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A symmetric approach to the analysis of optical bistability (OB) is proposed. It is shown that 
the propagation of radiation along the optic axis of a nongyrotropic nonlinear system generally 
gives rise to two types of optical bistability, namely, intensity OB and polarizational OB. The 
associated physical mechanisms and the criteria for the appearance of these types of OB are 
indicated. The dependence of the bifurcation value of the incident intensity on its polarization 
parameters is analyzed in terms of symmetry properties. It is shown that, for polarizational 
OB, this dependence is nonanalytic (it has a spinodal edge). The criteria obtained in this way 
are used to investigate the onset of OB in special cases, including ring cavities filled with 
nonabsorbing crystals exhibiting arbitrary optical nonlinearity. 

Optical bistability (OB), i.e., the presence of two stable 
stationary states of radiation in a system for given incident 
radiation, is now known to occur in many nonlinear optical 
systems. As a rule, optical bistability (see Ref. 1 ) is associat- 
ed with the dependence of the refractive index and adsorp- 
tion coefficient of a nonlinear medium on the incident inten- 
sity (most calculations and experiments have been carried 
out for different media in resonant cavities). However, in 
general, the variation in the polarization of radiation in a 
medium is also found to depend on intensity. The propaga- 
tion of radiation polarized in a symmetric direction (e.g., in 
the plane of symmetry) and propagating along the optic axis 
is often found to give rise to polarizational instability, i.e., 
lateral increments in the field E become amplified in the 
course of propagation. This type of instability occurs, in par- 
ticular, in an isotropic medium exhibiting the self-induced 
rotation of the polarization ellipse observed in Ref. 2 (see 
below). It was also reported in Ref. 3 for nonlinearly absorb- 
ing cubic crystals. 

Fluctuations in polarization may grow in time when a 
nonlinear medium is placed in a resonant cavity. As a result, 
the radiation transmitted by the system in the stationary 
state is found to be in one of two symmetric states differing 
by the sign of the angle of rotation of the polarization ellipse 
relative to the original direction of E, and by the direction of 
rotation of E( t )  in time. 

The possibility of this type of polarizational OB will 
obviously primarily depend on the symmetry properties of 
the system. Examples of polarizational OB were discussed in 
Refs. 4 and 5 in two special cases. The "dichroic" OB, dis- 
cussed in Refs. 6 and 7, can also be described as polariza- 
tional OB. Below, we shall use the symmetry approach to 
derive the general conditions for the appearance of polariza- 
tional OB, and will analyze its observable properties. 

The complete analysis of OB consists of establishing the 
dependence of the intensity I, and of the polarization param- 
eters $,, X ,  of transmitted radiation on the corresponding 
parameters I ; ,  $; , x i  of the incident radiation [$is the angle 
between the semimajor axis of the polarization ellipse and 
the chosen symmetric direction in the system, i.e., thex-axis, 

and the parameter x determines the degree of ellipticity 
[through the formula cos 2 x  = (Ill - I, )/(Ill + I, ) ] and 
the direction of rotation of the vector E( t ) ;  see Ref. 81. In 
general, these functions are very complicated. The signifi- 
cant point is, however, that they have a number of important 
properties that are determined by the symmetry of the sys- 
tem and the type of OB, and are common to different mecha- 
nisms of optical nonlinearity. 

We shall show in this paper that these properties can be 
found, and that the basic types of OB can be established, by 
investigating the transmission of the system when the pa- 
rameters I,, $; , x i  of the incident radiation lie near points on 
the bifurcation surface I, ($i, xi ) that are determined by 
symmetry properties, where I, ($;,xi ) is the value of I; for 
which new stationary states of radiation in the system occur 
for given qi, xi. In Section 1, we shall obtain the criteria for 
the appearance of two general types of OB, namely, intensity 
OB and polarizational OB. Absorptive and refractive OB, 
discussed in Ref. 1, are special cases of intensity OB. The 
shape of the I, ($;, xi ) surface near its symmetry axes is 
analyzed in Section 2 in the case of intensity and polariza- 
tional OB. Section 3 investigates the transmission of nonlin- 
ear systems near the POB threshold. In Section 4, we find 
general criteria for the appearance of intensity and polariza- 
tional OB in special cases, and derive explicit conditions for 
the onset of OB in ring cavities filled with transparent media 
with arbitrary optical nonlinearity. The main results are dis- 
cussed in Section 5. 

1. CRITERIA FOR INTENSITY AND POLARIZATIONAL OB 

Let us consider the case-frequently investigated ex- 
perimentally-where the radiation propagates in a system 
along its optic axis, where, in a nonlinear medium, this may 
be a third- or higher-order symmetry axis (z-axis), the sys- 
tem being nongyrotropic so that there is no change in polar- 
ization when the intensities are low. Examples of such sys- 
tems include cavities filled with nongyrotropic isotropic 
media or suitably oriented cubic, tetragonal, or hexagonal 
crystals or heterostructures. 
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Under the conditions of optical bistability or multista- 
bility, and for given incident parameters I, , $,, x i ,  the pa- 
rameters I , ,  $, , x, of the transmitted radiation can assume a 
number of stationary values (in general, not all will corre- 
spond to stable states). The number of stationary states of 
transmitted radiation is different in different ranges of I,, $,, 
x i ,  e.g., for low enough I,, for which optical nonlinearity is 
unimportant, there is only one stationary state. The relation- 
ship between I,, $,, andxi,  for which there is a change in the 
number of states (two or more merge) is determined by the 
standard equation 

D ( I B ,  $i, x i )  =Oy D ( I i ,  $i, x i )  =a ( I i ?  $i, x i )  la ( I t ,  $ t ,  ~ t )  . 
(1)  

This condition describes the situation where, at the point of 
merging of different states of transmitted radiation, which is 
a singular point, there is a nonlinear relationship between 
small increments in the parameters of transmitted and inci- 
dent radiation. We note that, clearly, different D(I , ,  $, , X, ) 
correspond to different states of transmitted radiation; the 
values of I,, $, , X, and, correspondingly, of D in ( 1 ) refer to 
any of the merging states. 

When the x axis, from which the angles $, and $, are 
measured, lies along one of the symmetry axes C, ,  of the 
medium (spatial dispersion is assumed absent), or when the 
xz plane is a plane of symmetry, the bifurcation value of the 
intensity is unaffected by a change in the signs of $, and X, : 

i.e., a symmetry axis of the surface IB ($,, xi) passes 
through the point $, =xi = 0. The property described by 
(2)  follows directly from ( 1) and from the symmetry prop- 
erties. Actually, the field component Ex is unaffected by re- 
flection in a plane or by rotation around the x-axis through 
180", whereas E, changes to - E,, i.e., both $ andx change 
sign for both transmitted and incident radiation, and the 
relationship between the intensities 1, , I, (and, consequent- 
ly, the value ofIB ) remains unaltered by virtue of symmetry. 

We shall assume that, for a chosenx direction, the func- 
tion I, ($i, xi ) is finite, continuous, and nonself intersect- 
ing near $, = xi = 0." In this general and most important 
case, (2) shows that the point $, = xi = 0 is an extremum of 
sections of the surface I, (g i ,  xi ) that pass through this 
point. 

For $f + Xf < 1, we have I, - IB (0,O) and the incident 
parameters I , ,  qh,, X, are uniquely determined by I,, $,, X, 
(although there is no one-to-one corrtspondence between 
the OB conditions). If the transmitted radiation is then po- 
larized in the symmetric direction ($, = x, = O), the inci- 
dent radiation is polarized in the same way ($, =xi = 0); 
conversely, for given I,, $,, X, , there are two sets of values of 
the parameters I , ,  $,, xi which differ by the signs of $i and 
x,. Hence, it follows that, when $, = X, = 0, we have 
a$,/aI, = ax,/aI, = 0, so that the Jacobian D in ( 1 ) can be 
factored, and ( 1 ) reduces to one of the two equations 

a ( l g i 9  x i ) / a ( $ t ,  x t )  =o, Qi, t+O, Xi ,  1'0, (4)  

which define the characteristic values (usually, limiting 
thresholds) of the incident intensity I, (0, 0 )  for the two 
types of OB. 

Equation (3)  describes the onset of intensity OB: an 
increase in the incident radiation intensity I, leads to the 
"break" I, ( IdI,/dI, I -. W ,  I, +I, (0,O). Equation (4) de- 
scribes the appearance of polarizational OB. This becomes 
clearer if we express $, x in terms of the ratio of the field 
components Ex ,  E,, : 

and write (4)  in the form 

. - .  
(we have taken into account the fact that, as IE, 1-0, the 
change in the phase difference S between the components in 
a nonlinear medium is independent of JE, I ) . It is clear from 
(4a) that the polarizational OB threshold corresponds to 
the threshold of polarizational instability in the system: 
]E,,/E,, / + w as IE,, / -0. 

2. SHAPE OF THE BIFURCATION SURFACE NEAR A 
SYMMETRY AXIS 

The behavior of the function I, ($,, xi ) for $; + X: g 1 
is different depending on the type of OB, i.e., it depends for- 
mally on which of the conditions (3)  or (4)  determines 
I, (0,O). To analyze the shape of I, ($,, xi ), we use an 
expansion for the incident parameters SI,, $,, xi 
[&Ii = Ii - I, (0, 0 )  1 in terms of SI,, $,, X, [SI, = I, 
-I,B(o, 0 ) l :  

where, for brevity, we use the matrix form, B, c are 2 x 2 
matrices, and L'~' [x; y], LC3' [x; y ]  are homogeneous poly- 
nomials of degree two and three, respectively [by symmetry, 
the above expansion for SI, does not contain odd powers of 
$,, x,, whereas the expansions for $, andxi  do not contain 
even powers]. 

In view of (6) ,  the condition for the onset of intensity 
OB (3)  assumes the form 

(this equation actually determines I; ) .  Substituting (6)  in 
( I ) ,  we obtain the shape of the bifurcation surface: 

When g = g:, - g ,  ,g2, < 0, (8)  shows that the surface 
S I  ($, , xi ) is an elliptic paraboloid, whereas, for g > 0, it is 
a hyperbolic paraboloid. Accordingly, the point $, = xi = 0 
is an extremum or a saddle point of 61 . Optical bistability 
occurs for 
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A,,[SIi - S I k ( $ i , ~ i ) ]  >0 .  

When g> 0, and whatever the sign of SIi, it is possible to 
enter the OB region or leave it by varying the polarization of 
the incident radiation. When, however, g < 0, this is possible 
only for (g l l  + g2,)SI, > 0. 

We note that, for small /$, 1, /xi 1, ISI, I, the splitting of 
the states of the transmitted radiation that occurs for 
SI, = SI  k (I),, xi ) is seen mostly in the intensity: 
s1;1.2) = + [ 2 A  , ' (SI, - S I  ;, ) ] ' I 2 ;  to within corrections 

-61f /I;,, the values of $, ,x, are the same for the two states 
and are linear functions of , x i .  Well away from symmetric 
directions, the splitting seen in the polarization of the trans- 
mitted radiation is just as significant as the intensity splitting 
(see Ref. 9).  

The criterion for polarizational OB (4)  can be reduced 
with the aid of (6)  to 

This determines the corresponding limiting threshold inten- 
sity2 I&'=IB (0, 0 ) .  

When (9)  is satisfied, the relation between the incident 
and transmitted polarizations becomes essentially nonlinear 
even for small ]I), / or I x ,  I : terms of first order in the linear 
combination 0, of the parameters $,, X, are then no longer 
present in ( 6 ) ,  where 

@,=q,, cos at+xf sin a t ,  cot af=-B1dR~~ (10a) 

(to be specific, we assume that B, , #O). In view of this, it is 
convenient to transform in (6 )  from +hi,,, x,,, to 0,,,, qi,,: 

0,=$i cos a , + ~ ,  sin ai, qi,~=-$i I sin ~ i , ~ f  X ~ , ~ T O S  Xi,t, 

ctg ai=-B,,/B,,, O < ~ i , ~ < x .  ( lob) 

The equations for 0, , 7, are 

(S)- ( 3 )  E=s  i~~ ,-I, Le -L, cos ai+~:S' sin ai- ( ~ ~ ~ 0 t f ~ i 2 q t )  Lj2' 

[the expression for K,  is analogous to that for KO; 5,  , 5, are 
matrices that implement the canonical transformations 
( 10a) and ( lob) 1. In the derivation of ( 1 1 ), terms - (61, ) 2  

were discarded in (6),  and SI, was expressed in terms of SI,, 
0,, and 7,. 

The quantity 0, in ( 11 ) corresponds to a "slow" vari- 
able ("soft mode" that becomes prominent near the points 
of bifurcation of solutions of ordinary differential equa- 
tions.'' The quantity 7, corresponds to the "fast" variable. 
The value of 7, is uniquely determined by ni, Of, and SI, , and 
can be found from perturbation theory: 

qf=qtco'+llt'l'+ . . . , q,'O'=G-lqi, 

Bearing ( 13 ) in mind, we obtain 

The cubic equation given by ( 14) can have either one or 
three real roots. The existence of three roots 0 ,",2,3', i.e., 
three states of polarization of transmitted radiation, actually 
corresponds to the onset of polarizational OB. The intensity 
61, = S I  (6,, 7, ), for which polarizational OB occurs for 
given polarization of incident radiation Oi , v,, can be found 
from ( 1),  (6) ,  and ( 1 I ) ,  or directly from ( 14). It can be 
written in the reduced form 

where v(q) is the solution of the cubic 

'13a3v3+'/,( a2+a,b) v2+azbv-bo+q"O, 

b=colci, bo=ao-a, b. (16) 
According to ( 15 ), analysis of the shape of the surface 

1;; (B,, v i )  reduces to the analysis of the function 
F ( 6  ,!'3/7i ). The form of F(q)  is shown in Fig. 1. Depending 
on the sign of a,c,, this function has a minimum (for 
a,cl < 0 )  or maximum (for a,c, > 0). When (q(  ) 1, we have 
the asymptotic result F(q)  -q2. This asymptotic behavior, 
which corresponds to 16 ,"3/qi I ) 1, describes SZ ;; through- 
out virtually the entire range of small 0, , 7, ; here, S I  ;; is 
determined almost entirely by the value of 6,, and depends 
on 0, nonanalytically: 

In the narrow region /Bi I 4 17, l 3  1, we have 

FIG. 1 .  Schematic form of the functions F(q) (solid lines) and ~ ( q )  
(broken lines) that determine, near the s-threshold for polarizational OB, 
the sections through the bifurcation surface I ,  ($i ,  xi ) by the planes 9; 
= const and Bi = const, respectively (the increase in the threshold radi- 

ation intensity curing a change in its polarization, 
61 ;; = vfF(q) = B :')F(q), q = 0 :'3/77i, where Bi and 9 ,  are lintar com- 
binations of $; andxi ). The dot-dash lines are the asymptotes of F(q) for 
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FIG. 2. Examples of the dependence of polarization parameter 0, of trans- 
mitted radiation on the polarization parameters O , ,  7 ,  and the intensity 
61, of incident radiation near the s-threshold for polarizational OB. The 
solid and broken curves refer to different values of 61,/77 (a ) ,  0,!'3/17, 
( b ) ,  and 6I,/Of/' (c ) .  

where F ( 0 )  can assume either one of three values; see below. 
The most important property of F(q)  is that, according 

to ( 15 and ( 16), its extremum is a spinodal point. Near this 
point, we have 

where Fc =F(q, ) is the extremal value of F(q) ,  given by 

Fc=(aZ2-2a3a1 )/2a3c1, ~ , = a ~ - ' ~ ~ ( a ~ ~ b , , +  1!2fl?n3b-1/6a23) Ib ,  

M=6qC2 (a,-a3b)-I, 6q=q-q, (20) 

and #(x) is a step function. It is clear from (19) that the 
branches F, (q) diverge as (q - q, )312. 

The point q = 0 is a point of inflection of F(q) ,  and the 
derivative dF+/dq becomes infinite for q = q, , where 

q,= (bo+i/za2b2-'/,a3 b3) 'I*, 

F+(q,) SF,=-- (1/,a3b2-a2!,+ ul)/cl . (21) 

In the interval between q, and qc , the function F(q)  assumes 
three values and this substantially enriches the OB picture 
(see next Section). We note that the quantity F(O) in (18) 
assumes three values for q, /q, < 0. 

It follows from the foregoing analysis that the surface 
S I  ;; (Of, 7, ) is highly anisotropic. It is corrugated and has a 
"cusp" (spinodal edge). On this edge, 

Figure 1 shows (on an enlarged scale, q-8 ,!/'I a section of 
SI; (e, ,  7, ) by the 7, = const plane, which is practically 
perpendicular to the spinodal edge. It is important to empha- 
size that the properties of S I  ;; (Oi, 7, ) are connected with 
the structure of ( 15) and ( 16), and do not depend on the 
explicit values of the parameters, i.e., they constitute a sym- 
metry property of polarizational OB. 

The shape of the bifurcation surface becomes apprecia- 
bly simpler when the system is isotropic in the plane perpen- 
dicular to the direction of propagation of the radiation. The 
choice of the axis from which the angles +i, +, are measured 
is then arbitrary. Hence, L i2),  L F) in (6) depend only on 
x,, and the matrix elements become B,, = C,, = 0. The bi- 
furcation value of the incident radiation, I,, depends only 
on xi. 

Near the s-threshold for polarizational OB in an iso- 
tropic system (B,, = 01, equation (6)  yields the following 
equation for X ,  : 

It is readily seen that we then have 

61s" (xi) =- (9a,/8c13)'"~$. (15a) 

The function I ;; (x, ) is symmetric and single-valued. It has a 
cusp at xi = 0. 

3. PO6 IN THE NEAR-THRESHOLD REGION 

When ( 14)-( 16) are taken into account, the range of 
the parameters SIi , 8,, 77, near the s-threshold for polariza- 
tional OB in which the radiation in the system has three 
stationary states is determined by the condition 

n,c, [61,-qiZF(6i"'/qi)] (0. (23) 

For finite v,, the limiting threshold intensity for polariza- 
tional OB is SIC = v;Fc. On the cusp (SI, = SIC, 
8 ,!I3 = viq, ), the three stationary states merge together. 

Let us first consider what happens to the transmitted 
radiation when the incident polarization parameter 8, is var- 
ied. It  is clear from ( 15) that, for given SI,, v,, polariza- 
tional OB will occur in a Of interval whose limits are deter- 
mined by the points of intersection of the graph of 
F ( 8  f'3/7,7i) (see Fig. 1) and the straight line F = SIi/rl:. 
According to ( 14), the dependence of the transmitted polar- 
ization parameter 8, on 8, in the polarizational OB region is 
S-shaped (see Fig. 2a), and the distance between the upper 
and lower branches is3' A8, - [ (c,/a,) (SIC - 61, ) ] ' I2 .  The 
dependence of 17, and SI, on 8, is either S-shaped or loop- 
shaped. It is clear from symmetry considerations that, for 
vi = 0, the dependence ofaI,  on ei is described by a symmet- 
ric loop-shaped curve (cf. Ref. 7 ) .  The separation between 
the branches is 

AT, - 161, I [ (c,/a3) (81, - SI, ] 'I2, 
AI, - JSI, (SIC - 61, ) I ' I 2 .  

It is evident that OB is most clearly defined in terms of the 
parameter 8,. 
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When the incident polarization is such that 19 !'3/7,7i lies 
between q, and q, , then, as is clear from Fig. 1, there are two 
ranges of SI, in which (23) are satisfied, and OB sets in. 
There is only one such region in the opposite case. The de- 
pendence of 8, on 61i in these cases is shown in Fig. 2b by the 
solid and broken lines, respectively. 

To analyze the onset and the properties of POB as 77, is 
varied, it is convenient to replace F(q)  with the function 

This new function is shown by the broken lines in Fig. 1. 
represents the section of the surface 61;(Bi, 7, ) by 

the plane 8, = const. 
When q, q, < 0 (shown in Fig. 1 ), F ( q - ' )  describes 

three continuous curves (one has a spinodal point). When 
q,q, > 0, the function ~ ( q -  ' ) describes one curve, on which 
analysis of ( 151, ( 15b), and ( 16) shows that, in addition to 
the spinodal point, there is also an extremum. Altogether, 
the equation SIi = 8 :/3F(8 ;13/77, ) can have 0,2,4 (in some 
cases, even 6) roots q i .  These roots separate intervals of 7, in 
which radiation in the system has alternately one or three 
stationary states (see Fig. 2c). 

In a two-dimensionally isotropic system, for which 
Oi = x i ,  8, = x t ,  andx,, SI, do not depend on z,hi, the depen- 
dence of X, on xi is centrally symmetric, while the depen- 
dence ofSI, onxi  is symmetric (and loop-shaped in the OB 
region). 

4. POLARIZATIONAL OB IN THE NONLINEAR RING 
INTERFEROMETER 

The above general theory can be used to find the condi- 
tions for and properties of intensity OB and polarizational 
OB in specific systems. The specificity of the system mani- 
fests itself only in the explicit expressions for the coefficients 
in (6).  They are determined by the mechanism responsible 
for the optical nonlinearity and the construction of the sys- 
tem. It is very significant that, when the coefficients are cal- 
culated, only the field component Ex must be regarded as 
large, whereas Ey may be taken to be small and examined by 
perturbation theory. In particular, to establish whether po- 
larizational OB can occur, i.e., whether (4)  is satisfied, it is 
sufficient to consider the linear response of the system to Eyi . 
This produces a considerable simplification of the analysis of 
systems with the large self-induced anisotropy that is neces- 
sary for polarizational OB. 

Let us now consider polarizational OB in a medium 
with locally unique response, placed in a ring cavity. The 
field in the radiation escaping from the cavity is then deter- 
mined by the field E(1) at exit from the medium, and the 
latter is determined (uniquely) by the field E(0)  at entry to 
the medium. The fields E(O), E (I) are related to the incident 
field Ei by 

where R ', qR are, respectively, the resulting reflection coef- 
ficient and phase gain in the cavity, and T 2  is the transmis- 
sion coefficient of the front mirror. 

When (24) is taken into account, the conditions for the 

onset of intensity OB and polarizational OB, given by (3) 
and (4), can be rewritten in the form 

Before we can calculate the derivative in (25), we must find 
the relation between E(1) and E(0)  for Ey (0)  = 0, and 
evaluate the derivatives in (26) for JE,, (0)  1 4 JEx (0)  I and 
S(O)=Arg[E, (0)/Ex (O)] = 0 [it is clear from (5 )  and 
(24) that these S (0)  determine a /az,h(O), /dx (O), respec- 
tively]. 

We can now use (24)-(26) to find the relationships 
between the parameters for which OB takes place in the gen- 
eral case of nonlinear transparent media. The envelope P'"" 
of the nonlinear polarization of the medium at the field fre- 
quency w can then be written in the form 

where Z (E, E*) is proportional to the part of the field 
energy per unit volume that is due to the nonlinearity of the 
response of the medium (see Ref. 11 ). When (27) is taken 
into account, the truncated Maxwell equations can be re- 
duced to the Hamilton-type equation 

where 

and z is a coordinate measured in units of cn (w) /~Tw.  The 
nonlinear increase in the phase ax for Ey = 0 is also deter- 
mined by the function H. 

The symmetry of the medium and symmetry under time re- 
versal ensure that the effective Hamiltonian H of the radi- 
ation has the following properties: 

The following simple condition for the onset of intensi- 
ty OB (refractive OB, in this case) follows directly from 
(24), (251, and (29): 

l+R2-2R cos cp-AIR sin cp=O, 
(31) 

A,=EZl[dZ(EZH)/d(E2)'] ,,--1, (E ,~ '=E~( I+R~-~R cos 9). 

where I is the dimensionless thickness of the medium and g, is 
the total phase gain given by 

g, = p ~  + I{1 - 1 / 2 [ d ( E 2 ~ ) / d E 2 ] . =  - , I .  
The condition for the appearance of the polarizational 

OB, given by (26), can be reduced to the following relation 
by solving (28) and using (24) and (30): 

Re [(I-RtleiQ) (i-Rt,'e-iw)] =0, 

ti, ,=t(6,, do ) ) ,  
(32) 
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where lt'l is the transmission coefficient for the y-compo- Ei~"=E[l+~2(1+vE2)-i-2H(I+vE2)-'h cos cp]'", 
nent of the field by the medium, and EZ='/2(~RZhZ)-i{(l+Ra)2-4H% cos cp+(l+R2) [(1+R2)' 

t=[S(o)lS(~)I'"e~p{i[6(1)-6(0)1), -4R2(cos2 (~ - (y ' / y l~ )~  sin2 rp) 

S(z)=[aH(E, u, S(z))laul,--,, 
(36) 

(33 R=R exp(-a,l/2), Y= (yr'/a,) [I-exp (-a,l) 1, 
dSldz=-Z(z), 6, (0) =0, h2(0) =n/2. h=cos cp- (yl/y")sin rp, h>O. 

where a, is the dimensionless one-photon absorption coeffi- 
Formulas (3 1 )-(33) show that intensity OB is related 

cient. The condition h > 0 defines the range of q, in which 
to the dependence of the phase gain (refractive index of the 

polarizational OB is possible. 
nonlinear medium) on the radiation intensity, whereas po- 
larizational OB is related to the self-induced anisotropy of 

When the refraction nonlinearity is small ( 1  y ' /  < y o ) ,  
the smallest value of E ,'O' in (36) arises from exact tuning of 

refraction [for P'"" (/E, we have t ,,, = 1 and (32) is not 
satisfied]. These formulas determine explicitly the condi- 

the cavity (q,  = 25-n 1, and is exactly the same as the result 

tions for and type of OB that occurs for a specific mechanism reported in Ref. 7 (where it was obtained by a different 

of nondissipative optical nonlinearity. method). For small absorption nonlinearity 

The expressions given by (32) and (33) become (yV<ly'sinq, I ) ,  wehave 

simpler in the case of an isotropic medium. The final expres- E :" =: [ - y ' ( ~ / y "  )bin q, ] - ' I2(  1 + R - ~ R C O S  q,)312. 
sion is similar to ( 3  1 ) except that A, is replaced by the mate- 
rial parameter 

[in deriving (34), we took into account the fact that, in an 
isotropic medium, H depends only on E and cos 2x = (cos2S 
+ u'sin26)"*, in which case, t, = 1 and It,l = (1 + A:) ' I2  

> 1. 
According to (3  1 ) and (34), both intensity OB and 

polarizational OB will occur in a transparent isotopic medi- 
um for a certain detuning of the cavity (q,  #2rn ); the neces- 
sary thickness I of the medium decreases as H becomes more 
dependent on the radiation intensity (in the case of intensity 
OB) or the degree of ellipticity (in the case of polarizational 
OBI. Equations ( 3  1 ) and (34) describe, in particular, the 
onset of intensity OB and polarizational OB in the case of the 
cubic nonlinearity discussed in Ref. 2 (intensity OB and po- 
larizational OB were obtained in this case in Ref. 5 for par- 
ticular parameters values by numerical calculations). 

Nonlinear absorption of light in the medium has an es- 
sentially different effect on intensity OB and on polariza- 
tional OB. A rapid rise in absorption with intensity will sup- 
press intensity OB (see Ref. 1 ), but polarizational OB is still 
possible. In particular, dichroic OB, which is a variety of 
polarizational OB, can occur7 in the case of two-photon res- 
onance absorption and an accurately tuned cavity. 

The approach developed in this paper can be used to 
consider polarizational OB when both absorption and re- 
fraction are essentially nonlinear. We can illustrate this in 
the special case of a cubic crystal, which is important from 
the experimental point of view, in which two-photon absorp- 
tion takes place as a result of the A,, + T,, transition. We 
then have 

where the coordinate axes lie along the (100) axes. When 
radiation propagates along the ( 100) direction, the mini- 
mum threshold field E !'' for polarizational OB can be ob- 
tained from (24), (26), and (35) : 

In general, the minimum of E ,''I is reached for certain opti- 
mum values of q, and I. It is significant that absorption and 
refraction nonlinearities as mechanisms for polarizational 
OB do not suppress one another. 

5. CONCLUSION 

It follows from the foregoing results that, in nongyro- 
tropic systems with a high enough degree of symmetry, we 
can identify two main types of optical bistability, namely, 
intensity OB and polarizational OB. They differ in both their 
physical origin and in their properties. The differences are 
particularly well-defined when the incident radiation pa- 
rameters I,, $;, x; lie near the s-threshold for OB (the latter 
corresponds to radiation polarized along some symmetric 
direction in the nonlinear medium, $, = X ,  = 0, and thresh- 
old intensity Ii = I, (0,O) for this polarization. 

In general, we can cross the OB threshold by varying 
both the intensity and the polarization of the incident radi- 
ation. The two additional stationary states of radiation in the 
system (one is usually unstable) that appear in the course of 
this process in the neighborhood of thes-threshold for inten- 
sity OB differ most strongly from one another in their inten- 
sities. The intensity difference is proportional to the square 
root of the difference between the incident intensity I, and its 
threshold (bifurcation) value I, (gi ,xi ) for the given polar- 
ization. Accordingly, the amplification factor for fluctu- 
ations in the incident intensity rises rapidly as the threshold 
is approached in the system. In the case of intensity OB, the 
surface I, (ljt,, X ,  ) is an elliptic or hyperbolic paraboloid 
near its symmetry axis ljti =xi = 0. 

Near the s-threshold for polarizational OB, there are 
three closely-spaced stationary states of the radiation in the 
system where response of the latter is multivalued. These 
states differ most strongly in their polarization. On the 
whole, it is precisely the polarization of the radiation in the 
system (including the multivalued region) near the s-thresh- 
old for polarizational OB that undergoes the largest change 
as the parameters of the incident radiation are varied. In 
fact, the multivalued response occurs as a result of the devel- 
opment ofpolarizational instability in the system. In the case 
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of polarizational OB, the bifurcation surface I ,  ($;, X, ) is 
highly anisotropic for low values of $;, xi, and has a singu- 
larity (spinodal edge). The three stationary states of the ra- 
diation in the system merge on this edge. 

Since the transmission remains qualitatively the same 
throughout the region of existence of the above stationary 
states, the results we have obtained provide us with informa- 
tion on the nature of OB in a wide range of incident-param- 
eter values. The criteria for the onset of intensity OB and 
polarizational OB, obtained by taking into account symme- 
try considerations, are convenient in specific calculations, 
and can be used for systems containing isotropic media or 
crystals whose nonlinear optical response is significantly an- 
isotropic . 

We note in conclusion that soft splitting of radiation 
states near thes-threshold for polarizational OB (in contrast 
to the break in the case of intensity OB) leads to a relatively 
high probability of fluctuational transitions between states. 
The result of this is that a stationary distribution over the 
states can evolve in a relatively short time in a nonequilibri- 
um system. This occurs independently of past history, and is 
determined exclusively by the incident radiation parameters 
and the character of the fluctuations (see Ref. 12). 

"When the point $, = X, = 0 lies on the line of self-crossing of I,($, , 
X ,  ), then for I, = I ,  (0,0), we find that four states of transmitted radi- 
anon with the same I ,  merge in pairs at this point, as do states with 
opposite $,,x, [$:I.') = - $:'.4',X11.2' = -Xj3.4', $: +x:- I ] .  

"The set of values of incident-radiation parameters I ,  = I ; ,  
$0, = X, = 0 that corresponds to a symmetric point of the bifurcation 
surface I, ($, , X, ) will be called the s-threshold for polarizational OB. 

"In the region of single-valued transmission, 10, / - 10,1 'I3 $18,1 for 
l0,1$ l c$ I i~ ,  1 :  17, 1 3 ,  i.e., small deviations of the polarization of the 
incident radiation are strongly amplified by a nonlinear system near the 
s-threshold for polarizational OB. 
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