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When ordering processes compete in the bulk of a crystal, the one with the lowest energy 
predominates. Attention is drawn to the fact that if a stronger ordering of the domain structure 
type is inhomogeneous, a weaker ordering can appear within the domain walls. In particular, 
in a structural transition in a Jahn-Teller crystal a magnetic ordering may exist in the domain 
walls that separate regions with opposite displacements. When an allowance is made for the 
dipole-dipole interaction, it is found that the effective dimensionality of the space for 
fluctuations near the point of appearance of ferromagnetism localized within a wall is 2.5, as 
for any other planar ferromagnet with an easy axis in the plane of the sample. 

1. INTRODUCTION 

Crystals with a strong spin-orbit interaction exhibit a 
significant correlation of magnetic and elastic properties. 
This correlation (magnetoelastic interaction) is particularly 
strong in compounds of rare-earth ions in which the spin- 
orbit coupling is strong because of the proximity of the f 
shell to the nucleus, whereas the interaction of electrons 
with the environment is weak. For this reason a (W + 1)- 
fold degenerate ground multiplet of a free ion with the mo- 
mentum Jsplits weakly in crystal fields, so that the ground 
state remains frequently degenerate of pseudodegenerate. In 
these situations it has been found that structural phase tran- 
sitions with temperatures T, of the order of 10 k occur be- 
cause of the cooperative Jahn-Teller (JT) effect.IT3 In the 
case of nonconducting compounds of rare-earth ions the ex- 
change effects are slight (they are comparable with the di- 
rect magnetic dipole effects) because of the weak covalence, 
so that the temperatures of magnetic transitions T,  may be 
of the order of T,. The proximity of T, and T,,, , and the 
strong magnetoelastic coupling results in an effective inter- 
action between the JT structural and magnetic ordering 
mechanisms: they either enhance or weaken one another. In 
the case of competition, the coexistence of these two types of 
ordering is generally impossible and only one ordering is 
realized in the bulk of a crystal: it is that which has the lowest 
free energy. However, the proximity of the system to the 
second "suppressed" phase transition is manifested by a se- 
ries of characteristic physical properties. For example, ex- 
perimental investigations have shown that when a structural 
transition takes place, its temperature is lowered by a mag- 
netic field, the magnetic susceptibility of a structurally or- 
dered is independent of temperature, etc.; the behavior of 
such homogeneously ordered systems has been investigated 
in considerable detail.ls2 

stray field. If the structural transition is stronger, then a 
domain structure is usually still present .in a sample because 
of stresses in the system or because of other factors. In either 
case the main ordering process is less effective in domain 
walls where a second weaker ordering may appear. '' In other 
words, a phase transition in domain walls may result in a 
weaker ordering of the type which is suppressed in the rest of 
the crystal. Clearly, the most interesting case from the ex- 
perimental point of view is a magnetic transition between 
structural domains. The modern technique of magnetic mea- 
surements should be sufficient to detect such wall-localized 
ferromagnetism. 

2. COMPETITION BETWEEN MAGNETIC AND STRUCTURAL 
ORDERING IN A CRYSTAL WITH JAHN-TELLER IONS 

We shall consider the interaction of the magnetic order- 
ing with the ordering of JT distortions in the case of a crystal 
(such as a tetragonal crystal of TmVO,) in which the 
ground state of ions in the rare-earth sublattice is a non- 
Kramers doublet separated by a large gap (of the order of 
100 cm- ' ) from excited states. Low-temperature properties 
of compounds with rare-earth ions of this type are deter- 
mined by the structure of the lowest electronic levels of these 
ions in the crystal electric field (in the case under discussion 
there are two such levels). A structure of this typ%can be 
described conveniently by the pseudospin operator S, of an 
ion located at a site with the coordinate m. It is introduced in 
such a way that (2.9 + 1 ) is the number of electronic states 
allowed for in the calculations. The electron operators in- 
cluded in theFamiltonian are then expressed in terms of the 
components S,, ( a  = x,y,z), so that the effective Hamilto- 
nian has the usual form of the spin Hamiltonian. It cgntgns 
the interactions of spins with one a%other (of the S,,S,, 
type), with the magnetic field Has,,), initial splitting 
h 

We would like to draw attention to a situation in which (S;, ), etc. It is important to note that, in contrast to the true 
a stronger ordering is inhomogeneous and produces a do- spin, the different pseudospin components may (and usually 
main structure. In the case of a stronger magnetic transition do) correspond to quantities of very different physical na- 
in a fairly large sample such a state corresponds to the mini- ture. Thus, it is easy to show that the basis of functions of a 
mum of the free energy which includes the energy of the non-Kramers doublet ( S  = 1/2) of the group D,, which we 
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shall discuss as an example, has matrix elements J, and Jy of 
the total momentum J which vanish. Therefore, the interac- 
tion with a magnetic field, usually written in the form 
gp,H J (%r the complete basis of the spin-orbit multiplet) 
is g1p,H,S, for the basis of functions of a non-Kramejs 
doublet truncated by the crystal field. The eigenstates of S, 
are therefore states with a specific value of the magnetic mo- 
ment along the z axis selected by the crystal field. The eigen- 

h h 

functionss, and Sy correspond to states with a specific v a l ~ e  
of th5electron quadrupole moment, and the components S, 
and Sy occur in the operator of the interaction of a non- 
Kramers doublet with the low-symmetry electrostatic fields 
of the lattice which appear as a result of displacement of ions 
in the crystal. Therefore, the electron energy in the field of 
displacements (which can be, for example, of the B, symme- 
try for the D, group of the unit cell of a crystal of the type 
under discussion) is 

where u, are the displacements of ions and V,, are the pa- 
rameters of the interaction; the index x labels displacements 
corresponding to phonons x. Eliminating u, from the Ham- 
iltonian ( 1 ), we obtain the spin part of the electron Hamilto- 
nian describing the intersite interaction3: 

The complete spin Hamiltonia~ wjich allows both for the 
magnetic interactions (of the Zm,~, ,  type) and for the JT 
distorsion interactions (of the SmySny type) becomes 

In Eq. (2) we have to separate the long-range contributions. 
The magnetic dipole interaction makes the following contri- 
bution to I,,,, : 

which is of the same order of magnitude as the contribution 
to the exchange interaction in compounds of the kind under 
discussion. This contribution is important when dealing 
with the inhomogeneous magnetic structures and magnetic 
fluctuations. The interaction of "spins" with a homogeneous 
deformation makes a contribution to B,, which is indepen- 
dent of rn and n (and inversely proportional to the total ilum- 
ber of sites in the system), whereas the interaction of spins 
with displacements corresponding to acoustic vibrations 
makes a contribution to B,, similar to the magnetic-dipole 
contribution.' All other interactions in Eq. (3)  are of the 
short-range nature with a characteristic scale of the interac- 
tion of the order of the interatomic distance. The presence of 
long-range contributions to Eq. (3Lhas the e,ffect that fluc- 
tuations of the order parameter ( (S,,,,, ) or (S,, ) ) are sup- 
pressed, which is manifested not by a power-law but by a 
weaker logarithmic divergence of thermodynamic functions 
near the critical  point^.^.^ Therefore, three-dimensional or- 

dering in this system can be described with high accuracy 
using the self-consistent field approximation. 

We shall now consider the specific case of ordering of 
the ferromagnetic type on the assumption that 
2I = X,I,,,, > 0 and 2B = 2, B,, > 0. We shall write down 
the functional of the free energy of the system aLa function of 
the average values of the spin at a site S, = (S, ) (angular 
brackets denote statistical and quantum-mechanical averag- 
ing). This functional is 

where 

Sm"Sm,"+Smz2, 
s 

and b ,  ,, (y ) is the reciprocal of the Brillouin function for the 
spin 1/2. Expansion of Eq. (4)  as a series in terms of the 
order parameter S, in the region, where S, < 1, gives 

(5 )  
It is clear from Eq. (5 )  that the two types of ordering- 
magnetic (s,, #O)  and structural (s, #O)-compete with 
one another since the energy of their interaction 
4/3TS i, Sky is positive. The competition, described by the 
free-energy functional of Eqs. (4)  or (5),  excludes the coex- 
istence of the two types of ordering in the bulk of a crystal, 
since the homogeneous solution with S,, $0 and Smy # 0 has 
a higher energy than the purely magnetic solution S,, #O, 
Smy = 0 or the solution with the structural ordering S,, = 0, 
Smy #O (the magnetic solution is preferable for energy rea- 
sons when I >  B and the structural solution when B > I ) .  As 
already pointed out, the coexistent solutions are possible in 
the case of a domain structure with the stronger type of or- 
dering predominating in the interior of a crystal. We shall 
assume that the structural transition is stronger. 

3. WEAKER ORDERING IN A DOMAIN WALL 

We shall describe the properties of an inhomogeneous 
ordered state inside a domain wall at temperatures close to 
T, by expanding the density of the free-energy functional as 
a series in powers of the order parameter and its gradients. 
This can be done by transforming Eq. (5)  from the site rep- 
resentation S, to a continuous representation s ( ~ ) .  We 
shall also replace S, ( r )  with m ( r ) ,  representing the average 
magnetic moment of an ion at a point r (in units of 2g1p, ), 
and express Sy ( r )  in terms of u(r) ,  which is the displace- 
ment of an ion at a point r [in units of 2u(T = 0),  where 
u ( T  = 0) is the displacement at T = 01. Then, the free-ener- 
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gy functional (per ion) becomes 

where 

and V is the volume of the system. The density of the free- 
energy functional Pwritten in this form is identical with that 
given in Ref. 6, where an analysis is made of the structure of a 
domain wall in a ferromagnet with the easy-axis anisotropy, 
and u and m are regarded as the components of the real spin; 
the quantity u then plays the role of the projection of the spin 
along the easy magnetization axis and m is the projection 
perpendicular to this axis. Then u(r)  is the displacement 
which appears at the temperature T, and m ( r )  is the magne- 
tization which would have appeared at the temperature 
Tm =I  = Tc - K in the absence of a structural transition 
(i.e., when B < I ) .  

Equation (6)  ignores the terms describing the long- 
range parts of the magnetic dipole interaction and of the 
interaction of pseudospins at different sites via acoustic vi- 
brations. In the case of inhomogeneous spatial structures the 
corresponding energies depend on the angles between the 
axis along which u and m vary and the direction of the mag- 
netization vector (z axis) or the vector representing the po- 
larization of the displacements.' The minimum energy cor- 
responds to transverse structures. We shall therefore 
consider only transverse inhomogenous structures on the as- 
sumption that u and m depend only onx, that the magnetiza- 
tion vector is directed along thez axis, and that the displace- 
ment polarization vector lies in the yz plane. For these 
transverse structures the free-energy functional including 
the dipole-dipole interaction has a minimum and assumes 
the form described by Eq. (6).  

Within the framework of the functional (6)  the homo- 
geneous solutions with u = + u,, where u, = ( A  / D )  "', ap- 
pear below the temperature Tc and in this case there is no 
magnetization (m = 0). Let us now consider the solution for 
u and m in the case when a domain wall separating regions 
with opposite directions of the displacements ( - u, and u,) 
is present in a crystal. The behavior of the order parameters 
u and m inside this wall is described by the system of equa- 
tions 

with the boundary conditions u = + u,, m = 0 in the limit 
x - f co ( u  = d 'u/dx2). The system of equations (7)  is ob- 
tained from the condition for the minimum of the functional 
of Eq. (6).  Like this functional, these conditions are valid if 

the range of variation of u and m is much greater than the 
interatomic distance. 

The system (7)  has two types of solution. Below Tc we 
have the solution 

It corresponds to the usual variation of the main (bulk) or- 
der parameter (deformation) in a wall and there is no addi- 
tional (magnetic) ordering. Below the temperature Tmw, 
which will be defined below, a solution with m $0 appears in 
the wall (at temperatures T <  Tmw this solution corresponds 
to a lower free energy). The temperature Tmw is defined at 
the point of appearance of a nonzero solution of the equation 

which is obtained in the second equation in the system (7)  by 
substituting in it the solution for u from Eq. (8)  and by 
neglecting terms of the order of m3. Equation (9)  has the 
form of the Schrodinger equation for motion in a potential of 
the cosh-'X type, and it can be rewritten in the form 

The eigenvalues En of Eq. (9a) are given by the formula (see 
Ref. 7)  

Equating the ground-state energy Eo to the right-hand side 
of Eq. (9a), we obtain 

It is clear from Eq. ( 11 ) that the magnetic moment appears 
in a structural wall only when the magnetic interactions are 
not too weak, because the value of T,, is positive only if 
Tm > ( 1 - a-') T,. In fact, the transition to the continuous 
representation is justified only for Tc - Tm, 4 Tc, i.e., when 
a ( Tc - Tm ) 4 T, . It is clear from Eq. ( 1 1 ) that the condi- 
tions for the appearance of the magnetization in a structural 
wall become easier on increase in the ratio xl/xZ, but in a 
typical situation the value of x1/x2 does not differ too much 
from Tc/Tm (we can expect x, a Tca2 and x, a T,,,aZ, where 
a is the interatomic distance). We then have a =: 1 and the 
temperature Tmw is close to Tm , but the results obtained are 
valid only if T, - Tm 4 T,. 

We can determine the form of m (x)  below Tmw by solv- 
ing the system (7)  and retaining terms of higher orders in m. 
It is shown in Ref. 6 that this system of equations admits an 
analytic solution if x ,  = x,, which is of the form 

It follows from this solution that if T <  Tmw then the magne- 
tization appears in a domain wall of a ferroelastic and its 
appearance alters considerably the temperature dependence 
of the wall thickness L. If T >  Tmw, it follows from Eq. (8)  
that the wall thickness is L =: (2x,/A) ' I2  cc ( T, - T) - 'I2 
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and that it decreases as a result of cooling. It follows from 
Eq. (12) that if T <  T,,, the wall thickness is L z ( 2 x , /  
A)112~c (Tc - T)-'I2 and that it decreases as a result of 
cooling, It follows from Eq. ( 12) that if T <  T,, , the wall 
thickness is L, =: [x,/(T, - T, ) ]  'I2 (if x ,  = x,, we find 
that Tmw = 2T, - Tc ). Therefore, below T,, the wall 
thickness ceases to depend on temperature. An analytic so- 
lution of Eq. ( 12) can be obtained only for x ,  = x,, but it 
should provide a qualitatively correct description of the be- 
havior of the system for all values of a of the order of unity. 

The results given above are valid only in the range of 
temperatures near T, . Further cooling to T = 0 makes the 
wall thickness at temperatures K( Tc equal approximately 
to L,, but the nature of the solution changes somewhat. It 
follows from the free-energy functional (4) that in the limit 
T-0 the quantity (S iy + S k, ) 'IZ = (uZ + m2) 'I2 tends to 
1/2. It follows that in a domain wall the average pseudospin 
can only rotate, but there should be no change in its absolute 
value. This corresponds to the usual Bloch solution in a do- 
main wall in weakly anisotropic ferromagnets at sufficiently 
low temperatures. 

At very low values of T, the wall thickness for rota- 
tional and purely structural types of solution is close to the 
interatomic distance. The question which of these solutions 
has the lower energy can be determined only for the specific 
behavior of the functions B,, and I,,,, as a dependence on 
the coordinates of the sites m and n. 

4. THERMODYNAMICS OF A MAGNETIC TRANSITION IN A 
DOMAIN WALL 

Using the solution ( 12), we can calculate the tempera- 
ture dependence of the magnetization M inside a wall in that 
area of a wall which is occupied by one ion. Integrating m (x) 
with respect to x, we obtain 

+- 

The moment lies in the plane of the wall and on the appropri- 
ate surface of a sample it creates a magnetic fringing field, 
which can be detected with a sensitive magnetometer. For 
example, if the wall length is 1 mm and we have a z lo-' cm, 
then for moments with the concentration n z lo2, ~ m - ~  the 
magnetic flux is @ z  0e.cm2, which can easily be de- 
tected with a SQUID device. 

We can calculate the specific heat discontinuity at the 
point T,, is we know the surface energy of a wall for the 
solutions represented by Eqs. ( 8 and ( 12). Simple steps 
yield the specific heat discontinuity: 

The ratio of this discontinuity at the point Tm, to the one at 
the structural transition point Tc is a/d, where d is the aver- 
age distance between domain walls. For a z  lo-' cm and 
d=: cm, the discontinuity at the point T,, is of the 
same order as the discontinuity of the specific heat at a su- 
perconducting transition and it can be estimated quite sim- 
ply by an experimental method. 

The expressions ( 13) and ( 14) are obtained in the self- 
consistent field approximation and their application to the 
magnetization localized within a wall requires separate justi- 
fication. We have mentioned above that the dipole-dipole 
interaction makes fluctuations of the three-dimensional or- 
dering effectively the same as in a four-dimensional space. 
This remains true in the case of the localized magnetization 
as long as the correlation radius (x2/Tm T) ' I2 does not ex- 
ceed the magnetic layer thickness L, . Therefore, the Ginz- 
burg-Levanyuk parameter governing the range of strong 
thermodynamic fluctuations T,, = ( 1 5 T, ) is in our case 

The parameter T, is small under conditions such that we can 
use a continuous representation of the magnetic ordering in 
a wall, which justifies the use of the mean-field theory in the 
description of the localized magnetic ordering in a wall. 

In the range of reduced temperatures T = ( T  - T,, I /  
T,, < rG the divergence of fluctuations is no longer loga- 
rithmic with respect to T, but as T - ~ / ~ ,  i.e., exactly as in a 
system without the dipole-dipole interaction but with the 
dimensionality of spaced = 5/2. We shall now prove this. In 
the k representation of a uniaxial magnet under considera- 
tion the free energy of the dipole-dipole interaction is 

whereg'p, is the nominal magnetic moment of an ion and n 
is the concentration of magnetic ions; it is assumed that O,, 
and T, are approximately of the same order of magnitude. 
In the range 7 < rG the important fluctuations are those with 
the projections of the moment k, and ky along the layer. 
Integrating Eq. ( 15) with respect to the distribution of k, , 
typical of a localized solution for a wall of thickness L, , we 
obtain (see Ref. 8 ) 

Using Eq. ( 16), we find that fluctuations of the specific heat 
above T,, are described by the expression 

c,, ( T )  =*,K J dk" dkr [z (k:+k,') 
T m  

Therefore, on transition through T via T,  the fluctuation 
dimensionality of space changes from d = 4 to d = 2.5. 

5. STRUCTURAL JAHN-TELLER WALLS IN A MAGNETIC 
FIELD 

We have shown earlier that cooling below T,, gives 
rise to a magnetic ordering in structural domain walls. How- 
ever, above the point T,, (as in the case when there is no 
point T,, ) the presence of structural JT walls in a system 
also has a significant influence on its magnetic properties. In 
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turn, an external magnetic field alters the wall structure. 
When the term ( - 2gfp, mH), describing the interac- 

tion with a magnetic field, is added to Eq. ( 16), we readily 
obtain an expression for the magnetic susceptibility (per one 
magnetic ion) 

In the homogeneous case (or inside a domain) we find that 
below Tc we have u2 = u: = A  /D  and it is then clear from 
Eq. ( 18 ) that xm is independent of temperature below T, , 
whereas above T, it obeys the Curie-Weiss law: 
xm a ( T  - Tm ) - I .  We can also easily show that below T, 
the magnetic moment is proportional to a magnetic field 
even when its intensity is high, right up to that correspond- 
ing to splitting of a non-Kramers doublet because of dis- 
placements u (it is proportional to u ) .  On the other hand, 
above Tc an increase in the field causes saturation of the 
moment. These conclusions are in agreement with the ex- 
perimental results and they have been known for a long 
time. ' 

When domain walls are present in a crystal, the suscep- 
tibility begins to depend on temperature below Tc and the 
magnetic moment increases nonlinearly on increase in the 
applied magnetic field (both these effects are naturally pro- 
portional to the number of domain walls). 

The contribution of a wall to the magnetic susceptibility 
of a sample can be found from the equation 

Near Tc at temperatures within the interval 
Tc - T(< Tc - Tm we find from Eq. ( 19) that the magnetic 
susceptibility of a wall (calculated per area occupied by one 
ion) is given by 

l ~ m t u = ~ o [ 2 ? ~ i  (2°C-T) I"/ (Tc-Tm) , 

The solution in a wider temperature range (but still subject 
to the condition that Tc - Tm g T, ) is possible if x ,  = 3x,. 
We then obtain 

which shows that the contribution of a wall increases as a 
result of cooling right down to Tmw , as demonstrated in Fig. 
1, case a [if x ,  = 3x2, we find that 
T, - Tmw = 3 ( Tc - Tm )' and Eq. (21 ) has its maximum 
at T = Tmw 1. At low values of Tm , when the point Tmw does 
not exist, the contribution of domain walls to the magnetic 
susceptibility reaches its maximum and then disappears in 
the limit T-. 0 (case b in Fig. 1 ) . This is due to the fact that at 
low temperatures the change in the absolute value of u is 
undesirable from the point of the free energy and a structural 
domain wall is converted in the limit T-0 into a discontin- 
uity of the direction of u between the neighboring lattice 
centers. Transformation of a 180" wall of the type described 
by Eq. (8) as a result of cooling was investigated in Ref. 9. It 
follows from Eqs. (20) and (21) that below Tc cooling has 
the effect that, in addition to the background with a constant 

FIG. 1 .  Bulk contribution to the susceptibility (continuous curve) and 
the contribution of domain walls (dashed curve). The contribution of 
domain walls depends on their concentration: a)  T,, > 0, when a sponta- 
neous moment appears in a wall below T,,; b) point T,, does not exist. 

value ofx, , there should be a rise of the susceptibility of the 
bulk of the crystal and this rise should be proportional to 
(Tc - T)'I2 because of the contribution of domain walls. 
Compared with the bulk contribution, that of the domain 
walls represents [2x, ( Tc - T) ] 'I2/d ( Tc - Tm ) and its is 
of the order of a [(T, - T)/Tc ] '12/d, 

We have considered above the influence of domain 
walls on the magnetic susceptibility. In strong magnetic 
fields the structure of a wall itself changes and the magnetic 
moment of the wall increases nonlinearly on increase in the 
field. We shall find the first nonlinear correction to the mo- 
ment of a wall near the temperature Tc, where 
Tc - T 4  Tc - T,. It then follows from Eq. (19) that 
m = m, = g'p, H / K  and the equation for u is 

which shows that the solution is of the type given by Eq. (81, 
but with A now dependent on H: 

A ( H ,  T )  =T, -T-DmoZ(H) ,  m o ( H )  = g l p B H / K .  (23) 

The amplitude u, falls on increase in H since the magnetic 
field reduces the structural transition temperature. The wall 
width then increases for the same reason. Consequently, the 
magnetic moment of a wall is given by 

The nonlinearity appears in fields g'p,H which are of the 
order of (Tc - Tm ) [Tc - T, )/T, ]'I2. 

6. CONCLUSIONS 

It is shown above that if the temperature of a latent 
magnetic transition Tm lies slightly above the temperature 
of a structural transition Tc , then a localized magnetism (of 
the ferromagnetic or antiferromagnetic type) may appear 
inside a structural domain wall. 

The point Tm is the point of a potential magnetic transi- 
tion, which in fact does not occur because a stronger struc- 
tural transition prevents it. However, the magnetic suscepti- 
bility xm obeys the Curie-Weiss law xm cc ( T  - Tm ) - ' 
above Tc and it demonstrates the existence of a temperature 
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of a latent magnetic transition Tm . This susceptibility result 
is very important, because it makes it possible to find com- 
pounds with similar parameters Tm and T,. Such crystals 
exhibit a localized magnetism within structural domain 
walls. When structural domain walls are set in motion (for 
example, by the application of a stress), we can record the 
motion of the ferromagnetic moment localized in a wall. 

Crystals with JT ions are most interesting for the obser- 
vation of the magnetism localized in structural walls, since 
the magnetoelastic coupling in such crystals is maximal. 

By way of example of compounds which are close in 
properties to the situation of interest to us, we shall consider 
thulium vanadate TmVO, (Ref. 10). The Tm ion contrib- 
utes a non-Kramers doublet and the JT cooperative transi- 
tion occurs at T, = 2.1 K. The thermodynamics of this com- 
pound is described well by the simplest molecular field 
model. Above T, this susceptibility obeys the Curie-Weiss 
law with the antiferromagnetic constant 8 = - 0.5 1 K; the 
g factor along the c axis isg, = 10.1, whereas for other direc- 
tions it isg, = g,. = 0. Therefore, in this compound a struc- 
tural transition suppresses an antiferromagnetic transition 
which would have occured at Tm = 0.51 K. The effects of 
interest to us will be manifested more clearly in compounds 
with somewhat closer values of Tm and T, , and preferably 
with the ferromagnetic Curie-Weiss constant 8. 

Our analysis applies to insulating crystals with the ex- 
change and dipole-dipole interactions of magnetic moments. 
In this case the coexistence of two types of ordering in the 
bulk is impossible. In metal systems the RKKY interaction 

of magnetic ions may facilitate the appearance of inhomo- 
geneous magnetic structures. Then, the coexistence of inho- 
mogeneous magnetic and structural ordering in the bulk is in 
principle possible. 

The authors are grateful to A. P. Levanyuk and D. I. 
Khomskii for valuable discussions and to V. L. Ginzburg 
and E. G. Maksimov for reviewing the paper in its manu- 
script form and critical comments. 
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