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The idea that the solution of the so-called one-particle wave equation actually describes not a
single-particle system but a many-particle system with given charge equal to zero or one is
extended to bound states. It is suggested that, crudely speaking, the electron can be found only
in the region V' in which its kinetic energy satisfies 7,(x) = p, — ed,(x) >0, and the positron
in the region ¥ _ in which my(x) <O0. In the case of the strong field of a deep potential well and
finite motion of the particle (for example, in a narrow well), the integral ¢5 = fdV |¢|? over

V_ may be comparable with the integral ¢} = fdV |¢/|* over ¥V, (¢} + ¢5 = 1). The meaning of
|| must then be reinterpreted. In particular, ¢3 must be looked upon as the probability of
finding the pair in an uncharged (in the usual language, unoccupied) level. Pauli’s principle
plays an essential part in this interpretation. For bosons, Pauli’s principle does not apply, and

the interpretation must be accordingly modified.

1. INTRODUCTION

The quantum electrodynamics of phenomena occur-
ring in strong fields is undergoing rapid development and
pair-creating fields are attracting particular attention (see,
for example, the reviews given in Refs. 1-4). When the pair-
creating field is turned off both in the past and future, i.e., for
t— 4+ oo, there can no longer be any doubt about the ability
of the theory to describe all the phenomena. This cannot be
said about fields that are not turned off for 1— + 0. It is
quite possible, however, that, in strong time-independent
fields localized in a finite region of space, outside which all
the particle and antiparticle states are well defined, the the-
ory is, in principle, capable of answering all questions raised
by the idealized experiment in which instruments record
particles in a large region outside the strong-field region. On
the other hand, when we consider measurements exploring
the behavior of particles in the strong-field region, it is not
clear how we could distinguish between a particle and an
antiparticle. In particular, there is a difficulty with specify-
ing the state of a vacuum electron in a level immersed in the
lower continuum of the supercritical atom.*

In this paper, we shall discuss the interpretation of a
strongly-bound state in a deep and narrow well with steep
walls, in which virtual pair production by the field has a
significant influence on the wave function ¥(x). This ques-
tion is closely related to the above problem. In this case, for a
spin 1/2 particle, the integral ¢; = fdV || is not negligible
when evaluated over a region ¥ _ in which the kinetic energy
of the particleis 7y (x) = p, — edy(x) <0. We shall consider
that, in this region, the wave function describes the positron
that appears as a result of the virtual pair production by the
field. The electron, on the other hand, can be found only in
the region ¥, in which 7y(x) > 0. For a normalized func-
tion, the two integrals satisfy the condition ¢? + ¢ = 1. If
the state is uncharged i.e., has zero charge, ¢} gives the prob-
ability of finding the pair in the particular state. For a
charged state, i.e., a state with charge e, we have to suppose
that the electron has unit probability of being in the region in
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which 7, (x) > 0. Virtual pair production by the field in the
well is then prevented by Pauli’s principle. The region in
which 7,(x) <0 remains unoccupied.

This does not, however, mean that an external photon
of suitable energy will not be able to create a pair in which the
electron enters some other state and the positron enters the
same level as the bound electron. The system occupying this
state will have zero charge, i.e., the state will be uncharged.
In the more familiar language, it is said that virtual produc-
tion of the pair by the photon contributes to the process of
excitation of the electron.

For a spin 0 particle, this interpretation must be modi-
fied because the Pauli principle does not then apply.

The interpretation makes it clear that the same poten-
tial well can bind both the particle and antiparticle in the
boson case, but it can bind only the particle in the fermion
case.”™® In the latter case, the positively charged state (the
charge of the system is then equal to 1) signifies the presence
of the positron outside the well, and the absence of the elec-
tron from the well. Pauli’s principle then ensures that the
electron inside the well cannot appear because there is no
place outside the well for the additional positron that com-
pensates the charge of the electron. The well does not, there-
fore, reduce the energy of the system of charge 1. On the
other hand, the energy of a boson system of charge 1 can be
reduced by virtue of the presence at the bottom of the well of
particles of charge — 1 (Ref. 7).

2. SPIN 1/2 PARTICLE

We first note that the Feynman propagator, construct-
ed from the so-called single-particle solutions, takes into ac-
count pairs in the intermediate state in the relativistic case.
We also note that the theory of pair production by an exter-
nal field that is turned off for t—» + « (Refs. 1-3), the ex-
planation of the Klein paradox,”® and all the experience
gained by working with strong fields (see, especially, Section
3 of the first paper by Ritus®) teach us that the so-called
single-particle solutions of wave equations describe not so
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much particle states as processes (in a sense, mutliparticle
processes) occurring in states with charge 0 or + e. Let us
illustrate this by some examples.

Consider the complete orthonormal sets of in-solutions
+ ¥, and out-solutions * ¢, (x) of the Dirac equation in the
case of fields that vanish for - + . The symbols + indi-
cate the sign of the frequency of the solution and 7 represents
the set of quantum numbers of a state. For conserved quan-
tum numbers, we have a simple relation between the in- and
out-solutions:'~*1°

#bn (2) =C1n Thn (2) FC2n ~Pa(2),

P (2 =—Con" " Pu(2) Fein” “Pn (),
Icln'z+lc2n|z=1-

(1)
(2)

The last of these describes the conservation of the norm of
the wave function (or charge).

For pair-producing fields, |c,, |*#0. This quantity can
be interpreted as the absolute probability that a pair will be
produced in a state n if the initial state was free. The quantity
|c1, |? is then the probability that the pair will not be pro-
duced, i.e., the probability that the vacuum will remain in
the n-th state. According to Feynman’s theory,'"' the same
solution 9, (x) for a charged initial state gives, with prob-
ability 1, the final state "¢, (and not c¢,, *¢, ) if we take
into account the difference between the relative and absolute
amplitudes. Pair-production of any kind does not occur in
this case, in accordance with the Pauli principle.

Thus, if we deal only with the solutions given by (1), we
can use simple rules to extract from them information about
processes occurring in the particular state. The consistency
of these rules with the second quantization theory is dis-
cussed in Refs. 1-3.

Bearing in mind the extrapolation of these rules to the
case of virtual pair-production by the strong field in the well,
let us consider a closely-related example, namely, that of the
creation of a pair by a time-independent potential wall (the
Klein paradox"g). For a step of the form

€A0=€ao[1 +tal’lh k3X3]ya0, k3>0 (3)

we can readily find the complete set of solutions of the Dirac
equation (see Ref. 1). The electric field corresponding to the
potential 4,(x5) is

& (2) =—0A,/0x,=—a,k,/cosh? kyx,

which will retard an electron (e <0) moving from right to
left. In reality, the specific shape of the step is unimportant.
The only significant quantity is its height 2|e|a,, which we
shall assume is greater than 2m, and the effective electric
field a,k,, which we assume to be strong (aok; X m?/|e|) in
order to ensure that pair-production effects are consider-
able.

The solutions are labeled by quantump numbers n = (p,,
D2 Pos 1), Where u is the spin component. For simplicity, we
set p; = p, = 0, so that the kinetic momentum and kinetic
energy are given by

() == [ﬂoz(xa) —m?] Vz, () =Po—€Ao(1«'a) . (4)
We note that the quantum number p, can be interpreted as
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the conserved total, i.e., kinetic plus potential, energy.

The electric field vanishes for k;|x;|> 1. In these re-
gions, we have plane waves with momentum m,(x,)
—-73( + ) asx;— 4+ oo. Since 4,(x;) -0 for x; » — o0, we
have

T —00) =t5(—) = (po"—m?) "=i(m*—ps*)". (5)

When |p,| < m, the electron wave incident on the step
from the right is completely reflected. Let us examine barrier
penetration by the wave from right to left, assuming that the
height of the step is greater than 2m. A step of this kind can
create real pairs but, for the moment, we shall confine our
attention to states with p, such that real pair-production is
not possible in these states (|p,| <m). For sufficiently large
negative x;, the x; dependence of the wave function is
exp[ — |x5|(m? — p2)'/?]. As p, falls from m to 0, there is
less penetration by the electron to the left of the step. We
note that, on the right of the step, the electron has positive
kinetic energy 7o,( + ) = p, + 2|e|a,. A reduction in this en-
ergy reduces penetration, as in the case of a nonrelativistic
particle. Actually, if we write py=my(+)—U
=m + E — U, U= 2|e|a, and suppose that E, U<m, we
obtain the same result as in the nonrelativistic theory, i.e.,
m? — pt =2m (U — E), which may be compared with equa-
tion (25.1) in Ref. 12. Hence, it is clear that a reduction in E
gives rise to an increase in the attenuation by the barrier
exp[ — |x,] (m* — p§)'/2].

Further reduction in p, from 0 to — m is accompanied
by an increase in the penetration of the step. This property of
the relativistic solution is a manifestation of virtual pair-
production by the strong field. (For a weak field, a,k, €m*/
le|, the coefficient of the tunneling part of the solution be-
comes exponentially small.)

A strong field will not only give rise to efficient pair-
production, but will also reduce the size of the region in
which particles and antiparticles are not well separated, i.e.,
the region in which |7,(x)|<m. To the left of the step,
7o( — ) = p,. Negative p, signifies negative 7,( — ). Such
values of 7,( — ) are closer to the lower continuum of states
than to the upper continuum. In this region, the wave func-
tion describes the virtual positron of the pair of the level is
uncharged. To the right, we can then only have an elec-
tron—the partner in the pair. However, if the state is
charged, the wave function to the right of the step describes
the state of the electron occupying the level. Pair-production
does not then occur, and the electron cannot penetrate the
left region because of the effect of the field associated with
the wall.

It is natural to ask why, with the chosen step for which
the potential vanishes to the left of the step, virtual pair-
production by the strong field occurs only for p, < 0 but not
for p,> 0. The answer to this question is that, in the latter
case, the field does not have the energy even to produce the
below the barrier pair. The work that must be done by the
field is equal to the height of the step, i.e., 2|e|a,, and the
kinetic energy of the pair must, at any rate, be greater than
the kinetic energy of the electron to the right of the step, i.e.,
greater than 7,( + ) = p, + 2|e|a,. Hence, it is clear that it
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is only for p, <0 that the field can communicate positive
energy to the virtual positron. We recall that, in the region in
which 7,(x) <0, the quantity — m,(x) is the energy of the
positron inside the barrier; the positron lies above the barrier
if —7,(x)>m. Since m4( — ) = p, to the left of the step, we
can look upon 7,( + ) = po + 2|e|a, as the law of conserva-
tion of energy during the formation of the pair below the
barrier if we rewrite it in the form 7o(+ )
+ [ =7o(=)]1=2le|a,.

Thus, virtual pair-production effect occurs in the solu-
tion even when we consider the solution of the Dirac equa-
tion for a step. It does not appear in the idealized analysis in
which the motion of the electron from the right is looked
upon as infinite. In principle, the effect is observable. Thus,
the pair can be detected by checking near the wall whether
the level is charged. This does not contradict the usual repre-
sentation: a relatively small perturbation of the system in
which virtual pair-production plays a significant part may
convert the virtual pair into a real pair. If we reduce p,
still further, we enter the Klein region in which
To( — ) =po< —m, mo( + ) =p,+ 2lelagn. (When p,,
p,#0, the quantity m must be replaced with m, = [m?p}

+p3]"2.) The field then creates real pairs, and the wave
previously attenuated in the left part becomes converted into
a propagating positron wave.

It can be shown that the evaluation of the matrix ele-
ments for pair production and scattering on the potential
step will converge efficiently to the well-known case of a field
that vanishes for r—» + « (cf., Ref. 1 and the boson case,
below).

We are now very close to the extrapolation of the above
interpretation of barrier scattering to the less pure case of the
wave function of a strongly-bound state. We consider that
the well field confines the electron to region ¥ in which
m(x) >0, and the positron to region ¥_ in which 7,(x) <O0.
Roughly speaking, we may consider that the boundary
between ¥, and V_ is given by the condition 7,(x) = 0.Ina
strong field, the region in which |7y(x)|<m and particles
and antiparticles are poorly distinguishable is relatively
small. The integrals of |¢|* over ¥ and V_ will be repre-
sented by ¢} and c3, respectively, and will be normalized by
the condition ¢i + ¢5 = 1. When the level is uncharged, we
consider that it is occupied by a pair with probability ¢3 and
unoccupied with probability ¢;. We are referring here to a
bound virtual pair. Migdal has discussed,’ from another
point of view, bound pairs in a supercritical atom, taking
into account the interaction between the electron and the
positron.

When the level is charged, the electron is found in the
region ¥ with probability 1. This means that it is then de-
scribed by the previous wave function ¥ (x), which is now
multiplied by ¢, '. The region ¥_ remains free because the
well field cannot create a pair in this state. The basic idea of a
partially occupied level is used even in the quasiclassical
treatment of pair production by a constant electric field (see
problem 2 in Section 129 of Ref. 13).

In the supercritical atom, the levels in the upper part of
the lower continuum contain an electron in the region ¥V, .
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The fact that the electron in a state immersed in the lower
continuum is dissolved among the levels of this continuum is
demonstrated in Ref. 6 (see also Ref. 2 and 4). The state of
this vacuum electron has not as yet been adequately investi-
gated. It is basically represented by solutions with p, lying in
the neighborhood of the real part of the energy of the quasi-
discrete level.® Positrons undergo resonance scattering by
the field of the atom for such values of p, (Ref. 6). To alesser
extent, the vacuum electron is represented by solutions with
other p, in the upper part of the lower continuum, namely,
solutions for which there exists a region with 7,(x) > 0.

The question is: can the state of the vacuum electron be
described by a wave packet with p, from the admissible inter-
val? Evidently, the answer is no because it is difficult to ima-
gine how this packet could be prevented from leaking into
the region ¥_. Its norm would not then be conserved in V.
Moreover, according to the usual ideas, the packet would
describe in ¥ a type of motion that would be difficult to
interpret because we are considering the lowest state of the
system, i.e., the so-called charged vacuum. This may be used
as a basis for concluding that the phases of the functions with
different p, in the packet are random and, in effect, do not
interfere. It is possible that the state of the vacuum electron
is described by the density matrix. This question requires
further investigation.

However, let us return to our problem. A time-indepen-
dent state with ¢ > ¢} is possible in a narrow well with steep
walls. This is readily understood because a strong field
(steep walls) will keep the electron inside the well, while the
positron part of the wave function will slowly fall outside the
well if p, is close enough to — m. It is precisely in this well,
that both particles and antiparticles can have bound states in
the boson case.

To summarize the results of this section, we emphasize
once again that the solution of the so-called single-particle
Dirac equation describes processes occurring in a system of
charge 0 or + e rather than the state of a particle. In the
matrix element of a particle process, the wave function de-
scribes possible paths for the process. For example, if the
level is uncharged, it is empty with probability c?, and the
incident electron will occupy it with probability « after emit-
ting a photon. The probability of this path for the process is
therefore proportional to ac?. On the other hand, the well
field can create a pair with probability c2. The electron in the
pair occupies the level, and the positron, having emitted a
photon, annihilates the arriving electron with probability a.
The probability of this path is proportional to ac3. When the
second path provides an appreciable contribution, it seems
to us that the interpretation of the solution must incorporate
the elements considered above.

3. SPIN 0 PARTICLE

Let us now consider the differences that are specific for
a spin O particle."*%!° Returning to fields that vanish for
t— + oo, we recall that the in- and ouz-solutions are related
by
+9n (Z) =C1n P Pu(2) F o ~Pn (),

. L (6)
“Pu (T) =Can" TP (x) FC10" ~Pn ().
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Conservation of norm (charge) now yields

|enl?=]ea|?=1, (7)

i.e., |c,, |? is always greater by one than |c,, |°.

It is readily shown that |c,, |* can be interpreted as the
mean number of pairs produced by the field in state » when
the initial state (prior to the introduction of the field) was
free. The probability that the pair will not be produced in
this state is ¢,, = |¢,, | . The total probability of all the
events in this state is equal to unity:

Conl 1twntwa+- J=con(1—w,) =1, (8)

w"=162"/ciﬂ|27 cvﬂ:lclnl—z- (9)

The second relatin in (8) is simply another form of (7). The
mean number of pairs created in the nth initially unoccupied
state is

n=cy,[wa+2w,*+3w,*+...]

d
=ConWp— (1_wn) —’=conwn(1_wn) —i= , Can l 3 (10)
dw,

The presence of a particle (in general, any number of
particles) in the initial state does not prevent the creation of
pairs in this state. The absolute probability of the scattering
of a particle, subject to the condition that m pairs are created
in the same state, is equal to the product of the probability
that m pairs will be produced [|c,, | *w™, according to
(8)] and the probability of scattering in the presence of m
pairs, which is equal to |c,, | ~*(m + 1). The total probabil-
ity of scattering accompanied by the appearance of any num-
ber of pairs is equal to unity:'

(e ]~ Z(mﬂ)wn’"=lcml“(1—wn)"2=1- (11)

The mean number of pairs in this state is

©

ﬁ=|cm|—‘z, m(m+1)w,"=2|¢,. |

M|

(12)

We note that, in the theory of second quantization, the
expectation values are found in the Heisenberg picture with-
out averaging over the number of pairs. Thus, for (12), we
have (see Refs. 1 and 2)

(13)

_ + +
n=<oin l an fnbn outbn outln in I Om>=21 Can Iz,

where a,, (b, ) is the particle (antiparticle) annihilation op-
erator, and so on. To obtain the right-hand side, we can use
the relation between the in- and out-operators:

bn:ut=62n.an+iﬂ+cinbn-:ny (14)

b our=C2n@n intCin b in.

The many-particle interpretation of the coefficients ¢,,,
¢,, of the so-called single-particle solution of the Klein-Gor-
don equation remains valid for the time-independent solu-
tions in the case of the pair-creating potential step. We shall
show how c,,,c,, can be determined in this case. We are
interested in solutions with p, lying in the Klein region:
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To(—) < —my, my(x)>m. We shall classify the wave
functions in accordance with the sign of the momentum
m5(x;) at the infinity at which there is only one wave (that
has penetrated the barrier). Thus, | ¢, (x) means that, as
x3— — oo (lower position of the symbol + ), the wave is
characterized by positive momentum 7;( — «); ~¢, (x)
means that, as x;— + «, we have negative momentum
73( + o) and so on. We shall normalize the solution to unit
flux through the plane xy throughout the time 7 of observa-
tion:!

j“’wn"(x) (—i i

51'3

) zlpn (x) d1=i6nn'628"

(15)

dt=dxdydt, e,e ==,

—T2<t<T/2.

61111':61’1131’6}721-’1'61?@:»'7

Functions with the symbols + in the inferior position will
be normalized in the same way.
It is readily verified that

+Un (2) =b P (2) 82" (7)), (16)
P (2) =b2n " Pa () + 010" (2).

Conservation of current along the x; axis yields
[b1n|>— | b2n|2=1. (17)

The first relation in (16) will now be written in the form

_1l7n=cm+wﬂ+czn+lpm ( 18)
Cin:_bin/bzny (19)

In the Klein region that we are considering, relation (18)
can be interpreted in the single-particle sense, as follows. A
particle in the state ~¢, is incident on the barrier from the
right. It is reflected by the step in the state ", and pene-
trates the barrier in the state , ¥,, . Since only the antiparticle
can penetrate the barrier [this is also clear from the sign of
mo( — o) ], the positive value of 75 ( — ) can be interpreted
as the motion of the antiparticle away from the barrier with
momentum — 7;( — ). Consequently, (18) describes the
same situation as the analogous relation for fields that vanish
for t— + . (A finite wave packet associated with the inci-
dent particle will not interact with the step field for
t— + o.) Accordingly, (7) follows from (19) and (17).
According to (10), the quantity |c,, |* is the mean number of
pairs in the particular state throughout the time 7 of obser-
vation, provided the charge of the system is zero, i.e., the
level is uncharged. All the possible processes in the state n,
whatever its charge,' can be determined from the givenc,,,,

C‘gn=bzn~1.

Cop-
Finally, the many-particle interpretation of the wave

function can be extrapolated to a bound state and virtual

pair-production. It is readily seen that, in this case,

¢, = max { j.deo, — j.dVJ'o} ) (20)
Ve

cii—ct=1.

The quantity j, is the fourth component of the current:

A. |. Nikishov 925



jo=\pn‘(1)2ﬂo(1)\pn(x)- 2n

The possibility that ¢ = — §d¥j, (integration over V_)
corresponds to the bound antiparticle state, whose norm is
-1

Cetted=avint [ avi=—t. (22)

V. Ve

Suppose that this state is charged, i.e., its charge is equal to
that of the antiparticle. In contrast to the fermion case, the
system now contains particles at the bottom of the well. Be-
cause of this, the system can be bound. This state is unusual
in that the antiparticle part of the wave function, which de-
termines the sign of the norm in (22), does not have a classi-
cally accessible region of motion anywhere.

Finally, let us consier the case where the gap between
the particle and antiparticle levels is small. We then have
¢;=c, (see Refs. 7 and 8 and the text below). By virtue of the
charge conservation condition (7), this means that the mean
number of pairs in this state must increase:

2(?2’»36‘1"}'0::1/(01_02) >1.

This increase continues without limit as the level approaches
the lower continuum (in a wide and/or shallow well, there
are no bound antiparticle states), or, as the bound state of
the particle approaches the bound state of the antiparticle.
This is not surprising because the situation can no longer be
regarded as time-independent at the time of merging of the
levels. Actually, according to the solution of the Klein-Gor-
don equation, a laser-type exponential increase in the wave
function and in the number of pairs with time begins as the
well depth is increased still further. This type of increase,
and even its initial stage, are inconsistent with the law of
conservation of charge when the charge of the system can be
different from zero or infinitly. It may be shown that the
wave function of a quasistationary level is normalized for
any fixed instant of time. Consequently, the only way of
avoiding the contradiction with conservation of charge is
¢, = ¢,. This is, in fact, what happens. This exact equation is
not obeyed in the spinor case. Consequently, the norm of the
quasistationary state is infinite.
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In the boson case, it can be proved that the norm of the
solution will vanish at the time the bound particle and anti-
particle levels merge [see Egs. (5) and (10) in Ref. 6 and the
detailed discussion in Refs. 7 and 8].

Thus, even as we approach the point of merging of the
particle and antiparticle levels, the state is essentially a
many-particle state. A large number of particles in a finite
part of the well signifies a high density of particles, which
means that the interaction between them must be taken into
account when the level energy is determined. At this point,
the theory must be developed further by a procedure similar
to that adopted by Migdal® for the evolution of a condensate
in a supercritical well.
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