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A microscopic theory is used to investigate the dynamics of the phase-slip center (PSC) in a 
Peierls semiconductor with nonzero energy gap A. This center is produced when current flows 
in the case of a sufficiently strong deformation of a charge density wave (CDW) and 
constitutes a dynamic amplitude soliton. A soliton with dimension of the order of the 
correlation length 6 = v/A has a local energy level -c = - A cos 8, whose position oscillates in 
time. A nonlinear integral equation is obtained for the total change 28 of the CDW phase on 
the soliton. The solution 8( t )  of this equation is a function that grows stepwise with time. The 
voltage on the sample is directly related to cos 8( t ) .  The phasex outside the PSC is described 
by the diffusion equation, and the quasiparticle current j,, is determined by the 
inhomogeneous deformation of the CDW ( j, -x" ) . The latter is due to the screening of the 
CDW by quasiparticles and to band bending in the field of the inhomogeneously deformed 
CDW. 

1. INTRODUCTION 

One of the most interesting effects observed in inorgan- 
ic quasi-one-dimensional conductors with charge density 
waves (CDW) is generation of narrow-band noise1-, (see 
also the reviews 4 and 5). This effect was observed in many 
compounds [NbSe,, TaS,, KO,, MOO,, (TaSe,),I and oth- 
ers] in which, at a certain temperature T,, a Peierls transi- 
tion takes place and a CDW is produced at T < T,. The effect 
constitutes electric oscillations generated when current is 
passed through the sample at temperature T <  T,. It was 
observed that if the current I (or the field E in the sample) 
exceeds a certain threshold value I, (or a corresponding 
6,) the current-voltage characteristic (IVC) of the sample 
becomes nonlinear, and voltage oscillations are produced in 
the sample and have one or several frequencies and their 
harmonics. The oscillation frequencies are as a rule of the 
order of several MHz and increase with the current. There is 
at present no doubt that this generation is connected with the 
collective conduction mechanism of these compounds- 
with the CDW motion. Several explanations of the genera- 
tion mechanism were proposed, and some of them agree at 
least qualitatively with the experimental data. So far, how- 
ever, no final conclusion favoring any of the proposed mech- 
anisms can apparently be drawn. 

All the proposed generation mechanism can operate ei- 
ther in a bulk or in a local mode. One of the simplest explana- 
tions is the so-called classical model, in which the CDW is 
regarded as a rigid formation acted upon by an applied field 
E, a friction force, and the force of interaction between the 
CDW and the lattice or the impurities. The balance equation 
for these forces, which determines the phasex of the CDW, 
is given bybs 

Here r is the friction coefficient and I the mean free path of 

the electrons. The second term in the left-hand side of ( 1 ) is 
due either to the interaction of a commensurate CDW with 
the initial lattice [in which case m is an integer larger than 2 
and Eq. ( 1 ) can be obtained from the microscopic theory6], 
or to the interaction of the CDW with the averaged potential 
of the impurities7 (it is assumed in this case that m = 1, and 
equation is in fact phenomenological). Equation ( 1 ) jointly 
with the expression for the current density 

describes qualitatively the form of the observed IVC and 
explains the presence of a time-oscillating component of the 
CDW current. 

Another possible generation mechanism is attributed 
not to the motion of the CDW as a whole, but to the motion 
of local distortions of the CDW-phase solitions or kinks9 
In this case it is necessary to add to the left-hand side of ( 1 ) a 
term - Dx", in which case the equation for x describes 
phase-soliton m ~ t i o n ' ~ - ' ~  that increases the conductivity of 
the system regardless of whether the solitons are 
chargedIel2 of neutralI3." The current oscillations set in 
when the soliton enters or leaves the  ample.^ 

Other mechanisms were also proposed for the bulk gen- 
eration and attributed to interaction between CDW and im- 
purities. It was proposed in Ref. 15 that collapse of a CDW 
pinned by impurities takes place at E >  E ,  as a result of 
quantum tunneling. In Ref. 16 the current oscillations were 
attributed to tunneling transitions of the electrons from one 
sheet of the Fermi surface to another during the time of mo- 
tion of a CDW that interacts with the impurities. 

Finally, local-generation mechanisms were also pro- 
Ong and VermaI9 obtained experimental evi- 

dence that the oscillations are generated not throughout the 
volume, but in the neighborhood of the contact. Their expla- 
nation of this phenomenon was that the inhomogeneity 
(e.g., of the electric field) near the contact caused the phase 
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x to increase with time, x a Et, at different rates in different 
points of the sample. The phase difference "collapse" is via 
formation of a phase vortex and its motion across the fila- 
ments. A local generation mechanism was proposed inde- 
pendently by Gor'kov, l9 who also took into account the non- 
uniform growth rate o fx  with time. According to Gor'kov, 
however, the phase-difference collapse is via formation of a 
phase-slip center (PSC), in analogy with the situation in 
narrow superconducting films.20 The growth of the gradient 
X' suppresses the modulus of the order parameter A at a 
certain point to zero and changes by 277 the phase difference 
between the points on the left and right of the PSC. This 
method of generating oscillations was analyzed in detail in 
Refs. 19 and 2 1 for the case of a dirty zero-gap (TA 4 1 ) 
conductor with CDW. The absence of an energy gap has 
made it possible to obtain in closed form, with the aid of the 
microscopic theory, equations for A and X, and these, to- 
gether with the expression for the current density, describe 
the behavior of the system completely. These equations were 
derived by Gor'kov19 and used by him in the analysis of the 
dynamics of the PSC and of the current oscillations. In view 
of the nonlinearity and complexity of the derived equation, 
and analytic calculation is difficult, so that some conclusions 
were drawn on the basis of qualitative estimates. A computer 
calculation was performed in Ref. 21. 

Interest attaches to a similar investigation for a more 
frequently occurring case, when the impurity density is not 
too high (AT% 1 ) and the excitation spectrum of the Peierls 
conductor has a gap. This is precisely the purpose of the 
present article. It is impossible in this case to obtain for A 
and x equations in closed form capable of describing the 
CDW in all of space. However, in view of the weak electric 
field ( E l 4  A) and the short correlation length 6 = u/A over 
which A varies in the PSC compared with the other lengths 
of the problems (e.g., with the diffusion length L, 
= (D /w) 'I2, where w is the oscillation frequency, or with a 

distance 2a between contacts), the problem can be divided 
into two parts. It is possible to determine the structure of the 
PSC at 1x1 5g (i.e., 1x1 <L,,a), using directly the micro- 
scopic equation for the retarded and advanced Green's func- 
tions gR'A) and f R(A), in which A and x depend on the time 
adibatically. The solution obtained for A and x with the aid 
off R ( A '  must be matched to the solution of the problem in 
the region 1x1 %l, where A andx vary smoothly and satisfy 
closed-form equations that describe, in particular, the slip- 
page, deformation, and polarization of the CDW with the 
screening taken into account. It was found that the PSC is in 
essence a dynamic amplitude soliton in which the phase x 
changes by 20, and the local energy level is located at a dis- 
tance E = - A cos 0 from the center of the forbidden band. 
Matching the solutions yields an integral equation for 8 as a 
function of time, with a solution that is a function that has an 
oscillating part and grows with time. The growth rate and 
the oscillation frequency are proportional to the current, 
and the oscillation spectrum 0 ( t )  contains many harmonics. 
We develop next a theory of local generation in Peierls con- 
ductors with nonzero gaps. We begin with derivation of the 
equations that describe the CDW outside the PSC. 

2. QUASICLASSICAL EQUATIONS IN THE REGION OUTSIDE 
THE PSC 

We assume the model used by us previously22 to derive 
microscopic equations for the Green's functionsg and gR(A). 
This means that the Fermi surface of a quasi-one-dimension- 
a1 metal consists of two slightly curved planes. A Peierls 
transition takes place in the system, a gap appears at the 
Fermi level, and an incommensurate CDW or a commensur- 
ate one with m>3 is produced on the Fermi surface. The 
impurities are taken into account only to the extent that they 
scatter electrons. The pinning of the CDW to the impurities 
is neglected. Consequently, strictly speaking, at currents 
I-I, this assumption is valid only for a CDW whose pin- 
ning is due only to commensurability. Just as in Ref. 22, we 
use the self-consistent-field approximation. We assume also 
that all the quantities depend on only one coordinatex along 
the current. To obtain the desired expressions for the current 
densityjand the chargep, and also equations for A andx, we 
must find the function g. We write the equation for g in a 
quasiclassical approximation, assuming that all the func- 
tions very smoothly enough (kv4  A) and slowly (w 4A) .  
For convenience we transform the matrhg by separating the 
phase and the generalized potential 6 = '3 - ux1/2: 

g ( t ,  t ' )  =S (t)R,S+(t')exp{iG(t-t')), 

S =cos (x ( t )  12) +iB, sin ( X  ( t )  12 ) .  (3) 

The equation for the function 2, (we omit hereafter the sub- 
script n) ,  obtained by calculating the matrix element ( 1 ), 
(2)  from Eq. ( 18) of Ref. 22, takes the form 

A 

whereg = - 86/8x, A = ieYA, and A is the modulus of the 
order parameter. The matrix X describes impurity scatter- 
ing: 

e=- ( i l 2 )  {v,a,g6,- ( ~ ~ 1 2 )  [ S ,  ( t ) a s ,  ( t ' )  +s ,  ( t )  g s 2  ( t ' )  I ) ,  
( 5 )  

where 

s i=%z cos xi-6, sin X ,  9,=6, cos X-6, sin X ,  

y,,, are the forward- and backward-scattering frequencies. 
The orthogonality condition 

is also useful. The functions satisfy an equation A A of the 

same form as Eq. (4),  but only two terms (2& - gZ)R(A'  
need be retained in the right-hand side of the latter. 

From Eqs. (4)-(6) we must obtain the g matrix ele- 
ments with the aid of which all the measured quantities are 
determined. To make matters physically clearer, it is reason- 
able to express the matrix 2 in terms of a distribution func- 
tion, in analogy with the procedure used for superconduc- 
t o r ~ ~ ~ :  

Note that at equilibrium n, = 0 and n, = tanh(Z/2T), i.e., 
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n, is connected with the distribution functions of the quasi- 
particles n by the relation n, = 1 - 2n. The charge and cur- 
rent in the system are expressed in terms of the functions n, 
and n,, respectively. From (4)  we obtain for the distribution 
functions n, and n, the equations 

Here 

7 (pI  ) is a function that describes the Fermi-surface curva- 
ture due to the interaction between the strings. We neglect 
this curvature for simplicity, a procedure valid if 7 (A. The 
terms in the right-hand side of (9) describe nonequilibrium 
effects that arise when current flows in the system (e.g., 
heating of the quasiparticles). We neglect also these effects, 
assuming the field not to be too strong. 

Expressions for the current and charge densities can be 
obtained with the aid of (7)  and of Eqs. ( 15) and ( 16) of 
Ref. 13. They take the form 

eo 

Here co is of the order of the Fermi energy (E,% A,T), u, is 
the conductivity in the normal state (with A = O), 
1, = ur,  = V/V, is the mean free path, and S, is the area of the 
intersection of the Brillouin zone with a plane perpendicular 
to the direction of the strings. Since we neglect hereafter the 
dependence on p, , we can dispense with integration with 
respect top, . 

To obtain a closed set of equations it is necessary to use 
the self-consistency condition [see Eq. (21 ) of Ref. 221. We 
substitute in this condition expression (7)  for g and use also 
the form of the functions gR'A' that must be found from the 
corresponding equations in first order in (ug).  After simple 
transformations we obtain equations for the gap A and for 
the phase X: 

Equations (8)-( 14) determine the behavior of the 
CDW for sufficiently smooth (ku(A) and slow ( w  ( A )  
perturbations, in a model in which the friction of the moving 
CDW is due to its interaction with quasiparticles. 

To illustrate the use of the derived equations, we consid- 

er first the homogeneous case of a moving CDW. In that case 
n , takes the equilibrium form n , = tanh (&/2T). From ( 8)  
we obtain the function n, that determines the current: 

- 
In this case (x' = 0)  E = E = - @'. 

The left-hand side of (9)  vanishes, and to the right- 
hand side, which describes the heating effects, we must add 
terms that describe the energy relaxation (e.g., due to scat- 
tering by phonons). In the present paper, however, we are 
not interested in nonequilibrium effects. With the aid of n, 
we can calculate the current density j due to the motion of 
the quasiparticles and the CDW. We do note cite the calcula- 
tion results, since they coincide with those of Ref. 22. The 
charge is zero in this case because n , is odd as a function of E. 
From ( 13) we obtain for the gap the usual equation, while 
( 14) yields for the phase the relation between E a n d i ,  calcu- 
lated in Ref. 22. 

The equations presented can be used also to consider 
another case-an immobile (i = 0)  inhomogeneous CDW 
in the absence of current. This situation is realized, for exam- 
ple, if the system contains phase solitons. It is then necessary 
to add to the self-consistency equation ( 14) for the phase a 
term connected with commensurability (see below and also 
Ref. 13). In this case the solutions of (8)  and (9)  are the 
equilibrium functions n, = 0 and n, = tanh [ (E - Y )/2T], 
with Y = 6 = @ - vxf/2, describing here the bending of the 
bands in the presence of a static inhomogeneous potential @. 
This form of n, leads to a nonzero charge of the quasiparti- 
cles, which offsets the CDW charge [see Eq. ( 12) 1. 

We turn now to the case of interest to us, when the 
system contains an inhomogeneous moving CDW. The 
function n,  has again an equilibrium form, but the function 
Y is no longer equal to @ and n, #O. We have thus for the 
functions n, and n, 

Here 

is the effective field that acts on the quasiparticles (the gradi- 
ent of the electrochemical potential). It can be seen from 
( 16) and ( 17) that the function Y describes the deviation of 
the chemical potential of the quasiparticles from the center 
of the gap. We have assumed o (v, in the derivation of ( 17). 

An expression for Y terms of ux' is obtained from the 
quasineutrality condition, i.e., from the fact that the total 
chargep is zero. It may turn out that even at low tempera- 
tures ( T < A )  the function Y is close to A. Coefficients such 
as the quasiparticle conductivity a, and the friction coeffi- 
cient r will then not be exponentially small. Note also that 
the function Y leads to suppression of the gap. Next, using 
(16), (17) and (1 1 )-(14), we obtain the required equa- 

908 Sov. Phys. JETP 64 (4). October 1986 Arternenko et aL 908 



tions, which are valid everywhere except in the vicinity of the 
PSC, where the phase ,y and the modulus A change over 
distances x -<. For the sake of argument, we consider the 
low-temperature case T< A, although the corresponding 
equations can be easily obtained analytically also in the 
limiting case T 4  A. In addition, we assume that the chemical 
potential is not too close to A. Thus, we calculate the coeffi- 
cients in the equations for x and j subject to satisfication of 
the conditions 

Using the quasineutrality condition, to which the Poisson 
equation reduces in our case,', we obtain from (12) a rela- 
tion that connects Y with the derivativex' of the phase: 

From ( 11 we obtain an expression for the current: 

The first term in (21 ) is the quasiparticle current due to the 
action of the effective field ?F. It contains both the field- 
induced and the difussive quasiparticle currents. It is just the 
potential difference V = J d x g  which is measured in experi- 
ment when current flows in the case of an inhomogeneous 
CDW. The second term in (21 ) is the CDW current. 

Substitution of (16) in (13) determines the change of 
the gap SA = A - A, in the presence of the potential Y. As- 
suming this change to be small, we obtain under condition 
(19) 

Finally, Eq. ( 14) for the phase x yields 

E-E, sin (mX) =(X/l,) (A/2nT)'"(lGNs) ch ('PIT) In (T/v). 

(23) 

To generalize the treatment, we have added here a term that 
takes commensurability effects into account (see, e.g., Ref. 
13), and in the calculation of the friction coefficient we have 
introduced for the integral, which diverges at low energies, a 
low-energy cutoff I E I  = A + 77 (see Ref. 22). Differentiating 
(20) with respect to x and eliminating Y and from (20), 
(21 ), and (23 ), we obtain the sought-for equation for the 
phase 

; - D , ~ " + ~  (E,Z~)  ch (TIT)  sin ( m ~ )  = (j/a,)l,, (24) 

where 

In the derivation of (24) we have left out the right-hand side 
of (23), allowance for which leads to an exponentially small 
[if condition ( 19) is met] refinement of the coefficient of 
in (24). The function Y, which describes the screening of the 
charge of the inhomogeneous CDW by the quasiparticles, is 
expressed in terms ofx' by relation (20). Equation (24) can 
be used to solve various problems in which the inhomogene- 

ity of the CDW and hence the screening of the CDW charge 
are significant. We use this example to demonstrate the re- 
sult of allowance for the function Y, i.e., allowance for the 
band bending in the case of inhomogeneous deformation of a 
CDW. The equation that describes an immobile phase soli- 
ton (X = 0) in the absence of current ( j = 0)  is obtained 
from (24) and (20). Integrating this equation once we get 

Lojl'=2[1+ (Lo2E,Z/T2) sin2 ( ~ / 2 ) ]  '" sin ( ~ / 2 ) ,  (25) 

where 

A solution that describes a single soliton (kink) is the func- 
tion 

x=- (2/m) arcctg { [I+Lo2(B,/T)~"" sh (x lL i , )  ). (26) 

The shape and characteristic dimension of the soliton 

L8"L0 [I+L; (E,/T)'] -'" (27) 

differ from those given in Ref. 13 if the radicand is not small. 
It follows from (27), in particular, that at low temperature 
L, decreases and tends to T/E,, and when the temperature 
is raised L, has a nonmonotonic dependence on T and 
reaches a maximum near L, - Tm /E, at a temperature Tm 
given by the equation L,E, =  AT,/^)"^. Estimates for 
TaS, ( v  z lo8 cm/s, E, =; lV/cm, A z 800 K )  yield Tm =A/ 
11 z 75 K and max L, =; 60 pm. If, however, no account is 
taken of the nonlinear dependence of X' on the function Y, 
the soliton size at low temperatures can be arbitrarily large. 

The dynamics of the PSC is also described by Eqs. (20) 
and (24). In the immediate vicinity of the PSC, however, 
where A varies over a distance - f ,  these equations no longer 
hold. We must therefore determine the PSC structure over 
distances 1x1 -6 and formulate at the location of the PSC 
boundary conditions for Eqs. (20) and (24). 

3. STRUCTURE OF PSC 

We turn now to the microscopic equations. We need 
equations only for the functions $'A' ,  since the functiong is 
expressed with the aid of (7)  in terms of these functions and 
the distribution functions, which retain their quasiequili- 
brium form. The corrections tog, which are proportional to 
the external field, can be disregarded, since they are small in 
the vicinity of the PSC compared with gradient-containing 
terms. Since we consider the case of low impurity density 
(AT% 1, i.e. {<I = vr), we can disregard also collisions with 
impurities. The equation for tRcA' coincides then with Eq. 
(4) with zero right-hand side. We wish to find for gR'A' a 
solution in which the phase of the order parameter is of the 
form ~ ( x )  = 6 sgn x + a x  as 1x1 - W ,  where 6 and a are 
time-dependent coefficients. Accordingly, we subject p'A' 
to a transformation of type (3),  in which 
A 

S = cos(ax/2) + ?o; sin(ax/2). The transformation 
A(x) = Leiax leaves the order parameter & complex, since 
the phase of varies from - 6 to 6 when x changes from 
- co to + m. We next find in the form [we omit the 

superscripts R ( A )  for the sake of brevity] 
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The equation for g,f, and f + are of the form 

sf-Ag+i(v/2) ff=O, 

~j+-A'g-i(v/2) f+'=O, -//++g2=1, (28) 

d'f-df++ivgf=O. 

All the functions in (28) are assumed to vary slowly with 
time ( w  (A). The equation on the right side of (28) is the 
normalization relation. The system (28) admits of a solution 
that describes an amplitude soliton with nonzero (28 # O )  
change of the phase on it. The order parameter is of the form 

A=A[cos 0+i sin 0 th (xx)], (29) 

where x = (A/v)sin 8. For the Green's functions we have 

f = [ A +  ' s i n 2 0  ( E Z - A Z )  -'A 

(&+A cos O)chZ(xx) 
A2 sin2 0 I 

(30) 
g= E -  (&2-A2) -5. [ (s+A 00s 0) ch2(xx) 

It is easy to verify that the functions (29) and (30) satisfy 
the system (28). The forms off andg far from a PSC are the 
same as for a homogeneous CDW. Near a PSC, however, at 
1x1 5 5, their form changes. In particular, an important role 
is assumed by a pole at E = - A cos 8, which determines the 
local energy. 

The coefficient a, 8, and A in (29) and (30) are not 
independent. They are related by the self-consistency condi- 
tin ( 12). Substituting in ( 12) 

~ h e r e y ' ~ '  are determined by the equations given above, we 
obtain two equations, one of which (for A )  coincides with 
(13): 

e~ 

and the other (for the phase) is 

J G-(~) th[  (E -V) /~T]  de+2n th[(A cos0+Y)/2T] = 0. 
e (&+A cos 0) AIsin01 

(32) 

We present the values of the integrals in (3 1) and (32) 
in the limiting cases of low and high temperatures. 

a )  A ) T. We have then from (28) 

A O<Y<Ao, (33 

We have not written out here the exponentially small gap 
correction of type (22), and A, is the equilibrium value of 
the gap. It can be seen from (33) that A(Y) is a doubly 
valued function. We, however, are interested only in the sta- 
ble branch A = A,. From (32) we obtain the connection 
between Y and 8: 

Y =-Ao cos 0+T sgn (cos 0) In F (O), (34) 

F (0) =B/(n-B), B=arctgl tg 01 for B>T/A, 

(35) 
F (0) = (T/2nA)Ih for B<T/A. 

If Eq. ( 19) holds, the second term here is a small correction. 
The connection between Y and the gradient X' = a of the 
phase is given by (20). 

b) A<T. Then A2=Ao2(T) --2Y2, v=A C ~ S  0. 

The last result can be obtained also from the Landau-Ginz- 
burg equation. 

Equation (29) together with expressions (33) and (34) 
determines completely the structure of the PSC.2' The pa- 
rameters of the PSC (e.g., the value of the gap A = A, cos 8 
at x = 0) are found to be connected with the total phase 
change 28 on the PSC, which, as we shall see, increases with 
time and oscillates. To obtain the equation for 8 ( t )  we must 
solve Eq. (24) with those boundary conditions for x and X' 
on the PSC which follow from the equations obtained in this 
section. 

4. PSC DYNAMICS 

The phasex increases non-uniformly in different situa- 
tions, depending on the experimental setup. To be specific, 
we consider one possible nonuniform increase ofx. The final 
results of the analysis are not restricted to this formulation of 
the problem and can be used also in other cases. Just as in 
Ref. 24, where the occurrence of PSC was not taken into 
account, we consider CDW in a thin conductor whose diam- 
eter is small compared with the dimensions of the contacts. 
The latter is in turn assumed small compared with the dis- 
tances between them (see Fig. 1.) A current I flows through 
contacts 2 and 3. The phasex averaged over the cross section 
is then described by Eq. (24), in which j =  (I/ 
S ) 8 ( ( x (  - a ) ,  where 2a is the distance between contacts 2 
and 3 and S is the conductor cross-section area. The connec- 
tion between the functions Y andx'  is determined by (20), 
and the gap A, according to (33), is constant if condition 
( 19) is met. 

We track the variation of the solution of Eqs. (20) and 
(24) as the current density j is increased. I f j  is less than a 
certain threshold value j,, , the CDW is immobile and the 
stationary functionx(x) drops to zero as 1x1 + W ,  while at 
1x1 > a  the functionx(x) consists of pieces of the phase soli- 
ton (26). Expressions forj,, can be obtained in the limiting 
cases a ( L ,  and a 9 L , ,  where the length L, is defined in 
(27). 

Consider the first case. The i ( x )  dependence in the 
region 1x1 > a is described by Eq. (25). The maximum value 

where 
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o f i '  is 2/L,. If 1x1 < a  we can neglect in (24) the third term 
from the left (a  4L,!). Integrating this equation at = 0, 
we obtain ( j/u,)12a = Dl Ix' I .  A stationary solution x that 
decreases at infinity exists so long as j does not exceed the 
threshold current j,, which is reached at the maximum val- 
ue ofx'. This yields 

In the pressence of CDW deformation we have Y $0, and 
therefore the j( V) relation is not ohmic. To calculate j( V) 
we integrate (21) from - a to a, again neglecting 
Ec sin(m, ) compared with Y'. We get 

j= ( o l / T a )  sh ( V / 2 T ) ,  V a - ( a ' )  (37) 

The IVC is thus nonlinear even at j < j T l .  In the opposite 
limiting case a )  L, the threshold current is jTl = ulEc,  and 
the IVC is linear: j = u1 V/2a. 

I f j  exceeds the threshold current j,, , Eq. (24) has no 
longer a stationary solution that falls off to zero at infinity. 
In this case the phase will increase with time in the region 
1x1 <a,  and solitons will be created at 1x1 >a .  In the limit as 
t- cc the functionx(x,t) will approach asymptotically the 
solution that describes a soliton lattice at 1x1 >a .  

If the current flow is large enough, j%jT, ,  the growth 
dynamics of the phasex can be described neglecting the non- 
linear terms in (24), which reduces then to the diffusion 
equation. Assuming the phase x and its derivative X' to be 
continuous at the points Ix I = a, we obtain forx' at the point 
x = a, where the gradient is a maximum, 

where oO = j12/uN The maximum value of xl(a , t )  is 
reached at t- CC. It is equal to maxIxl(a,t) ( = wo12/D,. The 
gradient cannot be arbitrarily large, since it is related by Eq. 
(20) with the potential \I/, which according to (33) cannot 
exceed the unperturbed gap A,. To determine the maximum 
permissible value ofx'  and the corresponding current jT2 we 
must calculate the diffusion coefficient Dl  in (24) more ac- 
curately, by forgoing the second condition of ( 19). The cal- 
culation yields 

This quantity is usually much larger than j,, ( jT,/jTl 
-TL,/u% 1).  

Consequently, if the current satisfies the inequality 
jTl 4 j < j T 2 ,  no PSC is formed, and the solution forx', i.e., 
for the change of the CDW wave vector Q, is determined 
from the solution of the diffusion equation. This change of Q 
diffuses into the region 1x1 >a .  Let j now exceed j,,. After 
turning on the current j, the phase x and its derivative X' at 
the points 1x1 = a will increase with time untilx' reaches the 
maximum allowed value. Two PSC are then produced at the 
points 1x1 = a and the problem of finding x(x,t)  reduces to 

solving the diffusion equation with boundary conditions at 
the points where the PSC are located. These conditions are 
given by Eq. (29). They stipulate continuity of X' and a 
phase jump 28 on the PSC. For example, at the point x = a 
we have 

where n is any integer, 

Solving the diffusion equation for x by Laplace trans- 
formation and using the boundary conditions (40) we arrive 
at an integral equation for 8 ( t ) :  

D,'" A cos 0 
2 0 ( t ) = w . t + [ 2 ~ ( 1 - ~ , ) - ]  J d r ~ ( t - r ) ~ h ( ~ )  , 

" 

where 

and w, is defined in (38). 
Equation (41) describes the PSC dynamics by deter- 

mining the time dependence of the phase shift 28 on the PSC. 
To facilitate the analysis of this equation, it is convenient to 
consider the limiting cases of small and sufficiently large 
distances a between the contacts. If a satisfies the condition 
a2 <D,to, where to- min{au/D, T,w; I )  are the characteris- 
tic times in the 8 ( t )  dependence, only the first term of the 
kernel K( t )  is significant. Equation (41) is then reduced 
upon differentiation to the form 

D I A cos 0 
iO=oo +[ Z ( 1 - N , ) - ]  s h  (y) 

UU 

It is similar to Eq. ( 1 ), and differs only in the form of the 
nonlinear term. If the first term of (42) is larger than the 
second, the oscillation frequency is -a,. 

In the opposite limiting case, the sum in the kernel K 
can be replaced by an integral. As a result, we get 
K( t )  = Equation (41) with a kernel of this form 
was solved by us with a computer. The resultant B(t) is 
shown in Fig. 2. It can be seen that this function takes the 
form of rather steep steps of height 2 a  (note that in this case 
the phase at the PSC changes by 28 = 4a) .  Most of the time 
the system is in a state in which cos 8 = 1, i.e., when the 
function Y is close to A. The second condition of ( 19), how- 
ever, assumed above to be satisfied, is now violated. In this 
case we must take into account the second term in the right- 
hand side of (34) and the coordinate dependence of A. The 
diffusion coefficient D,,  in (24) also changes: 

These changes merely refine the numerical coefficients in the 
derived relations. 

Taking into account the abrupt growth of 8 ( t )  at 
oot  = 2ka, we can show that the function cos B(t) can be 
represented in the form 
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FIG. 2. 

I' In k 
cos 0 (t) = l + b  ( t )  , b ( t )  = b, cos(kooti2), b, - -- 

h : = l  Ak . 

The harmonics thus decrease slowly. 
Let us dwell finally on the calculation of the voltages V 

between the different points of the conductor. For V,,, for 
example, we have 

co - 

koot 4n 
d ( f ) = z d h o o s T 7  4-k3 

h= 1 

where c, is a number of the order of ln(T/q) .  The alternat- 
ing component of the voltage V, ,  stems from the dependence 
of the conductivity on the shift of the chemical pontential 
[see (2 1 ) 1. In the calculation of V,, we used the connection 
(23) between E and i, and left out the small term that de- 
scribes the bulk pinning. In addition, we have assumed in the 
integration that the function Y vanishes on the contacts 1 
and 4 (see Fig. 1 ), i.e., the gradient ofx is zero at the points 1 
and 4. This is correct if the X' perturbation propagating by 
diffusion from the region (2,3) do not reach the points 1 and 
4 during the measurement time (or during the time of the 
current pulse I). Note that the neglect of the bulk pinning in 
the calculation of V,, may not be valid if the contact 1 and 4 
are far enough from the region (2.3). For V2, we have 

Tr,3=Vl,.+2Y (a) =V1,+2Acos0. (45 

The term 2Y ( a )  in (45) is due to the deformation of the 
CDW and determines the difference between V2, and the 
voltage that would obtain in the homogeneous case. The 
function Y (x,t) is an odd function ofx, reaches a maximum 
at the points 1 and 3 and falls off as x- UJ. Note that the 
time-varying components of the field (x,t) decrease at dis- 
tances - (D , /w , )  ' I2 from the PSC. 

5. CONCLUSION 

We have developed here, under certain assumptions, a 
theory for the description of the phenomena in quasi-one- 

dimensional conductors with deformable CDW. The theory 
was used to analyze the local generation mechanism investi- 
gated earlier in the gapless case.21 In the low-impurity-den- 
sity case investigated here, when the energy gap is not zero, it 
is found that the growth of the gradientx' of the CDW phase 
leads to the onset, at the point of maximumx', of a PSC that 
is a dynamic amplitude soliton of size -6 = v/A. On going 
through the soliton, the phase x changes by 26, and the 
change ofx' on the PSC is zero. The soliton can remain in an 
equilibrium state only if 258 = n-/2 (disregarding the inter- 
action between the strings26). The local energy level of the 
dynamic soliton E = - A cos 6( t )  oscillates in time. 

An important role is played also by screening effects, 
which shift the chemical potential from the center of the 
band gap. This shift, characterized by the function Y, is of 
great importance not only in the present problem, but also in 
other cases when inhomogeneous deformation of the CDW 
takes place. For example, allowance for Y alters the number 
of quasiparticles and changes by the same token the size and 
shape of the phase soliton [Eq. (26) 1. 

We have investigated a definite experimental geometry 
(Fig. I ) ,  in which a PSC is formed at a point of current 
influx. Our results remain in force also in the case when the 
current I flows through contacts 1-2 and 3-4. Other experi- 
mental setups are possible, in which PSC are produced and 
which can be described by using our present results. Differ- 
ences from our case will stem from differences in the bound- 
ary conditions for the quasiclassical equations, which lead to 
a different 8 ( t )  dependence and accordingly to other ac vol- 
tage amplitudes. Let us dwell briefly, for example, on an- 
other possible experimental setup. Assume a sample with a 
nonuniform impurity distribution, so that the threshold field 
Ec depends on the coordinates. For example, if 

the PSC should appear at the points x = &a .  It can be 
shown that if the condition E,, %EC, is met and the mean 
field Eis  such that Ec2 4E-g E,, , the CDW phasex is actual- 
ly fixed at the points x = + a.  There are no solutions with 
immobile PSC at other points. In principle, however, PSC 
can exist at points 1x1 #a, but their position will vary with 
time. Such a result is obtained by numerical calculation in 
Ref. 21, in which was analyzed a case with a phase fixed at 
the contact. It was found there that in the case of a phase 
fixed at some point, a PSC produced at another point will 
oscillate not only in time but also in space. 

We have disregarded the influence of impurities on 
CDW pinning and on disruption of the long-range order. 
Allowance for this circumstance can change the expression 
for the threshold current j,, . For large currents j%jT, ,  in 
which we are mainly interested, the influence of impurities 
on CDW is small. Their influence is also small if the current 
flows through contacts 1-2 and 3-4, and the distance 
between contacts 2 and 3 is short. In this case no current will 
flow between the contacts 1 and 3, but a voltage 
V = 2A cos B will appear. 

Despite the diligent investigations of the generation 
mechanism in conductors with CDW (see, e.g., the recent 
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Refs. 27-29), no definite conclusions can be drawn at pres- 
ent in favor of any of the proposed mechanisms. Nonethe- 
less, a theoretical investigation of the local mechanism con- 
nected with the PSC is of interest since, as indicated above, it 
is possible to set up an experiment in which an appreciable 
phase gradient X' inevitably appears, and the onset of PSC is 
thereby facilitated. 

The authors thank L. P. Gor'kov for calling this prob- 
lem to their attention and for a discussion of the results, and 
also V. Ya. Pokrovski? for helpful remarks. 
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