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The dynamic properties of an atomically rough interface have been analyzed for three different 
quantum models, including a model of the interface between a quantum crystal and a 
superfluid Bose liquid. It is shown that the movement of the interface (growth or melting of 
the crystal) is inevitably accompanied by energy dissipation, and the temperature dependences 
of the relevant kinetic coefficient have been found. Far from the roughening transition, the 
interface mobility decreases with increasing temperature, but it remains finite on approaching 
the transition point. The absolute value of the mobility near the transition is exponentially 
large with respect to a parameter which is determined by the ratio of the amplitude of the zero- 
point oscillations of the surface to the interplanar distance, which accords with the possibility 
of crystallization waves propagating along faces which have Miller indices which are not small. 

1. INTRODUCTION anomalous temperature dependence of the Kapitza jump at 

It is well known (see, e.g., Refs. 1 and 2 )  that crystal 
growth proceeds in an appreciably different way for faces 
which are in atomically smooth and atomically rough states. 
In an atomically smooth state (characterized by a finite free 
energy per unit step length) growth takes place in layers 
through the formation of critical nuclei; the rate of growth is 
then exponentially small relative to the applied chemical po- 
tential difference. At the same time, an atomically rough 
state is characterized by the possibility of continuous 
growth, for which the kinetic coefficient 

K = liin (v /A ,u )  (1 )  
A ,-PO 

(the growth coefficient) has a finite value. In Eq. ( 1 ), u is the 
normal velocity of the interface (relative to the crystal), 
while Ap is the difference between the chemical potentials of 
the liquid and the solid phases (per atom). In this case, for 
small rates of interface motion the surface density of the rate 
of energy dissipation r is quadratic in u:  

where V,, is the specific volume of the crystal (per atom). It 
is the value of K ' which is additive, i.e., it is made up of 
terms corresponding to the various dissipative mechanisms. 

In 1978 Andreev and Parshin proposed that in view of 
the large amplitude of quantum fluctuations, nearly all the 
faces of a 4He crystal which is in equilibrium with the liquid 
(superfluid) phase should be in the atomically rough state, 
even at absolute zero.3 Such a specific (quantum-rough) 
state of the surface is characterized by a strictly non-dissipa- 
tive growth (melting) process of the crystal at absolute zero 
( K  = w ), and this enabled Andreev and Parshin3 to predict 
the possibility of the propagation along the interface of the 
phases of 4He of crystallization waves, analogous in their 
properties to capillary waves on the free surface of a liquid. 
Marchenko and Parshin4 predicted another experimentally 
observed consequence of the non-dissipative melting, the 

the interface in 4He. 
It was proposed both by Andreev and Parshin3 and in 

subsequent work on the dynamics of the surface of a quan- 
tum that even at finite temperature a pure non- 
dissipative melting (growth) of a crystal is possible, where 
the gases of excitations on both sides of the interface move 
with the same velocity as the boundary itself. The dissipation 
at the boundary is then considered to be produced by the 
absence of complete equilibrium between the gases of excita- 
tions and the interface, which will unavoidably occur for 
processes characterized by a finite frequency and (or)  by a 
finite wave vector. It turns out that for frequencies exceeding 
some characteristic inverse time, the dissipation at the 
boundary can also be described by Eqs. ( 1 ) and ( 2 ) ,  with a 
frequency-independent coefficient K. As was noted by An- 
dreev and K n i ~ h n i k , ~  such a consideration assumes the ne- 
glect of umklapp processes in the solid, the inclusion of 
which into the discussion leads to both the motion of the 
phonon gas in the crystal and the motion of the interface 
being dissipative. Their contribution is, however, exponen- 
tially small in T,/T (T, is the Debye temperature of the 
4He crystal), and can be omitted for the temperatures of 
interest to us. 

So far, three transitions have been recorded on the sur- 
faces of a 4He crystal in the atomically smooth state, taking 
place at temperatures of 1.2, 0.9, and 0.35 K (Refs. 7-1 1) .  
No new transitions are observed on lowering the tempera- 
ture further to 0.07 K (Ref. 1 1 ). Experimental confirmation 
has been obtained for both the existence of crystallization 
waves9 and for an anomalous Kapitza j ~ m p . ' ~ - ' ~  The crys- 
tallization wave spectrum coincides with that predicted,3 
while the temperature dependence of their attenuation 
agrees with results of Refs. 3, 5, and 6. The collection of 
experimental facts does not, thus, contradict the hypothesis 
of quantum roughness. 

At the same time, from the theoretical viewpoint, both 
considerations of the general characteristics,I5 and investi- 
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gations of a number of concrete microscopic models of a 
quantum interface,'"" indicate that at absolute zero any 
face should be in the atomically smooth state, while the 
roughening transition temperature decreases only insignifi- 
cantly when quantum effects are taken into account. It 
should be noted that Bol'shov et a1.I9 discussed the possibil- 
ity of zero-point roughness of weakly inclined faces of a 
quantum crystal. However, as V. L. Pokrovskii explained to 
the present author, the confirmation in that work of the pos- 
sibility of zero-point roughness must be understood in a 
somewhat different way, namely: although every face with 
whole-number indices will be in the atomically smooth state 
at absolute zero, the total area of all the plane sections of the 
faceting can be less than the total area of the surface, and a 
finite area will have to be used on atomically rough states 
(corresponding to irrational indices). 

As we observed earlier,I8 the essential transition of a 
face into the atomically smooth state on lowering the tem- 
perature does not contradict the possibility of crystallization 
waves propagating at temperatures exceeding the transition 
temperature TR . A stricter basis for this assertion requires 
studies of microscopic models of an interface in the context 
of verifying the possibility of its dissipation-free (quasi-dissi- 
pation-free) motion, which is one of the aims of the present 
work. 

We consider three different models of a quantum inter- 
face. Two of them [with discrete (Sec. 2) and continuous 
(Sec. 3) variables] consist of a description only of the inter- 
face itself, and are applicable for the description of quantum 
interfaces between media with different density, i.e., of do- 
main walls in magnetic substances, planar defects in quan- 
tum crystals, etc. In Sec. 4 a model of an interface between a 
quantum crystal and a superfluid Bose liquid is considered, 
proposed by IodanskiY and Korshuno~. '~  

The quantity directly studied is the temperature-depen- 
dent kinetic coefficient K - ' at zero frequency, assumed else- 
 here^.^.^ to be equal to zero. The suggestion of the impossi- 
bility of a strictly non-dissipative motion of an interface in 
4He was proposed earlier by C a ~ t a i n ~ , ~ '  but in an entirely 
different context, namely in connection with some special 
properties of the interaction between rotons and moving in- 
terfaces. Nevertheless, the inverse growth coefficient is ex- 
ponentially small for large amplitudes of quantum tunnel- 
ing, which provides an explanation for the possibility of 
crystallization waves propagating along faces with not too 
small Miller indices, as well as other phenomena which are 
regarded below as a manifestation of non-dissipative melt- 
ing. The possibilities of an experimental observation of the 
predicted temperature dependence K - ' ( T )  are discussed in 
Sec. 5. 

2. THE SIMPLEST MODEL OF A QUANTUM INTERFACE 

A) Formulation of the model 

The simplest of the models of a quantum interface 
which have been studied is described by the Hamiltonianf6." 

FIG. 1. Schematic representation of the basal plane of a crystal with a 
simple cubic lattice and the presence of developed surface fluctuations 
(atomically rough state). In the SOS approximation it is assumed that the 
configuration of the surface can be described with the help of a collection 
of integral variables n,, which indicate the departure of the surface from 
some fixed position, i.e., the height of the jth "block of cubes." 

Here the integer variables n,, defined at points j of a regular 
plane lattice, indicate the distance between the surface (in 
atomic units) and some fixed position (Fig. 1 ), while the 
operators ii,+ and 3- describe tunneling processes which 
take place with a change in nj by unity and only have the 
matrix elements (nj f 1 I;,* Inj ) = 1 nonzero. The poten- 
tial energy of the interface is represented in the first term of 
Eq. (3),  with the summation called out over pairs of nearest 
neighbors, indicated by (jj') . 

In the model of Eq. (3) ,  as in other models discussed 
below, the interface is atomically smooth at absolute zero for 
any ratio between the parameters Y and J. The transition 
temperature into the atomically rough state (the roughening 
temperature, also called the faceting transition), does fall 
with increasing Y but only insignificantly, and for Y/J- co 

tends to (2/?r)J. As in the case of a classical discrete Gaus- 
sian model (Y=O), the phase transition in model (3)  be- 
longs to the same universality class as the phase transition in 
a classical two-dimensional XY m~de l .~~ -~"he  influence of 
quantum effects only shows up in that a large value of the 
ratio Y/J  leads to an exponentially small equilibrium size of 
a plane faceting section corresponding to a given face, and to 
a temperature region of critical behavior of thermodynamic 
quantities. The latter fact means that one can expect every- 
where, except in an exponentially small vicinity of the transi- 
tion point, satisfaction of the dependences predicted by the 
self-consistent approximationf6"7 (but not by the pheno- 
menological theory of the faceting tran~ition*~). In particu- 
lar, one should expect that for T> TR , the surface rigidity 
Z = const. Results of experimental investigations of the 
shape of 4He crystals in the region of faceting transitions25-" 
also provide evidence of the absence of a temperature de- 
pendence of C for T> TR . 

B) The mechanism of dissipation 

The dynamical properties of a one-dimensional analog 
of model (3)  have been studied for Y? J by, in particular, 
K o r ~ h u n o v ~ ~  using the instanton technique in real time, in- 
troduced by Chakravarty and Leggett29 for studying tunnel- 

865 Sov. Phys. JETP 64 (4) ,  October 1986 S. E. Korshunov 865 



ing processes in quantum crystals (see also Ref. 30). It was 
shown that macroscopic motion in such a system is dissipa- 
tive, and the dependence of the frictional force on velocity 
and temperature was found. At finite temperature and at low 
velocity the frictional force is proportional to the velocity, 
meaning a finite growth coefficient. If the same condition, 
Y 2  J, is satisfied, the analogous approach can be extended to 
the two-dimensional model (3),  but only for temperatures 
corresponding to the atomically rough phase ( T > T, ). 

In order to explain the dissipation mechanism, the sec- 
ond term of Eq. (3) must be rewritten in the form 

where p, is the phase change canonically conjugate to an 
integral variable n, (i.e., n, - - id /dp, ).16317 

Although the classical equation of motion for pj is 

(where A, is the lattice Laplacian), apart from a solution 
corresponding to a stationary interface (all p, = 01, there 
are also stationary solutions = Q, = const, corresponding 
to its motion with velocity v = ( Yd /fi)sin @, and tunneling 
of the variables p, into neighboring minima of the periodic 
potential (4)  can lead to a change in the mean velocity 

Here N is the total number of lattice sites in the plane of the 
face, while d is the interplanar distance. 

Because of the necessity of satisfying the conservation 
law 

the existence of which is due to the invariance of the Hamil- 
tonian (3)  to a simultaneous shift of all the variables n,, a 
change in one of the quantities q5. by + 2a  arising on tunnel- 
ing into a neighboring minimum, must be compensated by a 
change in each of them by + 2a/N. A change in the kinetic 
(in n-representation) energy of motion of the interface as a 
whole by A W = f 2aY sin Q, and a change in v by 
+ (2aYd /Nfi)cos Q, must then take place.28 In general it is 
not the amplitude Yitself which must enter into these formu- 
lae, but its value renormalized by fluctuations ?. We neglect 
this difference (of little significance for Y) J, T), all the 
more so because for the relation A W = q 2 d v / d  of interest 
to us, these renormalizations are reduced. 

The probability of tunneling (per lattice site) v, is natu- 
rally different for processes taking place with an increase 
and with a decrease in W, and for vo=v(Q, = 0)  # O  for 
small v linear in A W: 

(here and everywhere in what follows, the temperature T is 
considered to be expressed in energy units). Equation (5)  is 
a consequence of the principle of detailed balancing. The 
rate of dissipation of kinetic energy is then, as should be 

expected, quadratic in v: 

aw 
---=- 

T 'Y d t  

Comparison with Eq. (2)  shows that 

where a is the lattice constant (in the plane of the face), and 
vo, according to Wolf et a1.,28 can be expressed in terms of 
instantons in real time: 

I m 

HereSf : (R,~)  is the action on the classical trajectory, cyclic 
in imaginary time, on which the variables pi and 
p , ( j  - 1 = R )  pass through maxima of the potential 
- Y cos p at moments in time separated by the interval T. In 

the atomically rough phase, such saddle points (instantons) 
form bound pairs on typical trajectories which provide the 
main contribution to the determining functional sum over 
states integral. 

To each tunneling act (in real time) corresponds a pair 
of instantons. If the pairs are of small dimensions and are far 
apart (in space-time), then the separate tunneling acts take 
place practically independently of one another, and the tun- 
neling process itself is classical and incoherent (a  pure expo- 
nential relaxation) .29 It is only under these conditions [cor- 
responding in the case of model (3)  to the atomically rough 
phase] that it is possible to use Eqs. (6 )  and (7)  where 
Sf:(R,r) can be considered to be equal to": 

X Go (k, 0 8 )  

Here w, takes the value 2afl -'s (s is an integer), p = N T ,  
the unperturbed Green's function 

G,(k, o,) = (Yl f i )  ( o k 2 + 0 8 2 ) - L  ( 9 )  

is the correlation function for the variables n, , calculated in 
the harmonic approximation without taking account of the 
discreteness, and w, is the vibration spectrum in this same 
approximation. For a square lattice 

In Eqs. (8)-( 10) and what follows, the quasimomenta 
k = ( k ,  ,k, ) are expressed in inverse lattice distances. 

Extending Eq. (8) analytically to imaginary values of 
the imaginary time (i.e., to real times) and bearing in mind 
that the main contribution to the integral comes from the 
region of small quasimomenta, we obtain that to first order 
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so that the condition for the mutual independence of differ- 
ent tunneling acts is the better satisfied the higher the tem- 
perature T compared with the roughening transition tem- 
perature TR =: (277) J. 

Insofar as the variables p, relative to the variables nj 
play the role of quasimomenta, the tunneling processes re- 
sponsible for dissipation are no other than umklapp pro- 
cesses. 

C) Temperature dependence of the growth coefficient 

The use of the concept of instantons and also of struc- 
tures localized in time, corresponding to a strong departure 
ofany of the quantities pj from the equilibrium (quasi-equi- 
librium) values and the saddle point through the maxima of 
the periodic potential of Eq. 4, is only possible if the condi- 
tions J< Y, T g  ( YJ) 'I2 are satisfied, which ensure a small 
value for the dimensions of an instanton compared with the 
inverse temperaturep, and small fluctuations of q, compared 
with unity. As we have already verified, the calculation of 
K - '  in this case comes down to a calculation of v, [see Eq. 
( 6 ) ] .  We assume in what follows that Jg Y. 

For T<J (  Y /J) 'I3, on substituting expression (8)  into 
Eq. (7), the summation over R in Eq. ( 7 )  can be replaced by 
an integral. At the same time, for T)J, after shifting the 
contour of integration by T parallel to itself, in order that it 
should pass through the point T = P /2 (where S ~ ( R , T )  has 
a maximum for real T), all three integrations can be per- 
formed by the method of steepest descents. We thus find for 
J< T-=4 J( Y/J) ' I 3  

I<-'=A(T)esp[-B(T) 1 ,  (11) 

where 
A (T) a J3YS/2T-''/~, 

n(T)=2Si-4n(ln2) (TIJ)+. . . . 
Here the constant 

is the action corresponding to a single instanton at absolute 
zero, while only the first two terms in the expansion in terms 
of T / (  Y /J) 'I2 are written out in the expression for B. 

If the ratio Y/Jis sufficiently great, then the tempera- 
ture interval J( Y /T) 'I3 < T g  J( Y /J) 'IZ can also be consid- 
ered, in which in Eq. (7)  only one term in the sum over R 
(with R = 0) can be preserved, since the rest are exponen- 
tially small. Integration over T can, as in the previous case, be 
performed by the method of steepest descents; unlike the 
dependence of Eqs. ( 1 1 )-( 13), this leads to a change in the 
temperature dependence of the pre-exponential: 

We have thus verified that for T> J( Y / J )  'I3, the tun- 
neling probability v, (which gives the growth coefficient K)  
is real, to exponential accuracy, over a cyclic closed (in 
imaginary time) classical trajectory, over which one of the 

FIG. 2. An extrernal (saddle) tra- 
jectory determining the probability 
of tunneling for J ( T S  (JY) ' I 2 .  

variables (for example, pjc, ) passes twice through a maxi- 
mum of the periodic potential - Y cos q,;,, (in different di- 
rections), see Fig. 2. The decisive role of a single classical 
trajectory and its immediate vicinity will be preserved over 
the whole range J( Y/J) ' " < T< Y where the fluctuations in 
q, are small. It is then only for J( Y /J) 'I3 < T< J( Y /J) 'I2 

does piit lie over a large part of this trajectory in the immedi- 
ate vicinity of one or another minimum in - Y cos pjo , 
which enables Eq. (8)  to be used to evaluate v, for the action 
over a two-instanton trajectory. 

As Tapproaches J( Y /J) 'I2, even the minimum value of 
pi,, over the trajectory of interest to us becomes no longer 
small (of the order of unity), so that such an approach is 
already inapplicable. For T g  Y, however, the effective ac- 
tion for the variable pi<, can be used to study the character of 
the extremal trajectory, obtained from the total action of 
model (3)  after substituting - Y cos pi - - Y [ 1 - q, f/2] for all the variables besides q,,<,, and per- 
forming Gaussian integrations over these variables in the 
sum over states. This procedure was carried out by Kor- 
s h u n o ~ ~ ~  in studying the one-dimensional analog of the 
Hamiltonian of Eq. (3) .  It leads to an effective action for 
q,'q,. ' 

J < ,  . 
D 

with the propagator, not explicitly dependent on tempera- 
ture, 

For mk given by Eq. ( l o )  we have 

2 ( u , ~ + ~ R ~ )  '-852'- (as2+ 4RZ) 1 os 1 (os2+8Qz) Ih 

X - K  n [ ( ~ , ~ + 4 5 2 ~ )  '-8Q4+ (os2+4Q2) -- 1 as 1 (wa2+8Q2)% 

(18) 
where 

n12 
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is the complete elliptical integral of first order, and 
R = (JY) '12/+i. 

On rise of temperature, a transition must occur from the 
regime of quantum (although also incoherent) tunneling, 
corresponding to an extremal trajectory, shown in Fig. 2, to 
a thermal activation regime corresponding to the trajectory 
e, = T. Such a transition to a quantum system with non-local 
dissipation was first studied by Larkin and Ov~hinnikov.~ '  

In the activated tunneling regime, the action on the ex- 
tremal trajectory is equal to 2 Y /T. The temperature To of the 
transition between the two different regimes, when fluctu- 
ations are not taken into account, can be found as the tem- 
perature at which a second negative eigenvalue appears in 
the quadratic form, obtained by the expansion of the action 
of Eq. ( 16) near the stationary trajectory e, = T . ~ '  Since 
G,, (w, ) depends monotonically on w, , this corresponds to 
the satisfaction of the equation 

GG,' (2np-') - Ylh.  (19) 

We find from Eqs. ( 17)-( 19) TO--0.2935+ifl. 
For T,, < T <  Y, the exponent B( T) in the relation of Eq. 

( 12) has the traditional activation form: 

Taking account of fluctuations leads to a smoothing-out of 
the singularities in K ( T )  at the point To and to a smooth 
transition between the quantum and thermal tunneling re- 
gimes. 

We have thus demonstrated that for TR < T <  Y, the 
tunneling probability v,, and with it the inverse growth coef- 
ficient K ' grow with increasing temperature. Comparison 
of the pre-exponential and exponential factors in Eqs. ( 11 )- 
( 13) indicates that the function K - I ( T) can have a mini- 
mum in the immediate vicinity of TR . We shall now consider 
the question of the behavior of K for T- TR + 0. 

As we note earlier, the summation over R in Eq. (7 )  for 
T <  J( Y/J) ' I 3  can be replaced by integration. The form of 
the asymptotic dependence of the second term in the expres- 
sion 

dzk 1 - cos kR cos o k z  +' ~k ~ h ( p a k , 2 )  'I (20) 

on R and r (which determines the convergence or diver- 
gence of the corresponding integrals) will be evaluated by 
substituting into Eq. (20) w, = Rk and replacing 
sinh( Bw, /2) by ( Ow, /2)exp( Bw, /2), which preserves 
the exponential character of the cut-off of the integral by 
thermal pulses. By performing the integration over infinite 
limits, we obtain 

For S f ( R ,  B /2 + i r ) ,  given by Eq. (2  1 ), the expres- 
sion of Eq. (7 )  is convergent for T >  (3/2a)J,  while the 

roughness transition temperature to a self-consistent ap- 
proximation is ( ~ / T ) J  (Ref. 17). The value of K - ' thus 
remains finite up to T = TR [for T <  TR , Eq. ( 7 )  is inappli- 
cab leandK- '  = w ] .  

On taking renormalization into account, the value of T 
shifts relative to ( ~ / T ) J  (by less, the greater the ratio Y/J, 
see Ref. 17). The interaction of instantons then also changes, 
which manifests itself in Eq. ( 2  1 ) which is of interest to us to 
first order in the replacement of the coefficient J b y  its renor- 
m a l i z e d v a l u e j ( ~ , r ) .  - - Since at the transition point the values 
of J-J( w ) are related by the universal relation (2/ 
r ) j  = TR (Refs. 15 and 17),  the value of K - ' ( TR + 0 )  re- 
mains constant as before. In our formulation K - ' is a func- 
tion of j, having a square root singularity at the transition 
point; the quantity K - ' must, therefore, also have an analo- 
gous square root singularity: 

I I - ' ( T ) z K - ' ( T R + O )  - r (T-TR)Ih .  

I t  is interesting that such a law of critical behavior of the 
mobility of an interface is also obtained for a purely classical 
formulation of the dynamical problem within the framework 
of the Langevin equation for the sine-Gordon Hamilto- 
nian.'2 

D) The correlation function 

The value of the growth coefficient K can be found not 
only with the help of an actual evaluation of the tunneling 
processes responsible for dissipation, but also by using a for- 
mal calculation of the temperature (Matsubara) Green's 
function, which will be carried out here. 

Neglecting the discreteness of n, (i.e., the existence of 
instantons), the correlation function for the variables n, in 
Euclidian space-time (coiled into a cylinder for minimum 
time) is given by Eq. (9 )  as 

where X = (R,T) .  
When studying the atomically rough phase ( T >  T, ), 

we must take account of corrections to Eq. (22) which arise 
when bound instanton pairs are taken into account. Since for 
a single instanton placed at the point X,, the distribution of 
the n field far from X, is + 2n-iG,(xl - X,) (Ref. 17), for 
pairs of instantons of opposite sign positioned at the points 
X, and X4, it will be equal to 

Averaging the product Sn (X ,  )Sn (X,) by the positions of the 
instantons X, and X4 which go into the pair with the weight 

and going over to the Fourier representation, we find that 
the correction to G,(k,w, ) in the approximation linear in 
the concentration of instanton pairs is 
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where 

This result corresponds to the taking into account of the 
corrections from any number of instanton pairs on neglect- 
ing the interaction of the pairs among themselves. On taking 
account of the lowest non-vanishing order of interaction of 
instantons going into different pairs, we obtain after summa- 
tion of all terms in the series (according to the number of 
pairs) 

G-1 (k, a,) =Go-' (k, 0,) +Z (k, (25) 

where Z(k,w, ) is given by the same expression, Eq. (24). 
Eqs. (24) and (25) already contain the information 

necessary to us. 
The non-dimensional inverse interface mobility, 17, con- 

nected with K by the relation 

can be found as a coefficient for w, in the Taylor expansion 
of the corresponding analytic continuation of G (O,w, ) to 
continuous frequencies (cf. Ref. 33). It is evident that 
G -' (O,w, ) does not give a contribution to this coefficient. 

Since the analytic continuation of the function 

(see K o ~ t e r l i t z ~ ~ )  falls rapidly (in a stepwise fashion) at 
complex frequencies 7 ( t )  = R( B/2 + it) for t - + w , it 
can be represented in the form of a Fourier integral: 

where f (w) is a real and even function, falling exponentially 
for large w. We then have for the Fourier components of 
i3(7), calculated for the interval (0, P )  

a 

w (a,) = dr %(r)exp(io.r) 
0 

The integral (27) can be used for the continuation of 
the function w(w, ) to complex frequencies. For Re w, > 0, 
the function (27) is analytic in w, and its modulus is a maxi- 
mum for w, -0 (where it is nevertheless exponentially small 
in Y / J )  . As Jw, I increases, the absolute value of w (a, ) falls 
rapidly, from which it follows that the function determined 
by the present analytic continuation 

will not have zeros in the right-hand half-plane. The analytic 
properties of function (28) constructed in this way indicate 
that the delayed and advanced Green's functions are ex- 
pressed through it as 

Since for w, > 0 

we will then have for the dimensionless mobility 7 

Equations (26) and (27) give for K - '  the same expres- 
sion as Eqs. (6)  and (7 )  which we used before. On the whole, 
Eqs. (24), and (25) provide a greater possibility for obtain- 
ing information about the properties of an interface than the 
use of the earlier approach, since in principle it enables the 
dependence of the dissipation coefficient on frequency and 
wavelength to be determined, which can be important when 
going outside the limits of the hydrodynamic approxima- 
tion. 

3. QUANTUM SINE-GORDON MODEL 

The thermodynamic properties of an interface between 
the phases of 4He have been studied in a number of 
Works~5, 16.34 by using a two-dimensional sine-Gordon quan- 

tum model (SG model) with the Hamiltonian 

The model (30) has the same symmetry as model (3)  con- 
sidered earlier, namely invariance to a simultaneous shift in 
all the n, by an integer. Unlike in Eq. (3) ,  the variables n, in 
Eq. (30) take on continuous values, in accordance with 
which the conjugate variables p, ( lj, r - id /an, ) have the 
meaning of ordinary momenta (and not quasi-momenta), 
i.e., take on arbitrary real values. The last term in Eq. (30) 
makes integer values of n, preferable, thus imitating the in- 
fluence of the periodic structure of the crystal. It follows 
from the equations of motion that for z # 0, the value of 2, p, 
is no longer conserved, i.e., the addition of the last term in 
Eq. (30) appreciably influences the law of the macroscopic 
motion of the interface. 

The renormalization group equations for a classical 
two-dimensional SG model were obtained by several auth- 
o r ~ , ~ ~  who showed that they are isomorphous with the renor- 
malization group equations for a two-dimensional XY mod- 
el.23 This indicates that both models belong to one and the 
same class of universality, which also includes both a dis- 
crete Gaussian model and its quantum generalization of Eq. 
(3) .  A generalization of the 2 0  SG model to the quantum 
case does not lead to a change in its critical properties, but 
enables one to study the dynamical properties of the system, 
while staying within the framework of the Hamiltonian of 
Eq. (30) and not resorting to additional assumptions. Mod- 
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els (3)  and (30) are very similar in their properties. If the 
last term in Eq. (30) is taken into account with the help of 
perturbation theory for the representation of functional inte- 
gration, then one can go over to the instanton gas, analogous 
to that obtained when studying model (3) ,  with the differ- 
ence only that the chemical activity of instantons in the pres- 
ent case is proportional t o ~ .  It is more convenient to evaluate 
K -' from the correlation function, as was done in Sec. 2d. 

A diagrammatic technique for writing out any terms of 
the perturbation-theory series in z for a two particle correla- 
tion function of a one-dimensional quantum ( 1 + 1 ) SG 
model at absolute zero, was developed by Amit et The 
results can by trivial means be rewritten for the case of a two- 
dimensional quantum SG model at finite temperature. The 
particle summation of the perturbation theory series enables 
a self-consistent equation to be written for the correlation 
function with the required order of accuracy. The self-con- 
sistent first-approximation equation1"." 

G-' (k ,  a , )  =Go- ' (k ,  a , )  +4n2z exp [ - 2 n 2 G ( 0 ) ]  (3 1) 

enables the existence of the roughening transition to be re- 
vealed, but does not allow the properties of the atomically 
rough phase to be studied since it leads at T >  TR , indepen- 
dently of T, to G ( k , w ,  ) = G,(k ,w,  ). 

The self-consistent second-approximation equation, 
which differs from Eq. (3  1 ) by the addition to the right- 
hand side of an additional term of the form 

XZ d r  ( [ c h ( 4 n 2 G ( R ,  r ) )  -8n4G(R, r )  -l] 

leads, for T >  TR (Z'(0) = rn ) to 

G - ' ( k ,  a , )  =Go-'(k, a s )  

B 

+8n'z2 1 dr  { I  - e r p [ i ( - k R + a s r )  1) 
R 0 

Equation (32) is the main result of this section, differ- 
ing from Eq. (25) in which (24) is substituted only by the 
factor in front of the exponential and by the fact that the 
complete and not the bare Green's function appears under 
the exponential. The latter fact, corresponding to taking par- 
tial account of the renormalization of the interaction of in- 
stantons, is clearly immaterial for T& TR . This indicates 
that the results obtained in Sec. 2C for the temperature range 
J( T<J (  Y/J) ' I2 will also be valid for model (3), with an 
accuracy up to a temperature-independent factor propor- 
tional to z2. In fact, we will have for J &  T( J( Y/J) ' I 3  

gn"fiz zzJ'12y 
A ( T )  = 

[14%(3)Iah yT"/2' 

and for J( Y /J) 'I3 ( T(J( Y /J) 'I2 

8x4 f i 2  z 2 J .  
A ( T )  = 

[ $45 (3) ] 'h 7'7 

with the same exponent as Eq. ( 13). One can hope that the 
substitution of Go by 8 does not lead to the divergence of 
K - '  for TR -T+O. 

Equation ( 32) is also applicable for model ( 30) in the 
temperature interval J( Y/J) ' I 2  < T< Y and leads to 

litZ z2 A ( T )  = /Ino'? - --- 
d Y1/9T"/2 ''I 

At higher temperatures, as also for T- T, + 0, the instan- 
ton gas can no longer be considered rarefied. It is interesting 
that relation (34) has a form corresponding to thermal (ac- 
tivated) tunneling, although there is no barrier of height 
(?r2/2) Y in the system. 

It follows from the analysis in this section that the tem- 
perature dependence of the mobility and the dependence of 
the frictional force on the velocity at T = 0, found2' for the 
one-dimensional version of the Hamiltonian of Eq. (3)  will 
also be valid for a one-dimensional SG model (with an accu- 
racy up to a factor proportional to z2). 

4. QUANTUM MODEL OF AN INTERFACE IN 4He 

A quantum model of the interface between a crystal and 
a superfluid Bose liquid, taking account of the motion and 
compressibility of both media (QSOS/L model) was formu- 
lated and studied by Iordanskii and Kor shuno~ . ' ~  It is a 
generalization of model (3) .  In it, it is assumed that the 
tunneling amplitude Y is a complex quantity: Y = y 
X exp( + ix, ), the phase of which coincides with the phase 
of the condensatex at the point j, and the total action of the 
system apart from the purely surface contribution 

includes the action of the liquid, S, , taken in the hydrody- 
namic approximation, and the action of the crystal, S, , tak- 
en in the elasticity theory approximation. 

The equations obtained by varying S, + SL + S, rela- 
tive to the surface variable with neglect of the discreteness of 
n,, coincide with the boundary conditions given by a pheno- 
menological analysis of the interface in 4He.37,38 The retard- 
ed Green's function for the variables n,, calculated to the 
same approximation and being directly related to the inter- 
action of instantons, has for frequencies small compared 
with the Debye frequency, the form 

G ,  (li ,  o,) = f i { J k ' + [ A 2 / y a ' + p , , , d 2 ( k 2 + 0 8 2 / ~ L 2 )  -'':I (08')-', 

(35 

where p,, = ( p, -pL 12/~, ,  pL(C) is the liquid (crystal) 
density, c, is the velocity ofsound in the liquid, the quasimo- 
mentum k  is expressed in dimensional units and the crystal is 
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considered to be incompressible. Although the approxima- 
tion of an instanton gas only works in the model considered 
for a compressible crystal (in the opposite case the p-y fluc- 
tuations diverge), there exists some intermediate region for 
the parameters in which the effect of the compressibility of 
crystal and liquid on the instanton interaction can be ne- 
glected. 

The poles of function (35) determine the spectrum of 
crystallization waves on neglecting the discreteness of the n, 
(and as a consequence, dissipation). It agrees with earlier 
predictions.'~3x 

The dissipation at the interface in the QSOS/L model, 
as in model (3  ) , can be associated with tunneling processes 
of the variables p, into neighboring minima of the periodic 
potential. Although, as in model (3),  a change in one of the 
variables p, by _+ 2 a  leads to a change in each of them by 
f 23r/N, no change in the kinetic energy of the interface 
itself then takes place, since in the tunneling process the 
quantities y, change in such a way as to compensate the 
change in pj . If this did not take place, a change in the rate of 
motion of the interface would lead (according to conserva- 
tion laws) to a change in velocity of both media, so that the 
total change in energy of the system would be infinite. The 
change in the kinetic energy of the liquid (in a reference 
system in which the interface is at rest) is expressed through 
a change in yj : 

where u, is the velocity of the homogeneous one-dimension- 
a1 liquid (relative to the interface), and u is the velocity of the 
normal motion of the interface (relative to the crystal). The 
total change in the kinetic energy of the system in the tunnel- 
ing process is thus the same as in model (3) ,  so that the 
equations of Sec. 2B can be used in the calculation of the 
growth coefficient K, into which Eq. (35) must be substitut- 
ed as the Green's function determining the interaction of 
instantons. 

The calculation is appreciably simplified if y = oo and 
c, = oo are substituted in Eq. (33) (which is possible to do 
ify is large and J i s  small, i.e., in the case of an ultraquantum 
face). As an illustration, we will consider this limiting case, 
differing most from the other limiting case p,, = 0, of the 
corresponding model (3), and then discuss the situation in 
4He. For y = oc ,c, = co , turning to the method of steepest 
descents, as in Sec. 2C, we find that the temperature depen- 
dences of the coefficients A ( T) and B( T) entering Eq. ( 12) 
for J &  T& JS:'7 have the form 

where 

is the action corresponding to a single instanton (at absolute 
zero), and ii = a + a" is the surface rigidity. 

For T-JS:" the temperature dependence of the pre- 
exponential A (T)  changes and in the interval JS :/'< T<JS, 
it has the same form as in model (3)  [see Eq. ( 15) 1. It is 
interesting that the coefficient in the first temperature-de- 
pendent term in the expansion of B ( T) in powers of T, writ- 
ten out in Eq. (36), turns out to be dependent only on J .  On 
raising the temperature further, as in models (3)  and (30), a 
transition takes place to the regime of activated tunneling. 

As is easy to notice, the temperature dependences found 
are only insignificantly different from those obtained in Sec. 
2C. For finite magnitudes of the tunneling amplitude y and 
ofthe velocity of sound, the values ofK - ' as a function of the 
ratio of the parameters will be close either to that found here 
or to that found in Sec. 2C. In particular, in the case of an 
interface in 4He, because of the smallness of the quantity 
p,, - for nearly all wave vectors the surface inertia 
f i  '/ya2 will predominate over the attached mass of liquid, so 
that the factor S, will be close to the value given by Eqs. ( 14) 
and not by Eq. (37). 

5. CONCLUSIONS 

We have thus considered the dynamic properties of an 
atomically rough interface on three different quantum mod- 
els, have shown that its motion is necessarily accompanied 
by dissipation, and have found the temperature dependence 
of the growth coefficient K for the case of the ratio between 
the parameters corresponding to a large amplitude of quan- 
tum fluctuations. Outside the immediate vicinity of the tran- 
sition temperature, K falls with increasing temperature. A 
small slowing down of the growth rate must also occur for 
T -  T,  + 0; the value ofK then remains finite and only has a 
square root singularity. The form of the temperature depen- 
dence of K is very close for the different models. The scheme 
discussed also allows the inclusion into the treatment of the 
strictional interaction of steps on the crystal surface, which 
does not lead to a qualitative change. 

The magnitude of the inverse growth coefficient K - '  
for T- TR (in the atomically rough phase) in the ultraquan- 
tum case is exponentially small in the parameter S, ,  the same 
parameter that determines the exponential smallness of the 
temperature region for critical behavior and the equilibrium 
dimensions of a face. We note, however, that the equilibrium 
size of a face is proportional to exp( -S , ) ,  while 
K - ' a exp( - ZS, ). From the means of evaluation, 2S, is 
(accurate to a factor ( 2 ~ ) ' )  the square of the zero-point 
oscillations of the surface in units of the interplanar dis- 
tances d (calculated with neglect of the transition to the ato- 
mically smooth state). 

The models studied in Secs. 2-4 were introduced here as 
models of the basal plane of the crystal. The possibility of 
applying them for describing faces with large Miller indices 
has been discussed,I7 the basic state of which is represented 
by a regular lattice ofjogs on steps on the basal face (Fig. 3 ). 
In such a situation the variables n, describe a shift of the jth 
kink from the equilibrium position, while the first term in 
Eq. (3)  is the interaction of neighboring jogs, in which only 
quasi-momentum is conserved in the shifts, i.e., the first non- 
vanishing term. The interaction of non-neighboring jogs can 
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FIG. 3. In the absence of quantum fluctuations, the ground state of a face 
of the form ( 1 M ML), and also of faces close in orientation, are a regular 
lattice ofjogs on steps of the (001) face. For the face represented in the 
drawing M = L = 4. 

also be included in the Hamiltonian but this does not lead to 
qualitative changes. Since the interaction of point surface 
defects is inversely proportional to the cube of the distance 
between them,39 we have Ja M -5  for L-M. At the same 
time, the amplitude of tunneling of a jog into a neighboring 
position, Y, is a quantity characterizing a single jog and is 
not dependent on the Miller indices, so that S, c M - " ~ .  
Such an approach is, naturally, only possible if the basal face 
is in the atomically smooth state and fluctuations on it are 
small. Nevertheless, a qualitative conclusion can be drawn 
that the growth coefficient which we have studied at zero 
frequency should be a very strongly anisotropic (although, 
evidently, continuous) function of the orientation of the 
face. 

The exponential growth of K with an increase in the 
Miller indices agrees with the possibility of propagating 
crystallization waves and with the existence for T 5  0.2 K of 
an anomalous temperature dependence of the Kapitza jump, 
observed in experiments on different (apart from some ex- 
cluded) faces of a 4He ~ r y s t a l . ~ . ' ~ - ' ~  

It can be stated that although quantum roughness and 
crystallization waves were predicted in one work or an- 
other,3 there is no strict reason for a connection between 
these phenomena. We may note that even in a system in 
which quantum roughness is possible [a one-dimensional 
version of model (3) ] ,  macroscopic motion is dissipative 
and is characterized at finite temperature by a finite growth 
coeffi~ient.~~ The postulated connection between quantum 
roughness and non-dissipative growth3 can, therefore, not be 
considered justified. 

An experimental detection of the predicted tempera- 
ture dependence of K -' (T)  could be expected on studying 
the rate of growth of a crystal under quasi-equilibrium con- 
ditions (for example, with such an experimental arrange- 
ment as used by Balibar et Wolfet ~ 1 . ~ ~  or by Dyumin et 

It is not impossible that a repetition of the experi- 
ments to study the damping of crystallization waves9 or on 
the conversion of sound at an i n t e r f a ~ e ~ " ~ ~  to lower frequen- 
cies and (or) lower temperatures might make it possible to 
separate the contribution to K -' unconnected with colli- 
sions with excitations. In both cases the experiments should 
be carried out with strictly controlled orientation of the 

specimen, on faces with small Miller indices. In particular, it 
would be most promising to study the dynamic properties of 
a (1071) face, on which the third faceting transition takes 
place at T = TR3 ~ 0 . 3 5  K. 

The fact that new faceting transitions were not observed 
on lowering the temperature from 0.35 K to 0.07 K (Ref. 
1 1 ) can be interpreted as evidence of a very rapid rise in S, 
with an increase in Miller indices. We note that the large 
value ofS, makes it difficult to observe not only the equilibri- 
um but also the kinetic faceting, since the magnitude of the 
critical supersaturation at which the transition from nuclea- 
ted to continuous growth takes place, is proportional to 
exp ( - 2S, ) . Since the equilibrium dimensions of a ( 10i 1 ) 
face is not so small as to render it unobservable, it would be 
expected that the growth coefficient would not also be too 
small for it at zero frequency. As shown by experimental 
in~esti~ations,~' .~'  the dynamics of an atomically rough in- 
terface in 4He at T z  1 K is determined by collisions with 
rotons, but for T- TR3 + 0 the roton contribution would be 
considerably weaker. 

Departures were already found at low temperatures 
from the predicted temperature dependence of K - '  (T )  
(Refs. 3, 5, 6 )  in experiments on the attenuation of melting 
waves. However, a systematic study of the additional contri- 
bution to K - ' from the orientation of the specimen was not 
carried out. 

It is also not impossible that the activated K (T )  de- 
pendence observed in  experiment^^^.^^ under conditions of 
slow (quasi-equilibrium) growth, has as its cause not colli- 
sions with rotons, which in the hydrodynamic regime do not 
lead to di~sipation,~.~.' but umklapp processes for the conju- 
gate variable p, discussed in the present paper. This would 
be evidence that the tunneling amplitude Y has a magnitude 
close to the size of the roton gap. 

In conclusion we note that the dissipation mechanism 
considered only operates effectively for not too large fre- 
quencies. For TgJS:I7 (or T<JS  ;'3, depending on the 
model) limitation of the wave vector also arises. 

The author thanks S. V. Iordanskii for discussing this 
work and for valuable comments, and also V. L. Pokrovskii 
and G. V. Uimin for valuable discussions. 
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