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A system of equations describing the evolution of the integrals of motion of the dynamical 
soliton of the Landau-Lifshitz equations under the action of relaxation processes of both 
relativistic and exchange natures are derived within the framework of a phenomenological 
theory. The corresponding integral curves are constructed, and the time dependences of the 
soliton parameters at different stages of the relaxation are analyzed. 

Recently there have been obtained in investigations of 
the dynamical properties of magnetically ordered crystals 
numerous exact solutions to the nonlinear equations of mo- 
tion of magnetization-the Landau-Lifshitz equations. ' So- 
lutions describing dynamical and topological solitons, non- 
linear periodic waves, etc., have been found for practically 
all the principal classes of magnetic materials (ferromag- 
nets, ferrimagnets, and antiferromagnets). The exact inte- 
grability of the Landau-Lifshitz equations has been demon- 
strated for the simplest one-sublattice-ferromagnet models 
within the framework of the inverse-scattering problem 
method, and this has allowed2 the construction of multisoli- 
ton solutions and the analysis of the soliton interaction pro- 
cesses (see also Ref. 1 ). 

Of extreme importance for the application of soliton 
theory to the description of real experiments or their setup is 
the problem of the description of soliton relaxation. 
Allowance for the damping processes destroys the exact in- 
tegrability of the equations, and leads to the relaxation of the 
nonlinear excitations ultimately to the ground state. 

The relaxation of the kink-type topological solitons, 
which describe domain walls, has been studied in sufficiently 
great detail both phenomenologically"4 and with the aid of a 
detailed microscopic analysis of the processes of inelastic 
interaction of a kink with magnons, phonons, crystal-lattice 
defects, etc. The advantage of the microscopic approach is 
that we can, on its basis, find the temperature and defect- 
concentration dependence of the retarding force acting on 
the soliton (see, for example, Ref. 5). But the microscopic 
approach is rather complicated, and has in fact been applied 
only to the simplest one-dimensional solitons of the domain- 
wall type.5 The transition to the description of more complex 
solitons of the two-parameter-bion type,' the generalization 
to multidimensional solitons, etc., within the framework of 
the method proposed in Ref. 5 are a highly nontrivial prob- 
lem. In particular, the application of this method requires 
knowledge of the exact spectrum and wave functions of the 
magnons in the background of the soliton, but they are 
known only for a small number of one-dimensional prob- 
lems. 

The general relaxation picture not only for kinks, but 
also for arbitrary nonlinear excitations in magnetic materi- 
als can be described within the framework of the macroscop- 
ic approach in which the energy dissipation processes are 
taken into account through the introduction of additional 

relaxation terms into the basic equation of motion." For an 
adequate description of the relaxation processes in magnetic 
materials, we must use an equation proposed in Ref. 4 by one 
of us, which contains relaxation terms of both relativistic 
and exchange natures, and allows a systematic description of 
the spatial dispersion of the relaxation. In the present paper 
we propose a simple version of these equations, which allows 
us to describe the relaxation of arbitrary nonlinear magneti- 
zation waves under the assumption that the damping is 
weak. 

The smallness of the corresponding relaxation con- 
stants allows us to develop a perturbation theory for the de- 
scription of the evolution of the soliton parameters. In parti- 
cular, in Refs. 7 and 8 a specific form of the perturbation 
theory is constructed for exactly integrable systems on the 
basis of the inverse scattering problem method. 

In the present paper we shall use a simpler perturba- 
tion-theory variant based on the construction of evolution 
equations for the integrals of motion of the unperturbed sys- 
tem. These equations describe the slow evolution of the pa- 
rameters of the initial excitation under the influence of the 
dissipation. The simplest variant of this approach is used in 
Ref. 9 to study fluxon damping in Josephson junctions with- 
in the framework of the perturbed sine-Gordon equation and 
in Ref. 10 to describe the damping of the low-amplitude low- 
frequency solitons of the Landau-Lifshitz equation with a 
relativistic relaxation term. The advantage of this approach 
lies in the fact that it can be used even in the case when the 
basic equation is not exactly integrable, e.g., in the case of the 
analysis of three-dimensional magnetic solitons. " We shall 
discuss the limitation on its application below. 

In the present paper the indicated approach is devel- 
oped for the description of the relaxation of the two-param- 
eter soliton (bion) of the Landau-Lifshitz equations. The 
evolution of the dynamical-soliton parameters in a uniaxial 
ferromagnet with the "easy-axis" type of magnetic anisotro- 
py is investigated with allowance made in the equations of 
motion for dissipative terms of both relativistic and ex- 
change natures. It is shown that the relaxation picture for a 
bion is much more complicated than the corresponding pic- 
ture for a domain wall. In particular, its parameters can, 
depending on the initial conditions, vary in time according 
to either an exponential or a power law, the velocity can 
decrease or increase, etc. 

Let us note that it is not difficult to construct a general- 

857 Sov. Phys. JETP 64 (4), October 1986 0038-5646/86/100857-07$04.00 @ 1987 American Institute of Physics 857 



ization of the proposed computational scheme for the de- 
scription of the relaxation of N-soliton excitations in exactly 
integrable systems, or of the relaxation of the multipara- 
meter solutions to any nonlinear dynamical equations that 
are characterized by a finite number of integrals of motion. 

1. THE EFFECTIVE EQUATIONS 

We shall, in describing the nonlinear-excitation-relaxa- 
tion processes, proceed from equations of motion for the 
magnetization vector M (Landau-Lifshitz equations) that 
contain a dissipative term with the form proposed in Ref. 4 
on the basis of the Onsager relations2' and exchange symme- 
try: 

Here M  = IMI; m = M / M  is the unit magnetization 
vector; g is the gyromagnetic ratio; He  = - S W /SM, Wbe- 
ing the energy of the magnetic material; A,, A,, and A, a 2  are 
the relaxation constants; and a is the lattice constant. The 
choice of the dissipative term in such a form allows us to 
describe the relaxation of the excitations as a result of both 
relativistic and inhomogeneous-exchange interactions; to 
the latter interactions corresponds the constant A,a2. 

According to Eq. ( 1 ), the modulus of the vector M var- 
ies because of the relaxation terms. Indeed, scalar multiply- 
ing ( 1 ) by M, we obtain 

where H  = mM, is the component of the effective field H, 
in the direction of the vector M. It is easy to show that 
H I ,  = S W / S M .  On account of this condition, H I ,  = 0 in 
the static equilibrium case. 

Writing the magnetization M in the form 

and using ( 2 ) ,  we easily obtain the dynamical equation for 
the normalized (unit) magnetization vector m: 

Notice that this equation contains only one relativistic 
constant A,, whereas the original equation ( 1) contains two 
( A ,  and A, ). Without the exchange relaxation (i.e., for 
Rea2 = O), Eq. ( 3 )  contains only the perpendicular compo- 
nent of the effective field, namely, the component 
H, = He - m (m-He ), and, in this approximation, it literal- 
ly coincides with the classical Landau-Lifshitz equation for 
magnetization dynamics. If we limit ourselves in this equa- 
tion withA,a2 = 0 to the leading approximation in the relax- 
ation constant, and substitute into the dissipative term 

then we obtain an equivalent form of the Landau-Lifshitz 
equation with a relaxation term that has the Gilbert form. 
Thus, the only natural form of the dynamical equation for 
the normalized magnetization m, when the exchange relaxa- 
tion is neglected, is the Landau-Lifshitz equation. 

The situation is much more complicated when the ex- 
change relaxation is taken into account. If A,a"O, then all 
the components of He, including Hll m, are important in the 
relaxation term, since 

Let us write the dynamical equation for m in the leading 
approximation in the A constants in the form 

Thus, when allowance is made for the exchange relaxa- 
tion, the equation for the normalized magnetization m ceases 
to be a closed equation. The relaxation terms in it contain the 
quantity H , which does not enter into the dynamical part of 
the equation, and should be found separately. In principle, 
we can get around this by using the equation for M, and not 
the one form, but all soliton solutions are constructed on the 
basis of the dynamical equation for m, and it is also more 
convenient in the analysis of their relaxation to proceed from 
such an equation after suitably modifying its relaxation part. 

To construct this equation, let us turn to the explicit 
expressicln for the enet-gy of a ferromagnet: 

Here f ( M  ') gives the energy density for the exchange inter- 
action determining the length of the magnetization vector 
and w{m) includes the anisotropy energy w, and the inho- 
mogeneous exchange energy: 

From ( 6)  we obtain 

Let us use the fact that, at low temperatures, f (M' )  has a 
sharp minimum at M  * = M i ,  where M,,( T )  is the equilibri- 
um value of the magnetization (we assume that w{m) = 0 in 
the ground state). In this case we can assume that only the M  
values close to M,, i.e., the quantitiesp = M - M,,<M,,, are 
essential, and write 

where the quantity xll 4 1 has the meaning of a longitudinal 
susceptibility of the ferromagnet. In this case 

Notice that the assumption that p <M,, and xll < 1 is 
already implied in the energy formula ( 6 ) ,  in which terms of, 
for example, the type a ( V M ) *  have been discarded. But the 
assumption that x,, < 1 is correct in the broad range of tem- 
peratures lower than the Curie temperature, and we shall 
assume that it is fulfilled. 

In the static case H l l  = 0 and the length of the magneti- 
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zation is coordinate dependent M = MO( 1 - 2xIl w)  even 
when the magnetization distribution is inhomogeneous (for 
example, in the presence of a stationary domain wall or an 
external inhomogeneous field). This follows from the well- 
known fact that in a consistent phenomenological theory M 
is a function of the local internal field even in the isothermal 
case. In the presence of a dynamical magnetization wave of 
fairly large amplitude the quantity H I I  is, generally speaking, 
not equal to zero. To compute HII  or p ,  we must use the 
relation (2).  Taking the relation between H ,, and p into ac- 
count, we obtain for H l l  the linear inhomogeneous equation 

The general solution to this equation without the right- 
hand side describes the relaxation of H l l  to  the equilibrium 
value H = 0, the characteristic relaxation time being of the 
order of (A , ~ M , , / X ~ ~  ) - ' and very small for xll - 0 (Ref. 4) .  
The particular solution to Eq. (8 )  can be nonzero only when 
am/& #O, i.e., only in the presence of a dynamical magneti- 
zation wave. 

Notice that Eq. ( 8 )  is valid up to first order in the small 
relaxation constants and the quantity xlI . The equation (5)  
for the normalized magnetization m is also valid in this ap- 
proximation, which is of interest to us here. Thus, Eqs. ( 5 )  
and (8 )  constitute a closed system for the three variables: the 
value of H and the two independent quantities describing 
the unit vector m. It is convenient to choose as these quanti- 
ties the angle variables defined by the relations 

In our opinion, the system ( 5 ) ,  (8 )  is more convenient 
than the basic equation ( 1 ) for the purpose of analyzing the 
damping of nonlinear magnetization waves in media with 
small relaxation constants. 

Let us proceed to the formulation of the equations for 
the soliton parameters, which we obtain from the integrals of 
motion of the unperturbed equation. The principal integral 
of motion is the energy W. The rate of change of the energy is 
determined by the dissipation function Q: d W/dt = - 2Q 
(see the formula (36)  in Ref. 4) .  The soliton energy depends 
on parameters of the following types: the soliton velocity u, 
the magnetization precession frequency w ,  etc.; in the non- 
dissipation approximation these quantities are constants. 

Let us, on the one hand, find d W/dt as a linear combi- 
nation of the rates of change, du/dt, dw/dt, etc., of the soli- 
ton parameters and, on the other hand, compute the value of 
Q as a function of these parameters. By equating the corre- 
sponding quantities, we obtain the sought energy-balance 
equation. We can, under the assumption that xll < 1, ignore 
the variation in length of M in the expression for the energy 
W by setting p =xII [ H i l  + 2M,,w] -0: then, generally 
speaking," H #O. In this case, to which we limit ourselves 
(the effects stemming from the finitexll value will be consid- 
ered in a separate paper), f ( M  ') - p 2 / ~ I I  -p -0, and the 
energy-balance equation assumes the form 

dEidt=-2Q, E=M,' j ~c {m) dr, 

and for Q we can, in the case when xII (< 1, use the formula 

The dissipation function (10) of a ferromagnet with 

xIl 1 depends on H I I  . To eliminate H , I  , and express Q in the 
required form in terms of only m(r, t) ,  we must use Eq. (8 ) .  
By eliminating H I ( ,  and using the specific structure of the 
solution to the dynamical equation, we can find the rate of 
energy dissipation in first order perturbation theory in terms 
of the relaxation constants. 

Similarly, we can find the rates of change of the system's 
other integrals of motion. Let us, for definiteness, consider 
the uniaxial-ferromagnet model with energy 

the z axis being the axis of easy magnetization. Such a ferro- 
magnet admits of the integral of motion I, equal to the total 
deviation of the z component of the magnetization from its 
equilibrium value. Its magnitude can be expressed in terms 
of the number N of magnons in the soliton: 

IC = ( 1 / 2 p , )  (ill-M,) dr. 

Computing with the aid of Eq. ( 5 )  the rate of change of this 
integral of motion in the case when 4 1, we obtain 

d N  = -[ d (Y,i?p,) j (I-m,) dr ] 
t l t  dt 

Equations (10) and (12) are adequate for the decrip- 
tion of the evolution of a two-parameter soliton (bion) in a 
uniaxial ferromagnet. The use of the momentum (P) inte- 
gral of motion does not lead to new equations, on account of 
the relation d E  = k d N  + udP, which is valid for any ferro- 
magnet that admits of the existence of bions.' For the analy- 
sis of a biaxial ferromagnet, in which I, is not an integral of 
motion, we can use the equations for d W/dt and d P  /dt. 

Let us consider the relaxation of a bion in a uniaxial 
ferromagnet. Let us, using the angle variables ( 9 )  for m, 
rewrite ( 10) and ( 12) in the form 

where Eo = M i a 2 ( a B )  "' is a characteristic value of the en- 
ergy, a is the lattice constant, w,, = gbM,, is the ferromagne- 
tic resonance frequency, and the dot denotes differentiation 
with respect to the dimensionless time T = w,,t. The func- 
tions q and 7 are determined by the sum of the relativistic 
(q,.,vr ) and exchange ( q , , ~ ' ,  ) terms. The contribution of 
the exchange relaxation can, in its turn, be conveniently rep- 
resented in the form of a sum of two terms, the first of which 
does not contain H i  and the second is linear in this function 
(see (10) and (12)) .  Finally, weobtain 

where 
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q.(')=hel( (0 ' )  2ip+f)O'~' cos 20++ ( r p ' )  sin:: 0  cos2 8 
+ sin 0  cos 0  ( O f $ ' - o ' q ~ ' )  >; (16) 

qL"'= (he1/Mo)  <Hi! sin OIGcpN-0"$+26'(~'-20'ip'I 
-211,,(i. cos 0  1 ( O f ) ' +  ((F') sinz 01 ), (17) 

In these formulas A : =A, (a/x,)' and the prime and angle 
brackets respectively denote differentiation with respect to, 
and integration over, the dimensionless space variable 
6 = x/x,, where x,, = (a/f l)  ' I 2 .  

We shall use the above general formulas to analyze two- 
parameter solitons in a one-dimensional ferromagnet. 

2. EVOLUTION OF THE PARAMETERS OF A ONE- 
DIMENSIONAL BlON 

The magnetization distribution in a bion of a one-di- 
mensional ferromagnet is described by the relations' 

where urn = 2w,,x,, x = [ 1 - Q/wO - ( d u r n  ) '1 ' I 2 ,  xg/x is 
the effective width of the soliton, 

The parameters determining the structure of the soliton 
are its velocity u and precession frequency n. The soliton 
solution ( 19) exists in the region tt' > 0 or 

The integrals of motion E and N corresponding to the 
soliton ( 19) are, when computed for an area of a', equal to' 

E = 4 E , ( l - o - ~ ) " ~ ,  

where w = Q/wO and u = (v/v, )%re the dimensionless so- 
liton parameters, which are convenient for the subsequent 
calculations. 

The evolution of the integrals of motion E and N is con- 
nected with the corresponding variations of the parameters 
u and w. From the formulas ( 19) and ( 13) we obtain for the 
functions w and u the system of equations 

o=f (0,  U )  = (431) - l { ( 2 - 0 )  q - ( 0 2 + 4 u ) q ) ,  

Since the functions q and 7 are each represented in the 
form of a sum of three terms, the functions f and g, which 

govern the evolution of the bion parameters, can be written 
in the form 

where f, and g, are determined by the relativistic relaxa- 
tion, f 2 ' '  andgj" are connected with those exchange relaxa- 
tion terms which do not depend on H ,, , and f J2' and gj2' can 
be represented in the form of integrals of expressions linear 
i n H , ,  (see (14)-(18)). 

The explicit form of the relativistic terms and f b", gb' ' 
are easily obtained by substituting the explicit form of the 
magnetization distribution (19) in the soliton into the for- 
mulas (14) and (151, (17). As a result we obtain 

f r = ~ , ( m 2 + 4 u )  [ 2 ( 1 - ( 1 ) ) + ( 1 ~ 1 ~ )  ( o - 0 2 - ? ~ )  I ,  

where I,, = Artanh [2x/( 1 - w) 1 .  
As shown in Ref. 12, similar formulas describe the evo- 

lution of the soliton parameters in the case of fairly high 
soliton frequencies (w >A,, A, (a/xo)'). 

Analysis shows that dissipative terms of these two types 
have essentially different effects on the evolution of the soli- 
ton parameters. In the entire admissible region of the soliton 
parameters [ u  + w < 1 (see (20) I ] ,  f, > 0 and g, > 0, i.e., 
both the precession frequency and the velocity of the soliton 
increase during the relaxation process (the soliton is acceler- 
ated; this result is obtained in Ref. 10 for low-amplitude soli- 
tons). 

The nature of the relativistic relaxation is graphically 
depicted by the integral curves of the equations (;I = f, and 
u = g,, as obtained by numerical integration of these equa- 
tions (see Fig. l ) .  As to the contribution of the exchange 

FIG. 1 .  Evolution of the soliton parameters as a result of the relativistic 
relaxation. 
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FIG. 2. Evolution of the soliton parameters when allowance is made for 
only the exchange relaxation in the case when Hi, = 0. 

relaxation, f j" is also greater than zero in the entire (u,w) 
region, but the sign ofgL1' can change, and in practically the 
entire regiong:" < 0 (see Fig. 2).  Thus, the contributions of 
the exchange and relativistic relaxations to u have opposite 
signs. If the contribution of H I I  is small, and the terms with 
f jZ' andgJ2' can be neglected (for the corresponding condi- 
tion, see below), then the evolution of the soliton parameters 
in the course of the relaxation is governed by the competition 
between these contributions: the increase of the contribution 
of the exchange relaxation leads to the increase of that pa- 
rameter region in the (u,w) plane where the soliton velocity 
decreases. 

The investigation of the contribution of f j2' and gj2' to 
the exchange relaxation is a much more complicated prob- 
lem, since it requires the computation of the field HII on the 
basis of Eq. (8).  Analysis shows that the nature of the rela- 
tion between HII and m(r,t) is determined by the relation 
connecting the parameter xII to the parameters A ,  and A, a'. 
The functional relation between H and m in the case when 
xIl )A, is essentially different from the corresponding rela- 
tion in the xll (<Al case. We are actually interested in the 
limiting value of Hll for + 0 and A ,, A,a2 4 0  ( f bZ'  and 
gj2' themselves already contain the factor A,a2, and we are 
ignoring the effect of a  finite^^, ). Consequently, a nonanaly- 
ticity problem arises in the computation o fH  I I  , i.e., the value 
ofHll at smallA andxll  values depends on the order in which 
we take the xll -0 and A,-0 limits. Let us consider two 
different cases: xll )A,  and xll 4 A  ,, which corresponds to 
two possible sequences in which the passage to the limit can 
be effected. 

Let xl, <A ,. We can, for the purpose of analyzing this 
case, set xlI = 0 in (8) .  The value of H is then given by the 
solution to the equation 

  he operator 2 is positive-definite, and the solution that 

decreases in the region far from the soliton can be uniquely 
determined. 

The solution to (23) for an arbitrary soliton can be 
yritten down in terms of the Green function for the operator 
L, but we shall limit ourselves to the consideration of the 
simplest cases in which the relation connecting H I I  to m, m', 
and (dm/&) is algebraic. This can be done for a low-ampli- 
tude soliton, for which x = ( 1 - w - u ) ' I2  4 1. For this soli- 
ton 

Since the dimension of the region of localization of H l l  is of 
the order of l/x, AH -x2H l l  , and the term with AH can 
be neglected. As a result we obtain 

This formula can be used also for a soliton of arbitrary 
amplitude if the constant A ,  is formally considered to be 
sufficiently large, specifically, if A ,  $A, ~ ' / ( h x ) ~ ,  where h x  
is the region of localization of the soliton. 

Let xlI )A ,. In this case the situation is slightly more 
complicated, since the result depends nonanalytically on the 
value ofA /xII U. The analysis shows that there appears in the 
problem a characteristic value u, for the soliton's forward 
speed: u, -AgM, (Ax)/xII 4 w ~ , .  For extremely low veloc- 
ities, when u < u,, we obtain 

Naturally, HII vanishes in the static case (i.e., in the case 
when u +O). In the more interesting u > u, case the quantity 
H does not depend onXil and u: 

The fact that the explicit form of H expressed in terms 
of m (x,t) is different demonstrates the above-indicated non- 
analyticity of the problem at small values of the parameters 
xII and A ,, Lea2. Consequently, the form of f j2) and gb2' for 
a specific system depends on the values of the longitudinal 
susceptibility xII and the constant A ,; the latter describes the 
rate of uniform relaxation of the length of the magnetization 
M to the equilibrium value. Notice that the constant A ,  does 
not have the literal meaning of a relaxation constant in the 
dynamical equations for the vector m. As can easily be seen 
from (24), as A ,  increases, the value of H I I  (and, conse- 
quently, the rate of energy dissipation) decreases. 

Let us consider the estimate for the contribution of H 
to the evolution of the soliton parameters only in the above- 
indicated limiting cases. Analysis shows that, i fxI l  4 2 ,  and 
the value of A ,  is large (i.e., if A ,  ,Aea2/x; ), so that we can 
use the formula (24), then 

and f L2' < f : I ) ,  gj2) 4gL1) in the entire region of the soliton 
parameters. In this case we can neglect the contribution of 
H 1 I  , and assume that, forxIl  <Al, A,a2/x: <A,, 
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FIG. 3. Evolution of the soliton parameters as a result of the exchange 
relaxation in the case when H I ,  is given by the formula (26) .  

The corresponding integral curves are discussed above. 
In the other limiting  situation^^^ $A, the value of H is 

not small (see (26) ). In this case we can have f 2" - f b2' ,  
gl" -gj2', SO that the exchange relaxation is described by the 
sum of these two terms. Let us write out the explicit expres- 
sions for 

fe=fe(i'+f;z), &=&77) +g.:.2) : 

+4u2(9w2-1lw+14) +40u3 I}, 
(27) 

64 2u 
40 w + -) + - (190z-800+128) p.=heru {w' (; rn2 - - 
3 3 3 

It is interesting to note that f, is, on account of (27) 
greater than zero, i.e., the soliton frequency increases, but 
that in this case g, < 0, i.e., the soliton velocity decreases in 
the entire parameter region (see Fig. 3 ) .  Thus, in thexll )A,  
case the "competition" between the exchange and relativis- 
tic contributions to the relaxation is even more intense. The 
sign of the derivative u and the forms of the functions w (7) 

and U ( T )  are determined by both the specific values of the 
parameters u (0)  and w (0)  and the relation between the re- 
laxation constants A, and A : (see Fig. 4).  

Let us analyze in greater detail some limiting cases cor- 
responding to the characteristic regions in the (u,w)-param- 
eter plane. 

For low-amplitude solitons, to which corresponds the 
region x 4 1 (the region of the parameters u and w is located 
in the vicinity of the straight line u + w = 1 in the ( u , ~ )  
plane), the analysis is facilitated by the fact that, in both 
cases analyzed above, the contribution of H ll contains the 
next power of the small parameter x, and the nature of the 
soliton relaxation does not depend on the relation between 
XI1 andA1. 

1. At large values of the soliton velocity (i.e., for u $ 1  ) 
the equation for u and w have the asymptotic forms 

At room temperatures we can assume that A,a2/ 
a-A,/P, i.e., A, -A :. The solution to the system of equa- 
tions (29) with the initial conditions u = u(0)  and 
w = ~ ( 0 )  at r = 0 can be written in the form 

u=uI+ ( ~ ( 0 )  -ul) exp {-&,'zuIZ), 

z (T) =x (6) e x p { - 2 ~ , ' 1 r  ,'TI. (30) 
U , = U  (0) -2/3 (h,  -)., ') x2(())!l.p'~ (0).  

Thus, in the x ( 1, u $ 1 region under consideration the 
relaxation of the soliton is governed largely by the exchange 
interactions. 

For r+ CQ , u -+ u I and x + 0, i.e., the integral curve 
w = w(u) for Eq. (27) terminates (for r+ co ) at that point 
on the straight line u + w = 1 where the soliton has zero 
amplitude and infinite effective width ( x , / x )  (the soliton 
degenerates into a homogeneous magnetization distribu- 
tion). 

Since the quantity x is equal, apart from a dimensional 
factor, to the soliton energy E (see (19)),  the exponential 
function x ( r )  allows us to introduce an effective soliton life- 
time rs = (W :u: )-', which, for fast low-amplitude soli- 
tons, is inversely proportional to the fourth power of the 
soliton velocity: rs cr v - ~ .  

2. At low velocities (i.e., for u( 1) the equations de- 
scribing the relaxation of a low-amplitude ( x  ( 1 ) soliton 
have the form 

li=v3(ar-aC1) UX? ~ = 4 x ~ [ ~ , +  (hCf/3) ( ~ U + X ~ )  I .  (3  1 ) 

The solution to the system (29) for A, -A : has the form 

FIG. 4. Competition between the exchange and relativistic relaxations. 
When A, = 0.5A,, the soliton velocity almost does not vary in the course 
of the relaxation. 
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x (t) = X  (0) cxp ( - 2k r r ) ,  

For r-+ 

In this case also the integral curve terminates on the line 
u + w = l .  

It follows from (32) that the relaxation of a low-ampli- 
tude, low-velocity soliton is governed largely by the relativ- 
istic interactions. The soliton lifetime rs in this case is equal 
to 1/2A,, and does not depend on the velocity. But the final 
value u ,  of the soliton velocity depends on A, and A,: 
u , > u ( O )  whenA, >A:. 

It is not difficult to write out the solution to the equa- 
tions describing the evolution of a low-amplitude soliton in 
the case of arbitrary values of the parameters u. We shall not 
do this because of the unwieldiness of the corresponding for- 
mulas. Let us only note that the exponential time depen- 
dence of the soliton parameters obtains everywhere in the 
vicinity of the line u + w = 1 irrespective of the value of u. In  
the vicinity of the boundary of the existence region N K  x; 
therefore, in the course of the relaxation process the number 
of magnons tends to zero according to an exponential law. 

The stationary soliton. If u = 0 at  the initial moment of 
time, the soliton remains stationary at  all subsequent mo- 
ments of time. The integral curve in this case is a segment of 
the axis of ordinates. 

For 1 0  1 9 1 we find from the formula for cj that 

where =A, + A :, for HI = 0, which is characteristic of 
the u = 0 case. 

I t  can be seen that, for w (0 )  > 0, the precession frequen- 
cy increases rapidly, and attains a value w - 1 over a finite 
period of time. If, on the other hand, w(0)  <O, then for 
r- m the frequency tends asymptotically to zero in a power- 
law fashion. Thus, a stationary soliton with w > 0 turns into a 
low-amplitude soliton over a finite period of time and then 
degenerates exponentially while a stationary soliton with 
w < 0 becomes transformed into the singular solution of the 
Landau-Lifshitz equation with w = 0, u = 0, which de- 
scribes two domain walls located infinitely far from each 
other. 

A low-velocity soliton. If the initial value of the velocity 
is small, but nonzero, then, depending on the relation 
between A, and A : and the one between xll and A ,, the soli- 
ton velocity can either decrease or  increase in the course of 
the evolution. For w =: 1, i.e., in the case of a low-amplitude 
soliton, the velocity increases when A, > A : and decreases 
whenA,<A: ( see (32) ) .Bu t i fw<Oand  IwI$l,then 

Li=8/3 ()"7-cJ.p') 11 11,) 1 % (34) 
where c = 9 and 9 for H = 0 and H = - 2M0w, i.e., for 
xiI < A ,  and xII $-A, respectively. Thus, the soliton velocity 
decreases when A, > cA; and increases when A, < cA i.  In 
this case an almost stationary soliton accelerates in the 
course of its evolution. 
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The specific calculations carried out above demonstrate 
the fairly complicated nature of the evolution of the param- 
eters ofa  magnetic bion in the course of its relaxation. Notice 
that an adequate description of the dissipation of the energy 
of a nonlinear excitation in a ferromagnet is impossible with- 
out allowance for the exchange relaxation processes. They 
not only affect the quantitative mobility estimates, as has 
been found in the case of the domain wall,4 but can also lead 
to a qualitatively different soliton-parameter evolution pic- 
ture. The role of the exchange mechanism of relaxation is 
most important at  large values of the velocity of precession 
frequency of the soliton. This result is due to the fact that, for 
w < 0 and Iw 1 $1, the effective soliton width (x,,/x) is small, 
and the presence in the exchange relaxation term of the sec- 
ond derivative leads to the appearance of a large factor pro- 
portional to 7c2 $- 1. But if this factor is small, then the domi- 
nant role is played by the relativistic relaxation processes. 

In the principal soliton-parameter region, where w 5 1, 
u 5 1, i.e., v 5 w , ~ , , ,  the contributions of the exchange and 
relativistic relaxations turn out to be comparable when we 
use the reasonable estimate4 A, -A L. The above-described 
complicated bion-parameter evolution picture is the result 
of the competitive natures of these interactions. 

" Such processes as coherent and Cherenkov radiation, the "disintegra- 
tion" or collapse of a soliton as a result of its instability, etc., naturally 
cannot be considered within the framework of such an approach. 

2'The Onsager relations are used in Ref. 11 to describe the linear dynamics 
of a ferromagnet. 

"The nonanalyticity of the problem i n x ,  !whenxlI < 1, the valueofp -0, 
but then the component H I ,  the expression for which contains the term 
p / x I ,  is, generally speaking, finite) is one of the reasons why it is more 
convenient to write the supplementary equation ( 8 )  in terms o f H I I  than 
in terms o f p  or M. 
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