now be taken into account. We will not take up 
these rather complicated problems here. 

3.4. There is another interesting case: ~ $ 0 ,  a, = 4, 
a,#9. This is the interaction of the electromagnetic wave 
with the first two plasma wave harmonics. Using the substi- 

tution (3.3) and the replacement E - + ~ e  - '" , we can reduce 
Eqs. (2.6) (with a, = 0)  for this case to 

The latter system of equations has only one integral, 

so that it cannot be solved analytically. We note the most 
obvious feature of the solution. The time scale of the interac- 
tion of waves E and a is of order v l ,  as can be seen from 
(3.11 1, while the typical amplitude of a is of order v1I2. On 
the other hand, the interaction time of waves a and b [see 
(3.22) 1 is a- '  -v-'I2 in order of magnitude, much smaller 
than v-  ' (in the case Y < 1 ) . Consequently, energy is repea- 
tedly pumped from a to b and back before the amplitude of 
the electromagnetic wave, E,  reaches saturation. Figure 1 
shows a numerical solution of system (3.24), which clearly 
illustrates the above remarks. In principle, we might expect 
some interesting features from the solutions of Eqs. (3.24) at 
certain values of the parameters ( Y  and E , ) .  We intend to 
take up this question in future studies. 

4. DISTRIBUTION FUNCTION AND MULTIMODE 
INSTABILITY 

The distribution function of a system of particles with 
an initially uniform velocity can be expressed in terms of 
their paths y(y,,r) by the formula (we are normalizing the 
distribution function) 

I = j  ~ [ Y - Y ( Y ~ ,  r )  I S [ I - I ( Y O ,  Idyo. (4.1) 

Function (4.1 ) is not very informative, so instead of analyz- 
ing it we will analyze the coordinate-independent function 
( f ), where the average is over the wavelengths of the plasma 
waves: 

2P 

The latter expression can be rewritten as 

where yo, is the jth root of the equation 

FIG. I 
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FIG. 2 

Substituting the expansion (2.1 ), (2.2) into (4.4), and find- 
ing the roots, we can in principle construct the distribution 
function (4.3). In General, however, Eq. (4.4) cannot be 
solved. An exceptional case is that of a one-dimensional plas- 
ma (a ,  = I ) ,  and it is this case which we will examine in 
order to determine the structure of the distribution function. 

In a one-dimensional plasma, the only nonzero coeffi- 
cient in the expansion (2.2) is a ,  [see (3.1); this is true even 
in the case v#O, a, - vaI2 <a ,  I .  Accordingly, taking the 
first equation in (3.3) into account, we can reduce Eq. (4.4) 
to 

where p is a phase, and y =yo + w + a cos(y, + r + p). 
Determining yo from (4.5) [we need to allow for the fact 
that there are either zero or two such solutions on the inter- 
val ( 0 , 2 ~ )  ], and substituting into (4.3), we find, after some 
simple manipulations, 

The upper row in (4.6) refers to the case in which the expres- 
sion in the radical is positive; in the opposite case we would 
have ( f ) = 0. In deriving (4.6) we used w = - $ I E  1 2. 

Figure 2 shows function (4.6). Figure 3 shows the 
phase plane of the electrons (we are not considering w), 
which illustrates the structure of the solution (4.6) (in the 
case y = C ,  < lal, the electron density integrated over the 
wavelength is finite, in the case y = C, = + la 1 it is infinite, 
and in the case y = C, it vanishes). 

Using the formula 

we can calculate the moments of the distribution function: 

The latter relations are quite obvious; the moment J ,  can be 
identified with the beam temperature. 

FIG. 3 

Up to this point we have been considering a single-mode 
excitation of an electromagnetic wave by a beam (with the 
possible excitation of multiple harmonics). We now consid- 
er the multimode case, which occurs if the initial electro- 
magnetic wave is not monochromatic and can be represented 
by a large set of modes which are approximately the same. 
We write a multimode analog of Eqs. ( 1.4) and ( 1.5) : 

kL 

where L is the spatial period of the initial perturbation, and 
yOs = (a, - sku)/Clb. At this point we set w, = skc,, where 
c, < u is the phase velocity of the electromagnetic wave. Here 
we have vO, = - S. 

By analogy with (2.1 ) and (2.2) we write the electron 
trajectory as 

In substituting (4.10) into (4.9), we need to recall that the 
wavea, may interact with its own harmonics, a,, , a,, , etc. In 
the one-dimensional case, however, as we have already 
shown, there is no such interaction so that the analysis below 
is simplified substantially. 

Omitting the fairly simple calculations, we write the 
following system of equations for the amplitudes E, and a, : 

de. da. s-1 - = ya,e-abW, - f i 1 
d7 d.r s a, = - 2 ve.e'"",4.11) 
dw 1 
-=-- 

1 
d~ 

4 z s ( l ~ ~ l ~ - l e ~ . l ~ ~ =  --x a 1aBl2. 

In deriving (4.11 ) we used the replacement a, -s-'usekT. 
Also using the replacement a, -a, e"" , we can reduce 
(4.1 1 ) to the final form: 

de -= da. 1 
va,, - f iA.a. = - ve., 

d7 d7 2 

where 

is a nonlinear frequency shift. By analogy with J,  in (4.8), 
the quantity 
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may be interpreted as the plasma temperature. Equations 
(4.12) and (4.13) are the equations which we have been 
seeking for a multimode instability. 

We can draw the following picture of the dynamics of 
the excitation of the spectrum: At a given instant, the mode 
which is excited is that for which the condition A, = 0 holds. 
As time elapses, the temperature T increases, as does the 
indexs of the mode which is excited. In the limits r-. cc, and 
s - m ,  wehave T-1 (sinceh, = O a n d s - w ) .  It follows 
from the last equation in (4.11 ) that in the limit r-- co we 
have 

Using the definition of r and w, and switching to dimension- 
al variables, we can reduce (4.15) to the form 

where (v) is the average beam velocity. Using (1.6) for the 
spectrum w = kc,, we then find (v) = c,. Consequently, the 
beam is ultimately slowed to the phase velocity of the elec- 
tromagnetic wave, co. 

The structure of the spectrum of plasma waves which is 
excited can be determined from the equality A, = 0 at any 
instant. To see this, we convert to a continuous spectrum in 
the equation 

(we replace the sum by an integral from 1 tos).  We then find 

FIG. 5 

E~~ = 0.01, s = 0.8 + nh, h = 0.01, n = 0, 1 ,..., 221 
(0.8<s<3). For these values ofh and v, only about a tenth of 
the modes fall simultaneously in the resonant band.6' Figure 
4 shows the dynamics of the spectrum of weak turbulence. 
As time elapses, the spectrum broadens. By the time 
T = 800, the entire spectrum has been excited, and its evolu- 
tion has basically been completed. The difference between 
the spectrum (4.18) and the calculated spectrum shown in 
Fig. 4 is the consequence of the discrete nature of the latter 
( la@) 12h z la, I*). Figure 5 shows the beam temperature. 
This temperature increases until the entire spectrum is excit- 
ed, at which point it becomes essentially constant. A particu- 
lar feature of the solutions shown here is their irreversibility 
in time, in contrast with (3.1 1 ). 

"In the case of a beam with a infinitely narrow cross section in a wave- 
guidewewould haveflb2 = S b w b ' f ( k 2 ) , a ,  = f ( n 2 k 2 ) / f ( k 2 ) ,  where 

Sb is the cross-sectional area of the beam, k,, ' and p, are the eigenval- 
ue and eigenfunction of the waveguide, r, is the coordinate of the beam 
in the cross section, and lip, 11' is the square norm of the eigenfunction. 
In the opposite limit, k 'Sb, 1 we have 0, ' = ob and a ,  = 1 for all n. 

2'Explicit expressions for the parameter v for various specific systems can 
be found in Refs. 4 and 5, which also contain a rigorous derivation of Eqs. 
(1.4) and (1.5) for these systems. For an electrostatic undulator,' for 
example, the expression is 

wherez, is the amplitude of the oscillations of the electrons in the field of 
the electrostatic pump, and c is the velocity of light. 

"For la,J > 1 a charge-density wave breaks, and multistreaming arises in 
the plasma. 

4'The nonlinear frequency shift due to relativistic effects was studied in 
Ref. 9. 

"In a magnetized plasma, a dispersion law of this sort is typical of the 
long-wave part of the spectrum. For example, we have 
( 0  - k ~ ) ~  = w b 2 k 2 / ( k L 2  + k2)= .wb2kZ/k lZat  k2<k, ' .  

"If a single mode falls in the resonant band, the solutions of system (4.2) 
reduce to (3.1 1) .  

The spectral density of the electromagnetic wave varies in 
the same way. ~h~ width of the spectrum at half-maximum 'A. V. Galeev and R. Z. Sagdeev, in: voprosy teorii plazmy, Vol. 7 (ed. M. 

A. Leontovich), Atomizdat, Moscow, 1973, p. 3 (Reviews of Plasma 
the from 2. In this range Physics, Vol. 7, Consultants Bureau, New York. 1978). 

wave numbers, the changes in the spectrum are completed 'A. V. Gaponov and M. A. Miller, Zh. Eksp. Teor. Fiz. 34, 242 ( 1958) 

over times on the order of Y -  I .  [Sov. Phys. JETP 7,242 ( 1958) 1. 
3A. G.  Sitenko, Fluktuatsii i nelineinoe vzaimodeistvie voln v plazrni 

Let us examine the dynamics of the discrete spectrum, (Fluctuations and Nonlinear Interactions of Waves in Plasmas), Ato- 
specifying the following parameter values: 2-'12v = 0.03, mizdat, Moscow, 1973. 
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