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The effect of acoustic collapse on the structure of collisionless weak shock waves propagating 
through a low-pressure plasma at an angle to the magnetic field is studied. In a first step, it is 
shown on the basis of the three-dimensional Kadomtsev-Petviashvili equation that acoustic 
collapse occurs under certain conditions in media with a positive dispersion. A study is made 
of how the emission of small-amplitude waves affect this process. The results show that, for 
oblique weak shock waves, the collapse of fast magnetic sound provides a new dissipation 
mechanism, which results in a transfer of energy to ions. The widths of collisionless shock 
waves and the effective rate of energy transfer to ions due to the collapse are derived. A 
comparison is made with other nonlinear three-wave processes. The results show that all of 
these processes are strongly suppressed as a result of the removal of the excited oscillations 
from the shock wave front. 

INTRODUCTION 

Wave collapse, i.e., an event in which a singularity 
forms in a wave field over a finite time, is one of the funda- 
mental processes in the physics of continuous media. It is of 
particular importance as a mechanism for the generation of 
fast particles in plasma physics. The efficiency of many col- 
lective plasma-heating methods depends on it. It was origin- 
ally thought that this phenomenon is peculiar to Langmuir 
turbulence,' but several closely related phenomena have 
subsequently been discovered for other plasma  wave^.^-^ It 
is now clear that all these cases have much in common and 
are described by equations of similar structure. Another 
physical situation arises in systems with a hydrodynamic 
nonlinearity: sound waves in weakly dispersive media, de- 
scribed by the Kadomtsev-Petviashvili equation. Signifi- 
cantly, in media with a positive dispersion the nonlinear 
stage of the instability of the initial distribution is wave col- 
lapse, as was shown by Shafarenko and the present authors.' 
In the present paper we report a further study of highly non- 
linear processes in dispersive media. The results show that 
the nonlinear evolution is determined by the dispersion law. 
If the dispersion is negative, neither collapse nor three-di- 
mensional solitons occur, and the initial distribution under- 
goes a diffractive spreading. A wave collapse classification is 
proposed. This classification is based on the transformation 
properties of the integrals of motion under gauge transfor- 
mations. We study the fundamental question of how the 
emission of small-amplitude wave affects the formation of a 
singularity in the wave field. 

The general results derived here are then used to deter- 
mine the structure of weak collisionless waves. In the fre- 
quency region in which we are interested here (w < wHi ), we 
offer a classification of nonlinear processes. We show that 
the primary interaction is the three-wave interaction of fast 
magnetosonic waves. The collapse of fast magnetic sound 
gives rise to a fundamental change in the structure of the 

shock waves. The plane front breaks up into clusters; the 
long, leading, oscillating train disappears, etc. We derive the 
front width and the effective rate of energy transfer to the 
particles which result from the collapse. 

5 1. INSTABILITY OF SOLITONS 

Let us examine the propagation of sound waves in a 
weakly dispersive medium, for which the expansion of the 
dispersion law in the long-wave region begins with the term 
linear in k: 

Sound waves of this type are characteristic primarily of iso- 
tropic media, but they are also sometimes seen in anisotropic 
media. In a magnetized plasma with P =  87rnT / H  1, at 
frequencies below the ion cyclotron frequency, we know that 
fast magnetosonic waves have this type of dispersion. 

We will assume here that the dispersion of the waves, 
which is a function of the propagation angle B and which is 
characterized by the length A,, is weak. By this we mean 
that for small-amplitude waves the most important nonlin- 
ear process is the three-wave process, for which, in the ap- 
proximation of zero dispersion, the decay conditions. 

are satisfied for collinear vectors ki . Nonlinearity or disper- 
sion (if the dispersion is positive) causes the wave vectors of 
the interacting waves to be noncollinear. It is clear that if the 
nonlinearity and the dispersion are both weak the angle 
between the interacting waves will be small. Such an interac- 
tion allows us to describe the evolution of a sound wave 
packet with a narrow angular distribution by means of the 
universal Kadomtsev-Petviashvili equation8 

d u d3u c. d (fi + c8 - - c 8 ~ h D 2 -  + p u I )  = - - A'u. (2 )  
d x  dt d x  dx3 
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The main term in this equation, c, u, , describes propagation 
along the x axis at the sound velocity. All the other terms, 
which are responsible for the dispersion, the nonlinearity, 
and the diffraction, describe slow variations of the sound 
field superposed on the fast motion at the velocity c, . A con- 
sequence of this adiabatic situation is the conservation of the 
integral 4 J u2dr, which is the momentum component P, for 
Eq. 2 and which is equal to the energy of the sound waves, to 
within a constant factor. 

A point of fundamental importance is that the interac- 
tion of the sound waves in a region of weak dispersion is of 
the formpuu,. This form results from a renormalization of 
the sound velocity and reflects the quasi-one-dimensional 
nature of the three-wave interaction. Accordingly, the pro- 
babilities for other nonlinear processes, caused by the so- 
called vector nonlinearity, are small because of the small 
wave interaction angle. Nonlinearities of this sort may be 
important only because of some large additional factor 
which cancels out this small factor. 

Transforming to a coordinate system which is moving 
along the x axis at velocity c, , and carrying out some simple 
manipulations, we can put Kadomtsev-Petviashvili equa- 
tion (2) in the standard form: 

This equation can be written in canonical form: 

where the Hamiltonian is 

I = J {& + ~ ( ~ , a ) z - u 3  dz dr,, w,=u, (4) 
2 2 

In these expressions, the sign of the coefficient x determines 
the type of dispersion. If the dispersion is positive, we have 
x = 1, while if it is negative we have x = - 1. Positive dis- 
persion is characteristic of gravity-capillary waves at the 
surface of a liquid and, under certain conditions, phonons in 
liquid helium. For fast magnetosonic waves in a plasma with 
Bg 1, the dispersion is positive for angles with respect to the 
external magentic field which are not close to 0 = 0 and 
0 = r / 2 .  For nearly longitudinal and transverse propaga- 
tion, the dispersion of the fast magnetosonic waves under- 
goes changes, and Kadomtsev-Petviashvili equation (2 )  is 
no longer valid for these angles. Waves with positive disper- 
sion, in contrast with those with negative disperison, have 
nontrivial dynamics. Consequently, if the dispersion is posi- 
tive one-dimensional solitons 

are unstable against transverse perturbations with a growth 
rate9 

but at the same time they are stable if the dispersion is nega- 
tive (x = - 1 ). The growth rate T(k, ) turns out to be posi- 
tive in a finite region k, < k: = 3112v2/4, as in the case of 

Langmuir waves (plasma waves) in a plasma. The reason for 
this instability is that the velocity of a soliton decreases with 
increasing amplitude. If the modulation of the soliton along 
the transverse coordinate is small, regions with a lower am- 
plitude will overtake regions with a higher amplitude. The 
result is a self-focusing in~tability.'.'~ Two-dimensional soli- 
tons are unstable in an analogous way to variations in the 
transverse direction. " 

We should point out that this instability may be thought 
of as a particular case of the decay instability of a steady- 
state periodic wave. The growth rate (5) corresponds to the 
case in which the separation between the solitons making up 
the stationary wave becomes large in comparison with the 
dimensions of a soliton. If the dispersion is negative, periodic 
stationary waves are stable according to the Kadomtsev-Pet- 
viashvili equation1' (Ref. 12). 

The nonlinear stage of the instability should result in 
the breakup of the front into distinct regions, because of the 
conservation of P, (the total energy of the sound waves). 
The dynamics of the system in the next stage will be deter- 
mined by the behavior of each such region. The evolution of 
these regions may take several paths. We first consider the 
possibility that three-dimensional solitons form. A three-di- 
mensional soliton corresponds to a solution of the form 
U,(X - ut, rI ), which is determined by virtue of (3)  from the 
variational problem 

The relationship between the values of 2F and P, can be 
found quite simply for the soliton solution of Refs. 7 and 1 1. 
We first consider the case x = 1. Multiplying the equation 

by u and integrating over r, we find 

2P,v+11+I,-31,=0, 

where 

In order to derive two other relations among I,, I,, and I,, we 
consider trial functions of the form uo(Ax, yr, ), for which 
we have two equalities by virtue of (4):  

or 
- P , V + ' / , I , - ~ / ~ I ~ + I ~ = O ,  

(d-1) (Ps~-~t/~Zt-I~)+i/~(d-3)12=0. (9)  

If follows from (7)-(9) that the velocity of the soliton is 
positive, while the value of the Hamiltonian for the soliton 
solution, 

is negative for one-dimensional and two-dimensional soli- 
tons and positive for three-dimensional (d = 3) solitons. 
For waves with a negative dispersion, relations (7)-(9) turn 
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out to be in consistent ford = 2 and 3: I, and I2 have differ- 
ent signs, although they are positive by assumption. This is 
the simplest proof that in a system with a negative dispersion 
there are no solutions corresponding to multidimensional 
solitons. Relation ( l o ) ,  which we have derived for waves 
with a positive dispersion, yields a simple conclusion regard- 
ing the nonlinear stage of the instability (5).  As the instabil- 
ity occurs, and the front of the soliton breaks up into distinct 
clusters, it is not possible for three-dimensional solitons to 
form because Z is negative in the initial state. We have an 
analogous situation for the nonlinear Schrodinger equation 
and for the Zakharov equations describing the interaction of 
Langmuir waves and ion acoustic waves in a plasma. 

5 2. COLLAPSE OF SOUND WAVES 

The development of instability (5)  therefore cannot 
end in the formation of three-dimensional solitons. It is also 
important to note that three-dimensional solitons are unsta- 
ble, as can be shown with the help of the Lyapunov theorem. 
A given stationary point will be stable if it corresponds to a 
minimum or maximum the Hamiltonian (possibly a local 
minimum or maximum). If the stationary point is a saddle 
point, the state is unstable. 

Let us consider the simplest scaling transformations 
which leave the momentum projection P, invariant: 

Under these transformations, the Hamiltonian becomes a 
function of the transformation parameters a and 0: 

In the case K = 1, in two dimensions, this function has a 
minimum at a soliton solution. It can be shown" that this 
minimum coincides with an absolute minimum of the Ham- 
iltonian, so that the two-dimensional solition is stable with 
respect to two-dimensional perturbations. On the other 
hand, at d = 3 the Hamiltonian A? has, as a function of a 
and 0, a saddle point instead of a minimum, which is the 
basis for the conclusion that a three-dimensional soliton is 
unstable. 

Yet another important fact follows from the form of the 
function Z(a$) in ( 11). The function Z(a$) is not 
bounded from below in the limit a ,  fl-0. The fact that this 
function is not bounded is a consequence of nonlinear terms, 
whose relative role increases with as the x and r, scales de- 
crease. Of fundamental importance is the positive definite- 
ness of the quadratic terms in Z, which represent a "kinet- 
ic" energy, while the nonlinear term serves as a "potential" 
energy. If the dispersion is negative, the quadratic part of the 
Hamiltonian does not have a fixed sign; we can say that the 
masses of the quasiparticles have different signs in different 
directions. As we will see below, this radically changes the 
nonlinear dynamics of the system. 

The fact that the Hamiltonian is not bounded when the 
secondary integrals ("secondary" relative to the Hamilto- 
nian) are fixed and when the quadratic terms in 2? are posi- 
tive definite is characteristic of all systems in which a col- 

lapse can occur (self-fo~using '~, '~  and the collapse of 
various types of plasma waves'-6). We can therefore say that 
the process by which a singularity forms-the wave col- 
lapse-is energetically favored. In other words, wave col- 
lapse is equivalent to the reflection of a particle from an un- 
bounded potential. Wave collapse is distinguished from the 
reflection of a mechanical particle in one important way. 
The difference stems from the wave nature of the collapse; 
specifically, waves may be emitted from cavities, i.e., regions 
of an elevated field concentration. Clearly, this would be a 
dissipation process for the cavities, and in principle, because 
of the propagation of the waves away from the cavities, the 
result might be slowing or complete stopping of the collapse. 
This possibility exists for cavities with Z >  0. For cavities 
with a negative Hamiltonian, however, the emission of 
waves would promote the collapse. 

Let us assume that at t = 0 we have a field distribution 
uo(r)  with length scales 1 ,, and 1, and with a negative Hamil- 
tonian. In this case we evidently have an integral 

Hence, by virtue of the mean value theorem, the maximum 
value u,,, is bounded from below by the conserved quantity: 

It is easy to understand that this inequality holds for an arbi- 
trary region, in particular, for a contracting cavity with 
X'< 0 emission from such cavities will increase the ratio 
J Z J / P , ,  since P, decreases as a result of the removal of the 
waves, while lzl, on the contrary, increases. The reason for 
the latter effect is that for the emitted waves the dispersive 
effects exceed the nonlinear effects; i.e., the emission carries 
off the positive part of the Hamiltonian, reducing A? 
(A? < 0)  of the collapsing cavity. Consequently, the maxi- 
mum field increases as a result of the emission according to 
(12). 

Estimates similar to ( 12) have been made for Langmuir 
collapse,I6 and they can also be written for other systems. 
For Hamiltonians which have a lower bound (when the sec- 
ondary integrals are fixed) estimates of this type mean that 
solitons should form as a result of the evolution of a system 
with X < 0, while for unbounded Hamiltonians this process 
should always terminate in collapse. 

The emission thus has a strong effect on the collapse 
dynamics. Let us assume that the asymptotic behavior of the 
field amplitude near a singularity has the self-similar form 

With this distribution, the value of P, for the waves trapped 
in a cavity has a power-law behavior (to - t )  2" + " + 2 c .  

From the requirement that P, not increase we find a first 
restriction on the indices a, 6, and c: 

Another condition-the condition for collapse-follows 
from the requirement that the ratio of the values of I X l / 2 P x  
taken over the cavity increase: 
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The index a thus lies in the interval 

Accordingly, the parameter c lies between 36 /2 and 56 /2. 
The maximum value of a is reached under the condition 
a = c + b /2. This is the so-called strong regime of wave col- 
lapse,'' in which a finite amount of energy, i.e., P,, is 
trapped at a singularity, and there is no emission. Among 
these regimes the fastest occurs, when the index b is fixed, in 
the case with a = 36 and c = Sb /2. The behavior of the field 
amplitude near the singularity is 

r t  I f (  --- rL ) .  
( k t )  " ( to-t)  ' ( to-t)  Jb'2 

Curiously, inequality ( 14) becomes an equality in this case: 
The nonlinear and diffractive terms in A? behave identically, 
while the dispersive terms lag behind. The weak regime of 
wave collapse occurs in the case c + b /2 > a and is accompa- 
nied by the emission of waves from the cavity. The emission 
from the cavity is greatest when 6 = c - a + b /2 is at a max- 
imum. Using inequalities ( 14), we can easily show that for a 
fixed value of 6, the value max 6 = b /2 is reached at a = c 
= 26. This regime corresponds to the following asymptotic 

behavior of the field amplitude: 

for which the dispersive, diffractive, and nonlinear terms in 
R, taken over the cavity, behave identically. 

On the basis of the analysis above we can identify re- 
strictions on the indices and construct a very simple collapse 
classification. This analysis will of course not generate any 
specific values of the indices; that would require working 
directly with equation of motion ( 3 ) .  

We substitute (15) into (3).  It is easy to see that a self- 
similar substitution of the type in ( 15) is permissible only if 

In this case the structure function f is found from the solu- 
tion of the equation 

The solution of this equation has a power-law asymptotic 
behavior in the limit 7, , q, - : 

--tq;lxl+za q;%-a 

g (rlxzlq,). 
Here the function g(6) is regular at the points 6 = 0 and 
f = m and has nonzero values there. 

This asymptotic behavior shows that in the limit t + to a 
singularity of the following type develops at the point r = 0: 

u?=l-Z+'m -1-20 g2 (xz/rl)  . 
Of these solutions, the only ones which are physically mean- 
ingful are those for which the given singularity is integrable. 
We thus have the following restriction on the index a: 

The specific value of a is found from the requirement that 
the function g be regular. 

It should be noted that on this distribution the integral 
J f 2dvx dq, diverges in the limit Iq ( - m . The divergence is 
a direct consequence of the conservation of the momentum 
projection 

For this reason, a given solution cannot be realized over the 
entire space; it can exist only locally, near a cavity, merging 
with a non-self-similar region, contracting more slowly or, 
alternatively, spreading out. 

We should add that the presence of a given self-similar 
solution or, more precisely, form generally does not rule out 
the existence of other solutions with a self-similar asympto- 
tic behavior different from the given behavior. Furthermore, 
known examples of the solution of the Cauchy problem for 
the Korteweg-de Vries equationI8 and for the two-dimen- 
sional Kadomtsev-Petviashvili equationI9 demonstrate that 
in no sense are the self-similar solutions close to the self- 
similar asymptotic expressions for the nonsoliton part in the 
limit t -. w . 

Note also that solution ( 15) with indices ( 16) corre- 
sponds according to our classification to the weak wave col- 
lapse regime, in which the emission is a maximum (b = 1/ 
3 1. 

4 3. RESULTS OF NUMERICAL SIMULATIONS 

To study the nonlinear dynamics of sound waves, we 
have carried out a numerical simulation of the Kadomtsev- 
Petviashvili equation in the axisymmetric case. The diffrac- 
tive term in (2 )  is nonlocal, so that the standard methods for 
"breaking up" the problem into several one-dimensional 
problems in the numerical solution of the Cauchy problem 
cannot be used for Eq. (2).  Projection (spectral) methods 
involving an expansion in spatial harmonics are also un- 
wieldy because of this partic;lar form of the dispersion law 
for small perturbations of (2)  : k, (w + k ) = - k :, This 
dispersion law leads to very large values of the group veloc- 
ities for the lower harmonics of the solution. A new differ- 
encing technique, employing an iterative splitting, has ac- 
cordingly been developed. It is described, its convergence is 
proved, its errors are estimated, etc., in Ref. 20. For a nu- 
merical implementation of this technique, we used a differ- 
ence scheme with a high order of accuracy 0 ((Ax14, ( A t ) 2 ,  
(Ar, )*), which causes only a slight distortion of the disper- 
sion properties of (2) .  One criterion for the efficacy of this 
scheme was a test of the planar form of a two-dimensional 
soliton: retention of its shape, conservation of the invariants, 
etc., up to t-  1. To incorporate possible effects of emission 
from the system, we selected "penetrable" boundary condi- 
tions, which do not conserve Z o r  P, . To monitor the calcu- 
lations we calculated the fluxes of Z a n d  P, at the boundar- 
ies of the region, and we tested the conservation of the 
invariants with allowance for these fluxes. In all the calcula- 
tions ?was conserved at the end of the calculation to better 
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FIG. 1. The distribution u(x ,O)  at successive times. 

than 5%; the conservation of P, was an order of magnitude 
better. 

In a first series of simulations, corresponding to the case 
of positive dispersion ( x  = l ) ,  with an initial value of the 
Hamiltonian SY below the critical value [which was found 
to be positive, in accordance with ( l o ) ] ,  collapse of the 
sound waves occurred (Fig. 1 ). The central part lagged be- 
hind the periphery, and a characteristic U-shaped profile 
formed (Fig. 2) .  The amplitude of the wave field in the cav- 
ities which formed increased by an order of magnitude over a 
time t = 0.3; i.e., the intensity increased by two orders of 
magnitude. We observed emission from both the system it- 
self and the cavity. In the calculation region, 2Y decreased 
from 30 to - 80 over this time, while the change in Px was 
small, - 10%. Significant changes occurred in the cavity, 
whose boundary we took to be the line u = 0. Specifically, Px 
decreased by a factor of about 3, and by an order of mag- 
nitude (Figs. 3 and 4).  It follows from Fig. 3 that at t-0.3 a 
trend toward a self-similar time dependence of the quantities 
sets in. Analysis of the results of the numerical simulation 
shows that, for example, the time evolution of the amplitude 
of the wave field at the cavity axis is approximately 

( to - t ) - * I 3 .  This result means that, in accordance with $2, 
there is a collapse regime with maximum emission in this 
case. 

It follows from the results of $1 that when the disper- 
sion is negative there are no solutions in the form of multidi- 
mensional solitons, so that we need to consider the question 
of the asymptotic behavior of the solutions in the limit t - co . 
The different signs of the quadratic terms of the Hamilto- 
nian correspond in the case 

& = J u s d r > O  

to an attraction along the longitudinal coordinate and a re- 
pulsion along the transverse coordinate. ( In the case I ,  < 0, 
the directions are switched.) In this situation, if the waves 
are of sufficiently large amplitude, the nonlinear evolution of 
the perturbations may in principle give rise to caustics. The 
numerical simulations with the Kadomtsev-Petviashvili 
equation show, however, that wave collapse does not occur 
in the case x = - 1. In the initial stage, partial focusing of 
the wave field occurs and the wave amplitude increases (Fig. 
4).  The peripheral region lags behind the central region, and 
the picture which appears is qualitatively the same as in the 
positive dispersion case (Fig. 2 ) .  In a later stage, the con- 

FIG. 2. Contour map of the function u(x , r ,  ). FIG. 3. Time evolution of %, P, for a cavity, and u,,, . 
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FIG. 4. Curves of the field u for the case of a negative dispersion at the axis 
( r ,  = 0 )  at successive times. 

traction of the perturbations comes to a halt, and in all cases 
a transition to a defocusing regime takes place. Interestingly, 
the picture drawn here of the evolution of sound waves in 
media with a negative dispersion is analogous to the nonlin- 
ear interaction of electromagnetic waves with media in 
which the derivatives d 2 ~ / d k  :, d 2w/dk have different 
signs (ion cyclotron waves, whistlers, etc.).21 

9 4. OBLIQUE SHOCK WAVES IN A STRONGLY 
MAGNETIZED PLASMA 

In this section we will study how the wave collapse af- 
fects the structure of oblique shock waves in a magnetized 
plasma with f l  = 8 m T / H  2 g 1. At frequencies below the 
ion cyclotron frequency, w g w ,  , fast magnetosonic waves 
are excited in such a plasma; their dispersion law is (for 
f l >  m/M); (cf. Ref. 22) 

Here v, = Ho(4mMj ) - ' I2 is the AlfvCn velocity, and 0 is 
the angle between the magnetic field and the wave propaga- 
tion direction. The plasma is quasineutral in such motions; 
this case is valid for o gopi. It follows from ( 17) that except 
in small angular neighborhoods of I9 = 0 and I9 = 7~/2 the 
dispersion is positive and has effects at distances -c/wpj. 
For nearly transverse propagation, 10 - ~ / 2 1  < ( 8 /8 ) I t 2  
the dispersion is negative and is determined by effects stem- 
ming from the finite ion Larmor radius p = v,/w,. 
Expression ( 17) does not apply at angles I9 < (kc/@,, ) 'I2, 
where there is a pronounced change in the wave dispersion 
mechanism. At 8 < m/Mi the dispersion is determined over 
the entire angular range from the hydrodynamic equations: 

For nearly transverse propagation, lr/2 - I9 I ( (m/M, ) 'I2, 
the dispersion of fast magnetosonic waves is negative. Out- 
side this cone the dispersion is positive. We will consider 
here only the region of angles with positive dispersion, for 
which the dispersion length satisfies 

In this case the Kadomtsev-Petviashvili equation, (2) ,  is 
valid for describing small-amplitude fast magnetosonic 
waves with a narrow angular distribution: 

Here h is the dimensionless amplitude of the fast magneto- 
sonic waves, in terms of which the total magnetic field can be 
expressed: 

H=H,(cos 8, 0, sin 8-l-h) 

The coefficient of the nonlinear term in ( 18) can be found 
with the help of the results given in Karpman's book.23 

In Eq. ( 18), in contrast with (2) ,  we have incorporated 
a damping describzd by the operator .i/. The transform of the 
operator .i/ is the damping rate for a monochromatic wave, 
y (k) .  It is governed by both collisional and collisionless 
mechanisms: 

Most of the collisionless damping is caused by elec- 
trons. In the region w/k, dv, [i.e., at angles cos0> (m/ 
MjB) 'I2] we have24 

For w/k, v, % 1 the damping y, by electrons is exponential- 
ly small: 

The collisionless damping is anomalously strong for 

We now discuss the roles are played by other waves in 
this frequency range (w < wHi ); AlfvCn waves and slow mag- 
netosonic waves, whose natural frequencies are, respective- 
l y , ~ ~  = lkzIvA andw, = Ik,Ic, (c := Te/Mi).  Inacolli- 
sionless plasma, the slow magnetosonic waves exist only if 
the plasma is nonisothermal, i.e., only if Te & T, . 

In the case fig I ,  the most important nonlinear pro- 
cesses for fast magnetosonic waves which involve AlfvCn 
waves and slow magnetosonic waves are the decays 
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To analyze these processes it is sufficient to use the growth 
rate of the decay instability for a monochromatic wave. The 
specific expressions for the growth rates can be found, for 
example, by the Hamiltonian approach of Refs. 25 and 26 or 
by a direct method, as was first used by Galeev and 
Oraevskii2' for the decay instability of AlfvCn waves. For the 
decay ( 19) the growth rate y is 

Here Wis the energy density of the fast magnetosonic wave, 
and n, , , n,, ,, are the linear polarization vectors of the 
initial and scattered fast magnetosonic waves. Here 

Since the relative change in the frequency of the fast magne- 
tosonic wave is small in Eq. ( 19), Aw/w -c, /u, -P ' I 2  4 1, 
the maximum of the growth rate corresponds to the maxi- 
mum value of the frequency of the slow magnetosonic wave, 
o, . Consequently, this factor favors a z projection of the 
wave vector of the excited fast magnetosonic wave which is 
directed opposite that of the initial wave and which is equal 
to k,,. Because of the scalar product of the polarization vec- 
tors, however, the maximum of the growth rate is shifted 
slightly in angle. Nevertheless, the tendency toward scatter- 
ing with a large change in wave vector remains. 

In order of magnitude, we have 

The instability growth rate for decay (20) is given by a simi- 
lar expression: 

where n;' = [kn,]// [kn,] / is the polarization vector of the 
Alfven wave. The maximum value of the growth rate for this 
process is of the same order of magnitude as (21 ) ; the AlfvCn 
waves which are excited make angles of order unity with 
respect to the initial fast magnetosonic wave. The situation 
which arises here is extremely reminiscent of decay pro- 
cesses involving Langmuir, electromagnetic, and ion acous- 
tic waves in an isotropic plasma. 

If the plasma is nonisothermal, fast magnetosonic 
waves will be converted into fast magnetosonic waves or Alf- 
ven waves involving ions, instead of decaying according'to 
( 19) and (20). The nature of the interaction, however, 
changes markedly. The time scale r for these processes is 
significantly longer: 

In the first place, this process is proportional not to the am- 
plitude, as in (2  1 ), but to its square; second, there is an addi- 
tional small factor in this case, because of the differential 
pumping along the frequency scale, Am/@ -c, /v, . Let us 
examine the decay process within the fast magnetosonic 
branch. As we mentioned back in 5 1, the waves participating 
in this process have nearly parallel wave vectors. In order of 
magnitude, the maximum value of the growth rate, 

~ ~ C Z - ~ M S  (ko) (Wlpv~" "". (22) 

is the same as the characteristic reciprocal of the nonlinear 
time for Eq. ( 18 1. The time scales of the decay processes 

are of the same order of magnitude. For these processes, as 
for ( 19) and (20), the maximum growth rate does not coin- 
cide in direction with the initial fast magnetosonic wave. For 
angles far from 0 and a/2, secondary waves are separated 
from the original fast magnetosonic wave by an angle A0 - 1. 

We thus see that only the nonlinear interaction of fast 
magnetosonic waves is of a quasi-one-dimensional nature. 
All other processes lead to a large-angle scattering, and the 
so-called vector nonlinearity is unimportant in this case. 

We consider a one-dimensional solution of Eq. ( 18) in 
the form of a shock wave, which has the asymptotic behavior 

The state h = h, behind the shock front corresponds to a 
density jump 

and a plasma velocity 

vo=(4npo)-"Hobo sin 0. 

As a result, the change in the AlfvCn velocity is 

which, along with the velocity 

v,= (4npo) -'"H,h, sin 0 

gives us 3/2(4apo)-"2~,h, sin 19, in complete accordance 
with Eq. ( 18). Since Kadomtsev-Petviashvili Equation ( 18) 
describes small wave amplitudes, this solution represents a 
weak shock wave. At this point we adopt the assumption 
that the damping is weak-weaker than dispersion effects. 
In this case, according to the Sagdeev theory,2x a collision- 
less shock wave arises with a front of oscillatory structure. 
The amplitude of the oscillations decays with distance from 
the jump. The oscillatory structure may be thought of as a set 
of one-dimensional solitons. The first has a size 
I ,  -2,  (M - 1) - ' I 2  and an amplitude of order h, where M 
is the Mach number; the amplitudes of the successive soli- 
tons fall off. If the primary dissipative mechanism is the oh- 
mic loss due to electron-ion collisions, the size of the oscilla- 
tory structure can be estimated to be2' 

It is easy to understand that the laminar oscillatory structure 
of a shock wave is unstable against processes ( 19), (20), and 
(23) .  This question was first taken up by Galeev and Karp- 
man,29 who studied the effect of the decay of a fast magneto- 
sonic wave into fast magnetosonic and AlfvCn waves. In a 
collisionless plasma withP< 1 (but in whichp is not identi- 
cally zero), the primary nonlinear process with T, & Ti is a 
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decay involving slow magnetosonic waves. For such pro- 
cesses, the waves which are excited propagate at large angles 
with respect to the wavefront; because of the finite width of 
this front, the removal ofthe excited waves may saturate the 
instability. A necessary condition here is that the growth 
rate satisfy 

where A is the Coulomb logarithm, and u,,, are the group 
velocities of perturbations along the x axis. In the case of an 
isothermal plasma, r represents, roughly speaking, the 
number of solitons in the structure, N. In a nonisothermal 
plasma, (25) would be multiplied by a factorp - ' I 2  because 
of processes ( 19) and (20). 

This reason for the saturation of the instability is not 
present for a nonlinear interaction between fast magneto- 
sonic waves which have a small angular spread with respect 
to the front and thus a small spread in group velocities. This 
nonlinear interaction is of an absolute nature, while all the 
other processes are of a drift nature. Consequently, under 
condition (25) the mechanism which primarily determines 
the front structure of weak oblique shock waves is the non- 
linear interaction of waves within the fast magnetosonic 
branch. 

Let us take a more detailed look at the changes caused in 
the front structure by instability (5) .  We recall that a lami- 
nar oscillatory structure consists of "rarefaction" solitons 
and that the maximum magnetic field in each soliton is 
weaker than the field ahead of the wavefront. In the nonlin- 
ear stage of the instability, when the front is modulated, 
those regions of the soliton which have a smaller amplitude 
lead regions with a larger amplitude. As a result, in those 
parts of the front where the magnetic field decreases the soli- 
ton slows down, and its trailing edge becomes steeper. A 
decrease in the magnetic field in the soliton itself should be 
accompanied by a repulsion of the field from the center of the 
soliton and should cause an increase in the magnetic field at 
the wings; this is what is observed in a numerical simulation 
of the collapse of a single cavity2' (Figs. 1 and 2). A rough 
comparison of the time scales for the onset of this instability, 
T ,  and for the formation of the oscillatory structure, T,,, , 
indicates that they are on the same order of magnitude (ac- 
tually, T,,, should be longer than T because of the large num- 
ber of solitons). This result means that the front structure 
should consist of one or two collapsing cavitons. We should 
thus replace criterion (25) by 

Since the Coulomb logarithm A has a typical value on the 
order of 10, criterion (26) is far from being stringent; it is 
satisfied for broad ranges of parameter values. 

In each collapsing caviton, as the magnetic field in- 
creases, there comes a time when the ions begin to be reflect- 
ed from the front. In the caseBg 1, according to (30), break- 
ing occurs at Mach numbers M  = 1.5-2.5, depending on the 
angle between the propagation direction and the magnetic 
field. It can thus be suggested that the amplitude grows to a 

value of order unity. At a larger wave amplitude, the energy 
'in the transcritical region should be transferred to ions. As a 
result, the plasma acquires a group of fast ions, which in turn 
excite high-frequency waves (ion cyclotron and lower hy- 
brid waves) with a wavelength far smaller than the size of 
the original structure. 

Let us find the effective v,, of this process. We can use 
the energy balance condition: 

where E~ is the energy stored in one cavity, y is the rate at 
which energy is pumped from scale to scale, and AE is the 
energy transferred to the ions. 

The initial size of a cavity, I,, is on the order of the size 
of a soliton, 1, -AD (M - 1 ) - ' I 2 .  The transverse dimension 
found from the maximum of growth rate (5)  is given in or- 
der of magnitude by I, - I, (I, /AD ) .  Initially, the amplitude 
at the center of the cavity is - ( M  - 1 ) . We thus find 

For y we must take the reciprocal of the typical nonlinear 
time: 

Assuming that the collapse regime and the growth of the 
wings are determined by self-similar behavior ( 15 ) , ( 16), 
we easily find 

Hence 

We must stress that this effective rate is a measure of the 
energy transfer to ions, but it does not determine the turbu- 
lent width of the front. We can associate with v,, an energy 
length 

The front width should be estimated from If-u,/ 
y-A, ( M  - 1 ) - I J 2 .  The turbulent width of the front is de- 
termined specifically by the value of y. If the collapse is 
strong, then we have If - I, ; in our case, there is a collapse 
regime with maximum emission ( § 3 ) ,  and the relation 
I, %If holds. The collapse of sound waves for the case of 
collisionless shock waves is a mechanism which can transfer 
energy of directed motion into other degrees of freedom: 
lower hybrid noise, fast ions, and transverse modulations of 
the front. The energy transfer rate is y. 

CONCLUSION 

The experimental data3' available on shock waves in the 
auroral regions of the earth with f i<  1 and with Mach 
numbers of order unity are evidence in favor of the theory 
presented here. These measurements demonstrate the exis- 
tence at a shock front of pronounced MHD turbulence, of 
fast ion beams, and of ion cyclotron and lower hybrid waves; 
i.e., there is agreement in terms of this set of data. In order to 
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make a quantitative comparison with experimental data, it 
will be necessary to carry out some numerical simulations 
dedicated to the purpose. 

We wish to thank L. M. Zelenyifor calling our attention 
to Ref. 3 1. We also thank A. V. Shafarenko for participating 
in the numerical simulations and for the development of the 
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comment. 

"In an erroneous recent paper, Mikhaflovskiiet a1.I3 derived an instability 
of stationary waves with respect to oblique perturbations for the Ka- 
domtsev-Petviashvili equation with a negative dispersion. However, the 
dispersion relation (3.15 in Ref. 13) is cubic in w and has only real roots, 
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and making use of the properties of elliptic functions. 

"It should be kept in mind that the switch from the Kadomtsev-Petviash- 
vili equation in its standard form, (3) ,  to the form (2)  is made by means 
of the replacements u-  - u, x -  - x .  
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