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The idea that the solution of the so-called one-particle wave equation actually describes not a 
single-particle system but a many-particle system with given charge equal to zero or one is 
extended to bound states. It is suggested that, crudely speaking, the electron can be found only 
in the region V+ in which its kinetic energy satisfies a,(x) =p, - eA,(x) > 0, and the positron 
in the region V _  in which %(x)  < 0. In the case of the strong field of a deep potential well and 
finite motion of the particle (for example, in a narrow well), the integral c: = Jd  V I $ I 2  over 
V -  may be comparable with the integral c: = Jd V (I)(' over V+ (c: + c: = 1 ) . The meaning of 
l $ I 2  must then be reinterpreted. In particular, c: must be looked upon as the probability of 
finding the pair in an uncharged (in the usual language, unoccupied) level. Pauli's principle 
plays an essential part in this interpretation. For bosons, Pauli's principle does not apply, and 
the interpretation must be accordingly modified. 

1. INTRODUCTION 

The quantum electrodynamics of phenomena occur- 
ring in strong fields is undergoing rapid development and 
pair-creating fields are attracting particular attention (see, 
for example, the reviews given in Refs. 1-4). When the pair- 
creating field is turned off both in the past and future, i.e., for 
t-. +_ W ,  there can no longer be any doubt aljout the ability 
of the theory to describe all the phenomena. This cannot be 
said about fields that are not turned off for t -  co. It is 
quite possible, however, that, in strong time-independent 
fields localized in a finite region of space, outside which all 
the particle and antiparticle states are well defined, the the- 
ory is, in principle, capable of answering ail questions raised 
by the idealized experiment in which instruments record 
particles in a large region outside the strong-field region. On 
the other hand, when we consider measurements exploring 
the behavior of particles in the strong-field region, it is not 
clear how we could distinguish between a particle and an 
antiparticle. In particular, there is a difficulty with specify- 
ing the state of a vacuum electron in a level immersed in the 
lower continuum of the supercritical atom.4 

In this paper, we shall discuss the interpretation of a 
strongly-bound state in a deep and narrow well with steep 
walls, in which virtual pair production by the field has a 
significant influence on the wave function $ ( x ) .  This ques- 
tion is closely related to the above problem. In this case, for a 
spin 1/2 particle, the integral c: = JdV l $ I 2  is not negligible 
when evaluated over a region V-  in which the kinetic energy 
of the particle is .rr,(x) = p, - eA, ( x )  < 0. We shall consider 
that, in this region, the wave function describes the positron 
that appears as a result of the virtual pair production by the 
field. The electron, on the other hand, can be found only in 
the region V+ in which a,(x) > 0. For a normalized func- 
tion, the two integrals satisfy the condition c: + c: = 1. If 
the state is uncharged i.e., has zero charge, c: gives the prob- 
ability of finding the pair in the particular state. For a 
charged state, i.e., a state with charge e, we have to suppose 
that the electron has unit probability ofbeing in the region in 

which .rr,(x) > 0. Virtual pair production by the field in the 
well is then prevented by Pauli's principle. The region in 
which a,(x) < 0 remains unoccupied. 

This does not, however, mean that an external photon 
of suitable energy will not be able to create a pair in which the 
electron enters some other state and the positron enters the 
same level as the bound electron. The system occupying this 
state will have zero charge, i.e., the state will be uncharged. 
In the more familiar language, it is said that virtual produc- 
tion of the pair by the photon contributes to the process of 
excitation of the electron. 

For a spin 0 particle, this interpretation must be modi- 
fied because the Pauli principle does not then apply. 

The interpretation makes it clear that the same poten- 
tial well can bind both the particle and antiparticle in the 
boson case, but it can bind only the particle in the fermion 

In the latter case, the positively charged state (the 
charge of the system is then equal to 1 ) signifies the presence 
of the positron outside the well, and the absence of the elec- 
tron from the well. Pauli's principle then ensures that the 
electron inside the well cannot appear because there is no 
place outside the well for the additional positron that com- 
pensates the charge of the electron. The well does not, there- 
fore, reduce the energy of the system of charge 1. On the 
other hand, the energy of a boson system of charge 1 can be 
reduced by virtue of the presence at the bottom of the well of 
particles of charge - 1 (Ref. 7) .  

2. SPIN 1/2 PARTICLE 

We first note that the Feynman propagator, construct- 
ed from the so-called single-particle solutions, takes into ac- 
count pairs in the intermediate state in the relativistic case. 
We also note that the theory of pair production by an exter- 
nal field that is turned off for t -+ f w (Refs. 1-3 ) , the ex- 
planation of the Klein para do^,'.^ and all the experience 
gained by working with strong fields (see, especially, Section 
3 of the first paper by Ritus3) teach us that the so-called 
single-particle solutions of wave equations describe not so 
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much particle states as processes (in a sense, mutliparticle 
processes) occurring in states with charge 0 or + e. Let us 
illustrate this by some examples. 

Consider the complete orthonormal sets of in-solutions 
$, and out-solutions * $, (x)  of the Dirac equation in the 

case of fields that vanish for t + + w . The symbols + indi- 
cate the sign of the frequency of the solution and n represents 
the set of quantum numbers of a state. For conserved quan- 
tum numbers, we have a simple relation between the in- and 
out-solutions: '-"I0 

+$n (5) = C I ,  ' 9 ,  (2) f ~ 2 n  -$n (5) 
(1)  

The last of these describes the conservation of the norm of 
the wave function (or charge). 

For pair-producing fields, lc2, I 2  #O. This quantity can 
be interpreted as the absolute probability that a pair will be 
produced in a state n if the initial state was free. The quantity 
lcln l 2  is then the probability that the pair will not be pro- 
duced, i.e., the probability that the vacuum will remain in 
the n-th state. According to Feynman's theory,".' the same 
solution +$, (x)  for a charged initial state gives, with prob- 
ability 1, the final state +$, (and not c,, +$, ) if we take 
into account the difference between the relative and absolute 
amplitudes. Pair-production of any kind does not occur in 
this case, in accordance with the Pauli principle. 

Thus, if we deal only with the solutions given by ( 1 ), we 
can use simple rules to extract from them information about 
processes occurring in the particular state. The consistency 
of these rules with the second quantization theory is dis- 
cussed in Refs. 1-3. 

Bearing in mind the extrapolation of these rules to the 
case of virtual pair-production by the strong field in the well, 
let us consider a closely-related example, namely, that of the 
creation of a pair by a time-independent potential wall (the 
Klein paradox'.9). For a step of the form 

we can readily find the complete set of solutions of the Dirac 
equation (see Ref. 1 ) . The electric field corresponding to the 
potential A0(x3 ) is 

8 (x) =-aAo/dx,=-a,k,/cosh2 k3x3, 

which will retard an electron (e < 0 )  moving from right to 
left. In reality, the specific shape of the step is unimportant. 
The only significant quantity is its height 21ela0, which we 
shall assume is greater than 2m, and the effective electric 
field a,&, which we assume to be strong (a,k, 2 m2/le() in 
order to ensure that pair-production effects are consider- 
able. 

The solutions are labeled by quantuv numbers n = (p,, 
p2,po,p),  wherep is the spin component. For simplicity, we 
set p ,  = p 2  = 0, so that the kinetic momentum and kinetic 
energy are given by 

We note that the quantum number p, can be interpreted as 

the conserved total, i.e., kinetic plus potential, energy. 
The electric field vanishes for k, (x, ( % 1. In these re- 

gions, we have plane waves with momentum a,(x,) 
-+a,( k ) asx3- _+ w .  SinceA,,(x,)-Oforx,- - CO, we 
have 

When Ipol < m, the electron wave incident on the step 
from the right is completely reflected. Let us examine barrier 
penetration by the wave from right to left, assuming that the 
height of the step is greater than 2m. A step of this kind can 
create real pairs but, for the moment, we shall confine our 
attention to states with p, such that real pair-production is 
not possible in these states ( Ip,l < m). For sufficiently large 
negative x,, the x, dependence of the wave function is 
exp [ - (x,( (m2 - p: 1'2]. As po falls from m to 0, there is 
less penetration by the electron to the left of the step. We 
note that, on the right of the step, the electron has positive 
kinetic energy a,,( + ) = p, + 2 Iela,. A reduction in this en- 
ergy reduces penetration, as in the case of a nonrelativistic 
particle. Actually, if we write p, = T,,( + ) - CJ 
= m + E - U, U = 21elao and suppose that E, Ugm, we 

obtain the same result as in the nonrelativistic theory, i.e., 
m2 -pi  u 2m ( U - E l ,  which may be compared with equa- 
tion (25. l ) in Ref. 12. Hence, it is clear that a reduction in E 
gives rise to an increase in the attenuation by the barrier 

2 112 expt - Ix31(m2-pol I .  
Further reduction inp, from 0 to - m is accompanied 

by an increase in the penetration of the step. This property of 
the relativistic solution is a manifestation of virtual pair- 
production by the strong field. (For a weak field, a0k3 4m2/ 
lei, the coefficient of the tunneling part of the solution be- 
comes exponentially small.) 

A strong field will not only give rise to efficient pair- 
production, but will also reduce the size of the region in 
which particles and antiparticles are not well separated, i.e., 
the region in which lao(x) 1 g m .  To the left of the step, 
no( - ) =p,. Negative p, signifies negative a,( - ). Such 
values of a,( - ) are closer to the lower continuum of states 
than to the upper continuum. In this region, the wave func- 
tion describes the virtual positron of the pair of the level is 
uncharged. To the right, we can then only have an elec- 
tron-the partner in the pair. However, if the state is 
charged, the wave function to the right of the step describes 
the state of the electron occupying the level. Pair-production 
does not then occur, and the electron cannot penetrate the 
left region because of the effect of the field associated with 
the wall. 

It is natural to ask why, with the chosen step for which 
the potential vanishes to the left of the step, virtual pair- 
production by the strong field occurs only forp, < 0 but not 
for p, > 0. The answer to this question is that, in the latter 
case, the field does not have the energy even to produce the 
below the barrier pair. The work that must be done by the 
field is equal to the height of the step, i.e., 2/ela,, and the 
kinetic energy of the pair must, at any rate, be greater than 
the kinetic energy of the electron to the right of the step, i.e., 
greater than T,( + ) =p, + 21elao. Hence, it is clear that it 
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is only for p, < 0 that the field can communicate positive 
energy to the virtual positron. We recall that, in the region in 
which ~ , ( x )  < 0, the quantity - T,(x) is the energy of the 
positron inside the barrier; the positron lies above the barrier 
if - a,(x) >m. Since r O (  - ) = p, to the left of the step, we 
can look upon a,( + ) = p, + 2 (e  la, as the law of conserva- 
tion of energy during the formation of the pair below the 
barrier if we rewrite it in the form .rr,(+) 
-t C -T,( - ) I  =2(e(ao.  

Thus, virtual pair-production effect occurs in the solu- 
tion even when we consider the solution of the Dirac equa- 
tion for a step. It does not appear in the idealized analysis in 
which the motion of the electron from the right is looked 
upon as infinite. In principle, the effect is observable. Thus, 
the pair can be detected by checking near the wall whether 
the level is charged. This does not contradict the usual repre- 
sentation: a relatively small perturbation of the system in 
which virtual pair-production plays a significant part may 
convert the virtual pair into a real pair. If we reduce p, 
still further, we enter the Klein region in which 
IT,( - ) =pO< - m, T,( + =po + 2(elaom. (When p,, 
p2#0, the quantity m must be replaced with m, = [m2p: 
$ p i  ] 'I2.) The field then creates real pairs, and the wave 
previously attenuated in the left part becomes converted into 
a propagating positron wave. 

It can be shown that the evaluation of the matrix ele- 
ments for pair production and scattering on the potential 
step will converge efficiently to the well-known case of a field 
that vanishes for t -  + co (cf., Ref. 1 and the boson case, 
below). 

We are now very close to the extrapolation of the above 
interpretation of barrier scattering to the less pure case of the 
wave function of a strongly-bound state. We consider that 
the well field confines the electron to region V+ in which 
77, ( x )  > 0, and the positron to region V- in which .rr, ( x )  < 0. 
Roughly speaking, we may consider that the boundary 
between V+ and V -  is given by the condition n-,(x) = 0. In a 
strong field, the region in which ln-,(x) 1 <m and particles 
and antiparticles are poorly distinguishable is relatively 
small. The integrals of ( $ I 2  over V+ and V-  will be repre- 
sented by c: and c: , respectively, and will be normalized by 
the condition c: + C; = 1. When the level is uncharged, we 
consider that it is occupied by a pair with probability c: and 
unoccupied with probability c:.  We are referring here to a 
bound virtual pair. Migdal has di~cussed,~ from another 
point of view, bound pairs in a supercritical atom, taking 
into account the interaction between the electron and the 
positron. 

When the level is charged, the electron is found in the 
region V+ with probability 1. This means that it is then de- 
scribed by the previous wave function $ ( x ) ,  which is now 
multiplied by c; '. The region V-  remains free because the 
well field cannot create a pair in this state. The basic idea of a 
partially occupied level is used even in the quasiclassical 
treatment of pair production by a constant electric field (see 
problem 2 in Section 129 of Ref. 13). 

In the supercritical atom, the levels in the upper part of 
the lower continuum contain an electron in the region V,.  

The fact that the electron in a state immersed in the lower 
continuum is dissolved among the levels of this continuum is 
demonstrated in Ref. 6 (see also Ref. 2 and 4). The state of 
this vacuum electron has not as yet been adequately investi- 
gated. It is basically represented by solutions withp, lying in 
the neighborhood of the real part of the energy of the quasi- 
discrete level.6 Positrons undergo resonance scattering by 
the field of the atom for such values ofp, (Ref. 6).  To a lesser 
extent, the vacuum electron is represented by solutions with 
otherp, in the upper part of the lower continuum, namely, 
solutions for which there exists a region with T,(x) > 0. 

The question is: can the state of the vacuum electron be 
described by a wave packet withp, from the admissible inter- 
val? Evidently, the answer is no because it is difficult to ima- 
gine how this packet could be prevented from leaking into 
the region V- . Its norm would not then be conserved in V,.  
Moreover, according to the usual ideas, the packet would 
describe in V+ a type of motion that would be difficult to 
interpret because we are considering the lowest state of the 
system, i.e., the so-called charged vacuum. This may be used 
as a basis for concluding that the phases of the functions with 
different p, in the packet are random and, in effect, do not 
interfere. It is possible that the state of the vacuum electron 
is described by the density matrix. This question requires 
further investigation. 

However, let us return to our problem. A time-indepen- 
dent state with c; > c: is possible in a narrow well with steep 
walls. This is readily understood because a strong field 
(steep walls) will keep the electron inside the well, while the 
positron part of the wave function will slowly fall outside the 
well ifp, is close enough to - m. It is precisely in this well, 
that both particles and antiparticles can have bound states in 
the boson case. 

To summarize the results of this section, we emphasize 
once again that the solution of the so-called single-particle 
Dirac equation describes processes occurring in a system of 
charge 0 or + e rather than the state of a particle. In the 
matrix element of a particle process, the wave function de- 
scribes possible paths for the process. For example, if the 
level is uncharged, it is empty with probability c:, and the 
incident electron will occupy it with probability a after emit- 
ting a photon. The probability of this path for the process is 
therefore proportional to ac : .  On the other hand, the well 
field can create a pair with probability c: . The electron in the 
pair occupies the level, and the positron, having emitted a 
photon, annihilates the arriving electron with probability a. 
The probability of this path is proportional to ac: . When the 
second path provides an appreciable contribution, it seems 
to us that the interpretation of the solution must incorporate 
the elements considered above. 

3. SPIN 0 PARTICLE 

Let us now consider the differences that are specific for 
a spin 0 p a r t i ~ l e . ' . ~ ~ ~ . ' ~  Returning to fields that vanish for 
t -  + a, we recall that the in- and out-solutions are related 
by 

+ Q n ( x ) = c t n  + Q n ( x )  +CZ" -qn ( I ) ,  

-$n ( I )  = c ~ n '  +$n (x) f cin8 -$, ( I ) .  
(6)  
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Conservation of norm (charge) now yields 

i.e., /c,, 1' is always greater by one than lcZn 1'. 
It is readily shown that Ic2, 1' can be interpreted as the 

mean number of pairs produced by the field in state n when 
the initial state (prior to the introduction of the field) was 
free. The probability that the pair will not be produced in 
this state is c,,, = Icln 1 -'. The total probability of all the 
events in this state is equal to unity: 

The second relatin in (8)  is simply another form of (7).  The 
mean number of pairs created in the nth initially unoccupied 
state is 

The presence of a particle (in general, any number of 
particles) in the initial state does not prevent the creation of 
pairs in this state. The absolute probability of the scattering 
of a particle, subject to the condition that m pairs are created 
in the same state, is equal to the product of the probability 
that m pairs will be produced [ jc,, I-2wm, according to 
(8 )  1 and the probability of scattering in the presence of m 
pairs, which is equal to Icl, I (m + 1 ). The total probabil- 
ity of scattering accompanied by the appearance of any num- 
ber of pairs is equal to unity:'" 

The mean number of pairs in this state is 

We note that, in the theory of second quantization, the 
expectation values are found in the Heisenberg picture with- 
out averaging over the number of pairs. Thus, for ( 12), we 
have (see Refs. 1 and 2)  

where a,, (6, ) is the particle (antiparticle) annihilation op- 
erator, and so on. To obtain the right-hand side, we can use 
the relation between the in- and out-operators: 

bn .ut=c2,*a,fin+clnbn in,  

+ + 
bn out=cznan rn+cinebn in. 
The many-particle interpretation of the coefficients c,, , 

c,, of the so-called single-particle solution of the Klein-Gor- 
don equation remains valid for the time-independent solu- 
tions in the case of the pair-creating potential step. We shall 
show how c,, ,c,, can be determined in this case. We are 
interested in solutions with p, lying in the Klein region: 

r O (  - ) < - m,, no(x)  > m .  We shall classify the wave 
functions in accordance with the sign of the momentum 
r3(x3)  at the infinity at which there is only one wave (that 
has penetrated the barrier). Thus, +$, (x )  means that, as 
x,- - co (lower position of the symbol + ), the wave is 

- characterized by positive momentum T,( - w ); q,, (x)  
means that, as x,+ + CO, we have negative momentum 
r3 ( + co ) and so on. We shall normalize the solution to unit 
flux through the plane xy throughout the time Tof observa- 
tion:' 

* 
d 

*'$,,e'(x) ( - i  -) 'q),, (z)d~=*6,,,,-6~~,, 
8x3 

(15) 

dz=dx dy df, s, el=+, 

Functions with the symbols f in the inferior position will 
be normalized in the same way. 

It is readily verified that 

+$n (2) = b,,,+~.l,, (5) + b z , , - ~ ~ ,  (x), (16) 

-$n (2) =bzn'+I>n (2) (x) . 
Conservation of current along the x, axis yields 

The first relation in ( 16) will now be written in the form 

-$n=cln+Qn+czn+$n, (18) 

c<n=-bin/bzn, czn=bzn-'. (19) 

In the Klein region that we are considering, relation ( 18) 
can be interpreted in the single-particle sense, as follows. A 
particle in the state -$, is incident on the barrier from the 
right. It is reflected by the step in the state +$, and pene- 
trates the barrier in the state +$, . Since only the antiparticle 
can penetrate the barrier [this is also clear from the sign of 
aO( - co ) 1,  the positive value of a, ( - ) can be interpreted 
as the motion of the antiparticle away from the barrier with 
momentum - a, ( - ). Consequently, ( 18) describes the 
same situation as the analogous relation for fields that vanish 
for t -  + co . (A  finite wave packet associated with the inci- 
dent particle will not interact with the step field for 
t +  + co .) Accordingly, (7)  follows from ( 19) and ( 17). 
According to ( lo) ,  the quantity Ic,, 1' is the mean number of 
pairs in the particular state throughout the time Tof obser- 
vation, provided the charge of the system is zero, i.e., the 
level is uncharged. All the possible processes in the state n, 
whatever its charge,' can be determined from the given c,,  , 
c2,z . 

Finally, the many-particle interpretation of the wave 
function can be extrapolated to a bound state and virtual 
pair-production. It is readily seen that, in this case, 

The quantity j, is the fourth component of the current: 
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The possibility that c: = - $d& (integration over V _  ) 
corresponds to the bound antiparticle state, whose norm is 
- 1: 

Suppose that this state is charged, i.e., its charge is equal to 
that of the antiparticle. In contrast to the fermion case, the 
system now contains particles at the bottom of the well. Be- 
cause of this, the system can be bound. This state is unusual 
in that the antiparticle part of the wave function, which de- 
termines the sign of the norm in (22),  does not have a classi- 
cally accessible region of motion anywhere. 

Finally, let us consier the case where the gap between 
the particle and antiparticle levels is small. We then have 
c ,  -c,  (see Refs. 7 and 8 and the text below). By virtue of the 
charge conservation condition (7 ) ,  this means that the mean 
number of pairs in this state must increase: 

This increase continues without limit as the level approaches 
the lower continuum (in a wide and/or shallow well, there 
are no bound antiparticle states), or, as the bound state of 
the particle approaches the bound state of the antiparticle. 
This is not surprising because the situation can no longer be 
regarded as time-independent at the time of merging of the 
levels. Actually, according to the solution of the Klein-Gor- 
don equation, a laser-type exponential increase in the wave 
function and in the number of pairs with time begins as the 
well depth is increased still further. This type of increase, 
and even its initial stage, are inconsistent with the law of 
conservation of charge when the charge of the system can be 
different from zero or infinitly. I t  may be shown that the 
wave function of a quasistationary level is normalized for 
any fixed instant of time. Consequently, the only way of 
avoiding the contradiction with conservation of charge is 
c ,  = c,. This is, in fact, what happens. This exact equation is 
not obeyed in the spinor case. Consequently, the norm of the 
quasistationary state is infinite. 

In the boson case, it can be proved that the norm of the 
solution will vanish at  the time the bound particle and anti- 
particle levels merge [see Eqs. (5 )  and ( 10) in Ref. 6 and the 
detailed discussion in Refs. 7 and 81. 

Thus, even as we approach the point of merging of the 
particle and antiparticle levels, the state is essentially a 
many-particle state. A large number of particles in a finite 
part of the well signifies a high density of particles, which 
means that the interaction between them must be taken into 
account when the level energy is determined. At  this point, 
the theory must be developed further by a procedure similar 
to that adopted by Migda15 for the evolution of a condensate 
in a supercritical well. 
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