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Transport phenomena in a two-phase strongly inhomogeneous composite below the 
percolation threshold ( p <pc ) are considered. On the basis of a very simple model of 
percolation of current across intermediate layers connecting fragments of a metallic cluster, 
the influence of Joule heating on the effective electrical conductivity is found. It is shown that 
near the percolation threshold the dependence of the local conductivity on the temperature is 
appreciable, and allowance for this dependence can lead to a change in the critical index. 

The great interest currently being shown in the descrip- 
tion of transport phenomena in macroscopically inhomo- 
geneous media is connected both with the possible practical 
applications and with the recently developed new methods 
of calculating effective transport coefficients of strongly in- 
homogeneous media. On the one hand, in the two-dimen- 
sional case a class of media has been found for which it is 
possible to obtain exact expressions for the effective trans- 
port coefficients (connecting, by definition, volume-aver- 
aged thermodynamic fluxes and forces),'-3 and, on the other 
hand, the methods of percolation theory make it possible to 
find in the critical region (near the metal-insulator phase 
transition) the concentration dependence of the effective 
cond~ctivity~.~; in particular, 

wherep is the concentration of the metallic phase (the good 
conductor),p, is the critical concentration at which an infi- 
nite cluster appears in the medium, and q > 0 is the critical 
exponent; in the three-dimensional case, q ~ 0 . 9 8 .  

Investigations of the distributions of the local electric- 
field intensity, current density, and Joule heating in strongly 
inhomogeneous media near the percolation threshold6* 
point to their strong spatial nonuniformity. Explicit 
allowance for this fact can, in certain cases, change the be- 
havior of the effective conductivity near the percolation 
threshold from that described by ( 1  ), which is based on 
purely geometrical considerations. 

We consider here (qualitatively the influence of Joule 
heating on the effective conductivity below the percolation 
threshold ( p <pc ) and show that in certain cases this influ- 
ence can become appreciable. 

Atp >pc there exists in the medium an infinite metallic 
cluster, through which percolation of current occurs. At 
p <pc the infinite cluster breaks down into finite fragments 
with characteristic size L (L is the correlation 
The conduction in this case occurs through metallic-cluster 
fragments and thin intermediate layers of a poorly (in com- 
parison with the metal) conducting medium between neigh- 
boring clusters. Henceforth we assume that the ratio of the 
conductivity a,,, of the good-conductor phase to the conduc- 

tivity u of the poorly conducting phase is such that the vol- 
tage drop across finite metallic fragments can be neglected in 
comparison with that across an intermediate layer. 

In the first approximation we can assume that an inter- 
mediate layer has the shape of a cylinder with end faces of 
areas a distance I apart. As will be seen from the following, 
the characteristic size along the layer (sl") is much greater 
than the distance across the layer (I), i.e., the layer is thin; 
thus, in the same approximation, the layer can be nonplanar 
(crumpled), and this will not affect its resistance (see also 
Fig. 1 in Ref. 9). 

To calculate the effective conductivity it is sufficient to 
consider a volume L in which there is one layer between 
metallic clusters. It is assumed that the overwhelming ma- 
jority of the layers of which the main resistance of the medi- 
um is built up have equal resistances and are distributed ran- 
domly in the medium. We note that an analogous situation 
obtains in the percolation of current in a polycrystalline me- 
dium with crystallites having strongly anisotropic conduc- 
tivity," in which the main contribution to the resistance of 
the medium is built up at "traps" that are randomly distrib- 
uted in the medium. 

We consider now the characteristic volume L 3  for a 
strongly inhomogeneous medium. Its resistance (R IL / 
a's, S s L  is easily estimated by considering an elementary 
circuit in which the resistances of the intermediate layer 
(R, =l/us) and of the remaining part of the medium 
(R, EL /uL 2, are connected in parallel (the so-called two- 
zone model; see, e.g., Ref. 9): 

whence, if we take ( 1 ) into account, 

For p -pc we have I g L  and sgS and we can assume the 
following asymptotic behavior: 

with r > 0 and g > 0; since q > 0, we have r > g. Nothing is 
known about the numerical value of r, but, as will be seen 
below, these inequalities are sufficient. 
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We now show that the above geometrical structure ( 3 ) ,  
(4) makes it possible to obtain the concentration depen- 
dence of the thermopower a'. First we consider the case 
when there is a large difference in the thermal conductivities 
of the phases: x, $-x. Then the temperature difference AT, 
specified at the boundaries of the volume L (the average 
temperature gradient is - AT/L), is concentrated across the 
intermediate layer (here the temperature gradient is -AT/ 
I). Considering an elementary circuit with the emf s con- 
nected in parallel (&, =e2 = AaAT), we obtain 

8' el+etRl/R, 1 a*=-= - Aa, 
AT I+R;/R, 3- 

whence it follows that for p-p, the thermopower a' does 
not depend on the concentration. 

The second case is that of a small difference in the ther- 
mal conductivities ( x  x 1; here I AaATI /T, 
&,=AaAT, and 

whence, taking into account the concentration behavior (4) 
of I /L asp +p , ,  we obtain 

Thus, for x, ~ x ,  asp-p, the thermopower a' decreases in 
accordance with the law (7). 

The concentration dependence of the thermopower 
near the percolation threshold was considered earlier in 
Refs. 3 and 11. There it was assumed that the concentration 
dependences of the effective electrical conductivity and ther- 
mal conductivity were known (x2=xr" for x,,, )x, and xe 
does not depend on p for xm = x ) , and the behavior of a' 
followed from the relation 

which was obtained in Refs. 3 and 12 and relates a", a', and 
xe in two-phase media. In (8)  terms with (ae  )' have been 
discarded; in comparison with the other terms they are 
small-of order ZT (Z = ua2/x is the thermoelectric quali- 
ty factor). We note that the relation (8) is valid only in the 
approximation linear in the gradient, i.e., with neglect of the 
Joule heating and the temperature dependences of the local 
transport coefficients. 

The fact that the calculation of a' based on the use of 
the relation (8)  agrees with a calculation based only on geo- 
metrical considerations points, on the one hand, to the con- 
sistency of the proposed geometrical structure (3), (4),  and, 
on the other hand, to those approximations in which the 
concentration dependence of a' can be considered. 

Analogously, it can be shown that the proposed geo- 
metrical structure (3),  (4)  makes it possible to obtain the 
dependence of the Hall coefficient on concentration and 
field in the two-dimensional case (the three-dimensional sit- 
uation is more complicated and will not be considered here). 

We shall assume for simplicity that the metallic-cluster 
fragments are perfectly conducting; this makes it possible to 
confine ourselves to considering the fields and currents only 
in the poorly conducting phase, while specifying the condi- 

tion E, = 0 on the boundary with the metal ( E ,  is the tan- 
gential component of the electric-field intensity) . I 3  

In the two-dimensional case the intermediate layer is a 
thin strip of thickness I, separating metallic-cluster frag- 
ments of width b (b is the size of the cluster contacts with the 
intermediate layer). We choose the coordinate system in 
such a way that the X axis is in the direction of the average 
field ( E ) ,  and consider a characteristic "volume" L 2, in 
which a cluster is also oriented, on the average, along the X 
axis (precisely such volumes L ' contribute to the critical 
behavior of the effective transport coefficients). The aver- 
aged Ohm's law in this case has the form 

Local currents can be considered as a system of two 
mutually perpendicular currents flowing, on the average, 
along the X and Y axes. The former currents are connected 
with the diagonal component a, = a( 1 + P ) - ' of the con- 
ductivity tensor, and the latter currents (the Hall currents) 
are connected with the nondiagonal component 
ua = UP( 1 + fl 2, -' ( /3 is the dimensionless magnetic 
field). 

Along the X axis the current flows in a manner analo- 
gous to that in the case considered above with P =  0. Thus, 

and in the two-dimensional case, in place of (3),  we shall 
have b /I cc r - q .  Along the axis outside the layer the current 
density j,, = - ua ( E  ); in the layer, the local field 
E g  ( E  )L /I, and, correspondingly, j; = - ua (E  )L /1. We 
note that the entire Hall current approaching a metallic clus- 
ter passes through the intermediate layer (j,,L=j;l), as is 
entirely natural, since the metallic cluster is assumed to be 
ideal (E;, = 0).  Thus, the average Hall current is equal to 
(j, ) = - ua ( E  ), whence, according to (9),  

Knowing < and a', , one can easily find the field and concen- 
tration dependences of the componentsp: and& of the resis- 
tivity tensor (and hence the field and concentration depen- 
dences of the Hall coefficient Re = p;/H) : 

In the investigation of p: and p; we can distinguish three 
regions of fields: 

The concentration and field dependences ( 12) - ( 15 ) of the 
components of the resistivity tensor coincide fully with those 
from Ref. 13. It  is necessary to note that in the presently 
considered model of the intermediate layer the region ( 15) 
cannot be realized, for i fP> r - 4  the current flowing out of 
one end face of a metallic cluster is deflected so strongly by 
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the magnetic field that it does not arrive at the second face, 
and the picture considered up to now of the percolation cur- 
rent through the metallic clusters ceases to be valid." 

We now return to the question of the choice of the mod- 
el to be used. The shape of an intermediate layer between two 
metallic-cluster fragments is not obvious in advance. The 
simplest alternative (if we dismiss exotic shapes whose prob- 
ability, by definition, is negligible) is that the ends of the 
metallic cluster are not "blunt," but "sharp." In the two- 
dimensional case this situation was considered in Ref. 14, 
where it was shown that the effective conductivity in this 
case has a logarithmic dependence (a' = - alnr)  on the 
concentration, rather than a power dependence. In Ref. 14 
the metallic inclusions, in the shape of squares, do not 
change their shape as they come together ( p-p, ). It is 
clear, however, that by means of a special change of shape 
upon change of the concentration it is possible to specify any 
dependence a' = a' ( p 1, including a power dependence. 
Thus, if asp-p, the intermediate layer does not change its 
shape, the simplest layer shape giving a power-law behavior 
will evidently be a thin cylinder. These arguments, and also 
the regular concentration and field dependences of a', xe , 
p:, andp:, permit one to hope that the proposed layer shape 
correctly reflects the principal properties of the medium 
near the percolation threshold. 

Using the geometrical structure considered, we find the 
influence of the Joule heating on the effective electrical con- 
ductivity. Since almost the entire current passes through the 
intermediate layer, the heat liberated in it is 

Q, = pi' dV r. (no) 2asll. (16) 

where A p  is the potential difference applied to the boundar- 
ies (the average field (E ) = Ap /L ) . 

In the stationary regime all the heat should move away 
to the boundaries of the volume L (we assume that the aver- 
age temperature of the sample is T). It is possible to find the 
heat flux Q, moving out of the layer by making use of the 
geometry of the layer-from ( 3 )  and (4)  it follows that 

and also making use of an analogy with electrostatics (the 
capacitance of an ellipsoid with two equal axes that are much 
greater than the third15): 

where AT is the amount by which the temperature of the 
layer exceeds that of the medium; we have selected the case 
x, = x  and have omitted the unimportant factor 7 ~ " ~ .  

Equating Q, = Q,, we obtain 

where I is the current through the volume L and K = xL '/ 
L is the thermal conductance of this volume. Thus, the closer 
to the percolation threshold, the stronger the heating of the 
layer. It is clear that the actual existence of this heating is not 
connected with the specific shape of the layer. We shall con- 
sider the situation IAp = const, when the Joule heat liberat- 

ed in volume L in unit time does not depend on the concen- 
tration. It follows from ( 19) that for an arbitrarily small but 
finite value of IAp there is a concentration above which the 
heating in the intermediate layer can become large: AT/ 
T) 1. In this case allowance for the temperature dependence 
of the local transport coefficients will introduce an impor- 
tant correction into the values of the effective coefficients. 

In the study of the effective properties of macroscopi- 
cally inhomogeneous media the temperature dependence of 
the local transport coefficients is, as a rule, neglected. There 
are, apparently, two reasons for this. A weak dependence of 
the local transport coefficients has a weak influence on the 
effective properties; for a strong dependence the medium be- 
comes nonuniform on the average, and the effective trans- 
port coefficients cease to be self-averaging quantities-a cor- 
rect determination of them in the present case is 
problematic. 

Near the percolation threshold allowance for the local 
dependence of the coefficients is important even in the ab- 
sence of an average temperature gradient. Since the layers, 
and hence the places of local heating, are distributed 
throughout the medium in a random manner, the medium 
remains uniform on the average even when the temperature 
dependence is taken into account. Thus, in the situation un- 
der consideration, correct (qualitative) allowance for the 
temperature dependence of the local and effective conduc- 
tivity is possible. With a = a( T) , instead of ( 1 ) we obtain 

where AT is determined from ( 19). 
As a very simple illustration we can consider a linear 

dependence of the local conductivity on the temperature: 
o (T)  = a + bT. In this case, at a definite concentration p,  
( U K ~ $ ' ~ / ~ I A ~  1 ) , the critical exponent of a' ( p ) changes: 

In inhomogeneous media, transport processes leading 
to a nonlinear current-voltage characteristic have recently 
been under active study (see, e.g., Refs. 16-18). We note one 
further fact that follows from (20): Allowance for the tem- 
perature dependence leads to a nonlinear current-voltage 
characteristic of the medium as a whole. 

At a sufficiently large electric-field intensity A p  /I in the 
layer, the dependence of the local conductivity on the field 
can become appreciable. In this case we can no longer ne- 
glect the possible roughness of the faces of the layer-a pro- 
trusion on the base of the cylinder can lead to the appearance 
of a narrow channel19 in which the current density is higher 
than in the rest of the layer. The change to a new mode of 
current flow leads to nonlinearity of the current-voltage 
characteristic as a whole. Pinching (contraction) of the cur- 
rent can also be due to another cause-a sufficiently strong 
dependence of the local conductivity on the tempera- 
t ~ r e . " - ~ ~  The current flow in a medium consisting of nonlin- 
ear conductors was studied in Ref. 23. 

It is necessary to note that the model under considera- 
tion works below the percolation threshold ( p <p, ) but 
outside the region of smearing,5 in which, evidently, the me- 
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dium has a substantially more complicated fractal structure. 
The author expresses his deep gratitude to A. M. 

Dykhne for a discussion about the paper and for valuable 
comments. 
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