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The differential charge-transfer cross section is calculated for the two-level model in the case of 
weak coupling, determined by flat and Coulomb diabatic terms with exponential interaction 
between them. The quasiclassical limit of the quantum-mechanical expression and the 
conditions for this limit to be identical with the primitive semiclassical approximation used in 
calculating the transition probability from the Landau-Zener formula are examined. The 
example of the charge-transfer process Arf + + He-Ar+ + He+ is used to show that the 
model calculation leads to satisfactory estimates for the cross sectism, provided the scattering 
angle is not too small. 

INTRODUCTION mechanical model was the fact that the well known Landau- 

There has been recent increased activity in experimen- Zener formula is not valid near the threshold value of the 

tal studies of charge-transfer processes of the form impact parameter in semiclassical calculations: although a 
large, clearly incorrect increase in the probability is compen- 

A++ +B+A++B+ ( 1 ) sated by the fact that the classical differential cross section 

at collision energies E of the order of 1 eV (Refs. 1-3). In the 
initial state, these processes correspond to "covalent" terms 
with a weak polarizational attraction between A t +  and B at 
intermediate and large nuclear separations R,  and strong 
exchange repulsion at small separations. In the final state, 
they are described by Coulomb terms corresponding to the 
mutual repulsion between A+ and Bt .  Depending on the 
ratio of the ionization potentials of B and A+,  the covalent 
and Coulomb terms may cross at different separations R,. 
The cross section for process ( 1 ) at low collision energies is 
then determined by the charge-transfer interaction in the 
crossing region. 

A simplified two-level model of charge transfer between 
Ar++ ('P) and He was examined in Ref. 4. It was shown 
that, because of the relatively large separation (R, -- 9 a.u. ), 
and the correspondingly weak interaction inducing the 
charge-transfer process, a perturbation theory in this inter- 
action could be used to calculate the transition probability at 
energyesE- 1 eV. Satisfactory agreement has been achieved 
in this model between calculated differential cross sections 
and charge-transfer rates, on the one hand, and experimen- 
tal data, on the other.'.' 

It became clear in the course of these calculations that 
the weak polarizational attraction at large separations 
between A+ + and B, and the strong exchange repulsion at 
small separations between them, had little effect on the rate 
constant and the differential cross section when the scatter- 
ing angle 8 was not too small (specifically, for 8 > 20"). It is 
therefore interesting to consider the simple two-level model 
of ( l ) ,  in which the covalent term is assumed to be flat. In 
this model, the quantum-mechanical distorted-wave meth- 
od can be used to obtain a simple analytic expression for the 
differential charge-transfer cross section in the quasiclassi- 
cal limit. 

An additional stimulus to the analysis of the quantum- 

tends to zero in this region, it ig not clear in advance to what 
extent the final result is valid (this question is discussed on p. 
212 in Ref. 6). However, it turns out that the quasiclassical 
limit of the quantum-mechanical solution is identical with 
the semiclassical approximation, which settles the question 
of whether this approximation can be used. 

DISTORTED-WAVE METHOD 

We shall consider the two-level model of inelastic scat- 
tering, described by flat 

and repulsive Coulomb 

diabatic terms, and the following interaction between the 
diabatic states: 

The exponential dependence of V,, on R is typical for 
charge-transfer processes (see, for example, Ref. 7) .  

For process ( I ) ,  a = 1 (here and henceforth, we shall 
use atomic units unless otherwise indicated). The terms V,, 
and V,, are then found to cross at the separation 

R,=l/A&. (5  

This is the situation to which we shall confine our attention 
throughout this paper. 

We note that analogous results are -obtained for 
a = - 1, AE < 0, which corresponds to the process 

A+B+A++B-. (6 )  

When V,, is small, the amplitude f ( 0 )  for the inelastic 
transition 1-2 can be calculated in the first order of the 
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distorted-wave method (see, for example, Ref. 8 ) .   ow ever, 
in the present case, in which the term V ,  , is flat, this method 
yields 

Where p is the reduced mass of the system AB, p,, is the 
plane wave corresponding to energy E = k :/2p, p < is the 
solution of the single-channel Schroedinger equation with 
potential V,, for k :/2p = E + Aa, which corresponds to a 
plane incident and a converging spherical wave in the 
asymptotic region, and 8 is the angle between k, and k,. The 
functions p,, and p, are normalized as follows: 

The standard approach to the evaluation of f(8) from 
(7)  relies on the expansion of p,, and p < in terms of spheri- 
cal waves. This approach was adopted in Ref. 9 for the model 
considered here. However, the authors of Ref. 9 were unable 
to perform an analytic summation of the resulting series, and 
used numerical methods and various approximations to de- 
termine the total cross section for the inelastic process. 

It turns out, however, that a relatively simple analytic 
expression can be obtained for (7)  by using the Coulomb 
wave functions in expressed parabolic coordinates. Details 
of this are given in Ref. 10 in another connection. In our 
terminology, however, the author of Ref. 10 obtained, in the 
first order of the distorted-wave method, an analytic expres- 
sion for the amplitudef(8) for the inelastic process in the 
case of the two-level model with 

V,,=(a,/R), V,,= (azlR)-.Ae, V1,= (A/R)exp(-yR), 

(9)  
for which 

where fri = pZi /ki is the Coulomb interaction parameter, 
a = [ y  - i ( k ,  + k2)]/2,F(.  . .) isthehypergeometricfunc- 
tion, and 

It is clear that the expression for f(8) is obtained from 
( 10) by insertingA = A, i j ,  = 0, and 3, = ,ua/k2 = v2, and, 
moreover, by replacing 1(8) with 

where F(0, - iv,,l, - [) = 1. Simple rearrangement then 
yields 

The inelastic differential cross section for the process 

can be written in the form 

q(8)  = a,,{sinz 8,[4n (I-cos 0, cos O)z]-l) 

x cD[exp(nqz)/2 sh nq21. (17) 

The physical meaning of the factors in ( 17) is as fol- 
lows. The factor 

has the dimensions of area and is the total cross section cal- 
culated in the standard semiclassical Landau-Zener model 
in the weak coupling limit (see, for example, Ref. 6 )  
with off-diagonal matrix element a = V,,(R, 
=A exp( - yRc ) and term slope difference AF = R c-2 at 

R, = A&-'. 
The second factor in ( 17) contains the main angular 

dependence of the differential cross section, and yields unity 
when integrated over all angles. This factor includes the pa- 
rameter 

whose significance is discussed below. 
The factor @ depends on the scattering angle 8, the an- 

gular parameter 8, , the reduced energy x = E /A& (through 
the latter parameter), and the two parameters y = y/ 
(2pA&)'12 and 7, = ( p / 2 A ~ ) ' / ~ .  The explicit form of @ is 

I 
It will be shown below that this factor describes the terms becomes comparable with the off-diagonal matrix ele- 

deviation from the Landau-Zener model due to the presence ment. Finally, the last factor in ( 17) gives the correction to 
of the second nonadiabatic coupling region localized for dis- the quasiclassical approximation. 
tances R < R,, for which the splitting between the diabatic To estimate this correction, and to elucidate the part 
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played by @ in the quasiclassical limit, let us suppose that 
vO) 1 and y 4  1 (these conditions are well satisfied under 
typical conditions for which AE- 1 eV, y= 1 a.u., ,u = lo4 
a.u.). The first condition ensures that the motion is quasi- 
classical with respect to the Coulomb term for low initial 
energies E <  AE (motion through the flat term is always 
quasiclassical), and the second ensures that the off-diagonal 
matrix element varies smoothly. Since 
n-v2 = n-vO( 1 + x)-'I2, it is readily shown that, right up to 
very high energies, the last factor in ( 17) may be assumed to 
be equal to unity (the failure of the quasiclassical approxi- 
mation at very high energies is due to the appearance of the 
singularity in the Coulomb potential at R = 0).  

Analysis of the factor @ shows that the main parameter 
governing its magnitude is the product y (  1 + x)'I2. When 
this product is small, @ is close to unity but, whei the energy 
x is high enough, so that y (  1 + x )  ' I 2  k 1 (this occurs when 
E >  100 eV for the adopted values of AE, y, andp ) ,  @ may 
exceed unity and depends appreciably on angle for small 8. 
This effect is entirely due to the stronger coordinate depen- 
dence of the matrix element of the interaction as compared 
with the splitting of the diabatic terms: when R < R,, we 
have the situation where V , ,  (R ) becomes comparable with 
the difference V , ,  - V,,, so that the adiabatic terms and the 
corresponding adiabatic functions become very different 
from the diabatic quantities, which should not occur in the 
Landau-Zener model. In the region of strong mixing of the 
diabatic states, there are also possible nonadiabatic transi- 
tions, but their probabilities are appreciable only at relative- 
ly high energies. The situation here is completely analogous 
to that encountered in the linear-exponential model (see 
Section 27 in Ref. 6) ,  which can be completely interpreted in 
terms of the semiclassical trajectory approximation. 

Thus, in a wide range of energies, the quantum-mechan- 
ical differential cross section for the charge-transfer process 
can be represented with high precision by the formula 

which follows from (17) when the last two factors are set 
equal to unity. 

The particular feature of the inelastic differential cross 
section, give by (2 1 ), is its monotonic dependence on the 
scattering angle 8. The physical reason for this will be par- 
ticularly easily understood in terms of the quasiclassical 
method, which also enables us to determine the range of 
angles in which the model with the flat term that we are 
considering reproduces satisfactorily the differential cross 
section in the realistic situation in which strong repulsion in 
statev> appears only for small R . 

MULTITRAJECTORY SEMICLASSICAL APPROXIMATION 

It is well-known that, in the multitrajectory semiclassi- 
cal approximation, also referred to as the primitive semi- 
classical approximation,' the scattering amplitude is calcu- 
lated as the sum of contributions, each of which is associated 
with the motion of the particle along a particular trajectory. 
The amplitudes and phases of these contributions are deter- 
mined from the complete quasiclassical representation of the 

scattering amplitude by evaluating the integral by the meth- 
od of stationary phase, where each point of stationary phase 
determines the deflection functionx(b) for the correspond- 
ing trajectory with initial impact parameter b. In the present 
case, in which the interaction is weak, these deflection func- 
tions correspond to the following two possible paths of the 
system through the diabatic terms. The first path corre- 
sponds to the mutual approach of the particles through the 
flat term V , ,  to R = R, , the transition to the Coulomb term 
V2, at R = R, , which follows the approach along this term 
up to the turning point R :, and separation through the term 
V,? to infinity (the cumulative phase at the end of all this is 
26' ). The second path corresponds to the mutual approach 
of the particles over the term V ,  , up to the turning point R :, 
separation over this term up to R = R,, transition from the 
term V ,  , to the Coulomb term V,, at R = R, , and separation 
over the Coulomb term to infinity (the cumulative phase is 
26 ' ) .  

In this approximation, the scattering amplitude is 

where 

is the classical differential cross section corresponding to the 
deflection function xi, and 

is the probability of a single transition according to the Lan- 
dau-Zener model. The corresponding expressions for branch 
c are obtained from (23) and (24) by replacing i with c. 

The impact parameter bi in (22)-(24) is looked upon 
as the function bi (8) , and is found from the equation for the 
position of the stationary phase, which also establishes the 
relation between the deflection function xi and the corre- 
sponding phase Si : 

and, analogously, 

These equations already take into account the fact that there 
is no attraction in channels 1 and 2, so that the angles of 
deflection cannot be negative. 

Since the classical motion over segments of diabatic 
terms is known, it is readily shown that the deflection func- 
tion is 

cos 0 , + [ l -  (b /R,)z] '"  xC = arccos 
1 + [ l - ( b / R , ) 2 ] ' h  cos 0, 

where the angle 8, is given by ( 19 ) . 
It follows from (27) and (28) that (25) has a solution 

only for 8, <8<n-, and (26) only for 0<8<8,. Hence, for 
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FIG. 1 .  Moduli of the deflection functions Ix(b) 1 = 6' and differential 
cross sections q(0)  (in units of lo-' AZ/deg) at collision energy E = 0.53 
eV: 0--experiment, ' broken curve-~alculated,~ solid curve--calculated 
in the present paper. 

each value of8, only one term remains in the sum in braces in 
(22), which explains the absence of oscillations, mentioned 
above, on the differential charge-transfer cross section q(8) .  

By analogy with the results in Ref. 4, the function bi (8) 
passes smoothly into bc (8) at 8 = 8, and, in our model, the 
two branches can be described by the simple single function 

b(0) =R,( 1-cos 0, cos 0)-' sin 0, sin 0. (29) 

In view of the foregoing discussion, and using ( 16), 
(22)-(29), we obtain an expression for q(8)  that is identical 
with formula (2 1 ), obtained by the quantum-mechanical 
approach. 

In relation to the quasiclassical calculation of q(8) ,  we 
know that, strictly speaking, it is not valid near 8 = 8,, 
where the transition probability P(b)  increases rapidly as 
(R, - b)-'I2 and the increase is balanced exactly by the 
reduction in the derivatives Idbi/d8 I - ldbc/d8 I - (R, - b) 'I2. Comparison with the quantum-mechanical 
'calculation shows, however, that the quasiclassical calcula- 
tion leads to the correct result for q(8)  even at scattering 
angles near 8, in the case of the crossing of the flat and 
Coulomb terms. Hence, we may conclude that, even in the 
more realistic model of the charge-transfer process ( 1 ) that 
takes into account the long-range dispersive attraction and 
short-range exchange repulsion on Vl ,, we can still use the 
primitive semiclassical approximation described in Ref. 4 
for angles near 8,. The criterion for the validity of this ap- 
proach can be the closeness between 8, and the deflection 
functions near 8, in the realistic model and in the corre- 
sponding model with flat and Coulomb diabatic terms. 
Moreover, the model that includes the flat term may then 
provide a reasonable approximation to the differential 
charge-transfer cross section in a relatively wide range of 
angles. 

Let us illustrate this discussion by considering the ex- 
ample 

which we previously investigated in terms of the simplifier 

two-level model. Figure 1 compares the deflection functions 
and the differential cross sections calculated at E = 0.53 eV 
in Ref. 4, including the polarizational attraction of Ar++ 
and He at large distances and the strong exchange interac- 
tion at short distances, with the present calculations based 
on (21), (27), and (28), in which theseeffects are neglected. 

It is clear that the neglect of the polarizability of He 
(a,, = 1.38 a.u.) has practically no effect on R, and 8, for 
E20.53 eV. The ionic branches of the deflection function 
X I  (6)  are also practically identical down to 0 = 8,. The cal- 
culations reported in Ref. 4 show that the contribution of the 
core to the differential cross section at E = 0.53 eV falls from 
15% at 8 = 180" to 5% at 8 = 8, = 46". The corresponding 
figures for E = 1.62 eV are 27% at 8 = 180" and 3% at 
8 = 8, = 28". 

CONCLUSION 

It is well-known that the elastic scattering of atoms dur- 
ing their motion over segments of the flat and attractive Cou- 
lomb terms is characterized by the so-called giant glory, i.e., 
total back reflection at a certain particular value of the rela- 
tive energy.'' Possible distortions of this effect by the differ- 
ence between the true potentials and the model potentials, 
and the nonzero inelastic scattering probability, can be taken 
into account as corrections to the zero-order approxima- 
tion.'' The analytic formula reported here for the differen- 
tial scattering cross section in the inelastic channel repre- 
sents other properties of an analogous system whose motion 
is also determined by segments of the covalent and ionic 
terms. This formula can be used as the initial approximation 
for taking these effects into account, including the influence 
of the curving of the trajectories by the core (their radius is 
small in comparison with the crossing separation) and the 
dependence of the charge-transfer matrix element on the 
separation. The latter effect may become significant not only 
in the differential but also the integral cross sections. In par- 
ticular, it may appear as a change in the energy dependence 
of the cross section (which may become an increasing rather 
than a decreasing function), and may explain the existence 
of the cross section minimum. This type of minimum has 
been found on the energy dependence of the cross section for 
the neutralization process H+  + H--H* ( n  = 2.3) + H, 
where, on the low-energy side (less than 20 eV), the cross 
sections found by numerical solution of the multichannel 
scattering problem are satisfactorily reproduced by the Lan- 
dau-Zener formula. l 3  

The authors are indebted to M. Ya. Ovchinnikov for 
discussions on this research. 
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