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The classical fluctuation dynamics of two-dimensional ferromagnets with easy-plane 
anisotropy is considered, and the form of the fluctuation corrections to the spin-wave spectrum 
is found. It is shown that allowance for fluctuation-dissipation corrections leads to a spectrum 
in the long-wavelength region that is substantially different from the result obtained using a 
phenomenological dissipative term of the Landau-Lifshitz form in the equation of motion for 
the magnetic-moment density. An effective equation of motion for vortex excitations is also 
presented. 

I. INTRODUCTION 

In this paper we study the kinetic properties of a two- 
dimensional Heisenberg ferromagnet with easy-plane an- 
isotropy. The ratio of the anisotropy constant A to the ex- 
change integral J is assumed small, in accordance with the 
usual experimental situation.' As was originally established 
by Kosterlitz and Thouless,' this system has a low-tempera- 
ture phase transition at Tc - T/ln(J/A ) at which the vortex 
pairs dissociate, with the result that free vortex excitations 
are present at T >  T, . 

In Refs. 3-5, the equations of motion of the vortices 
were obtained and the parametric resonance with the vortex 
excitations in an rf field was studied. The initial equation was 
the Landau-Lifshitz equation with the phenomenological 
dissipative term. 

[the square brackets denote the vector (cross) product], 
where the Hamiltonian H i s  of the form 

Here n is a unit vector corresponding to the normalized mag- 
netization, which is treated as a classical vector of constant 
length, and v is a unit vector in the direction of the anisotro- 
py axis. We use a system of units in which J = 1 andil = mZ. 

Linearizing Eq. ( 1 ), we get the following excitation 
spectrum: 

We see from ( 3  ) that for k)m the spin-wave spectrum is the 
same as in an isotropic magnet, w = f Ak ' - iBk 2, while in 
the intermediate region mB / A  4 k (m the spin-wave disper- 
sion relation is linear, w = f Amk - iBm2/2, and for 
k 4Bm/A the propagation of the spin mode becomes diffu- 
sive, w = - iA ' k  '/B. The spin diffusion at small k has not 
been observed experimentally. 

Let us consider the question of whether phenomenolo- 
gical equation ( 1 ) is confirmed by a microscopic treatment. 

As is shown below, the onset of spin diffusion can be due 
solely to "bare" dissipative terms in the macroscopic dy- 
namical equation. Since our goal in the following is to study 

the dissipative terms of fluctuational origin, we shall not 
consider the region of smallest k, where spin diffusion can 
occur and, hence, fluctuation corrections are unimportant. 

Another property of Eq. ( 1) is the logarithmic diver- 
gence of the integral of the dissipative term taken over the 
area occupied by the vortex excitations. For a system of vor- 
tices this gives rise to a coefficient In R in the equations of 
motion, where R is the average distance between vor t ice~ ,~  
and in particular this makes it impossible for an isolated 
vortex to move (at T >  Tc ). These properties of Eq. ( 1 ) fol- 
low from the fact that the phenomenological dissipative 
term becomes the leading term in the long-wavelength limit. 

Below we shall obtain the form of the dissipative term in 
the limit k(m, assuming that the dimensionless charge 
g = T / J  is small. The magnetic-moment density n will be 
treated as a classical vector, since the governing contribution 
is from large regions of linear dimension R - l/m. In addi- 
tion, we assume that the occupation numbers f, are large for 
k- m, as follows from the conditionil < T< J ,  which is possi- 
ble for weak anisotropy. In this case we are dealing with 
classical thermal fluctuations of a chiral field n, and the hy- 
drodynamic description applies over a wide range of wave 
vectors. We restrict discussion to excitations of the spin- 
wave type, assuming the contribution of vortex pairs to be 
small, and we consider damping that is due entirely to the 
exchange interaction. 

For a hydrodynamic description of the fluctuation dy- 
namics we use the formalism developed in Ref. 6. This meth- 
od has been applied previously7 to analysis of the properties 
of isotropic two-dimensional ferromagnets, and the renor- 
malization-group equations have been obtained for the 
chargesg, A, and B of a renormalizable dynamic Lagrangian 
with a phenomenological dissipative term corresponding to 
Eq. ( 1 ) . Here the bare value of the charge B was assumed to 
stem from the contribution of the nonhydrodynamic region 
and was determined outside the framework of the given 
method. 

At the same time, in the case of a small bare B the lead- 
ing contribution to the spin-wave damping arises in the hy- 
drodynamic region, and the dissipation is governed by the 
fluctuation terms rather than the kinetic terms in the equa- 
tion of motion. The corresponding value of the kinetic coeffi- 
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cient is determined solely by the parameters appearing in 
Hamiltonian (2) and does not depend on the bare dissipative 
terms, to the extent that they are small. Fluctuational spin- 
wave damping arises in second order in g ( 1 (Ref. 8 ). 

More precisely, we require that the expansion param- 
eter 

and not only g, be small compared to 1 (here A is the upper 
boundary of the hydrodynamic region). We shall not con- 
sider the neighborhood of the pole of the renormalized (in 
the one-loop approximation) charge g, . 

For the bare value of the coefficient B, which originates 
from the nonhydrodynamic region, we can take the follow- 
ing estimate. The introduction of anisotropy into the macro- 
scopic Hamiltonian (2)  is equivalent to allowing for the in- 
teraction of the spin system with degrees of freedom which 
are not considered in the purely exchange approximation. 
Even if we assume that the dissipative terms arising in the 
macroscopic equation of motion upon allowance for this in- 
teraction are of the same size at wave vectors k - A as the 
nondissipative anisotropic term, we obtain for the bare coef- 
ficient B, the maximum value B,-A (m/A)'. By virtue of 
the logarithmic character of the renormalization of the coef- 
ficient B in the presence a phenomenological dissipative 
term in an isotropic ferr~magnet ,~ the corrections to this 
coefficient will not substantially alter this estimate. We shall 
assume below that there is a rather wide region in which the 
fluctuation terms are the leading terms, as is possible for 
weak anisotropy. 

In the isotropic situation an analogous approach was 
taken in Ref. 9, but the numerical value of B obtained in that 
study is incorrect. In Sec. 4 we give the result of a calculation 
in the isotropic limit. 

II. DYNAMIC LAGRANGIAN AND THE FLUCTUATION- 
DISSIPATION THEOREM 

Following the method elaborated in Ref. 6, we write the 
boson part of the dynamic Lagrangian, using the field n and 
the auxiliary vector field p, which satisfies the condition 
pn = 0: 

z = P I + P d ,  (4) 

Here Y r  is the nondissipative part of the Lagrangian, and 
Y, is the contribution of the dissipative terms, whose form 
we must determine. We note that by virtue of the analytic 
properties of the fermion propagators,7 the fermion vertices 
do not contribute to the purely bosonic counterterms of Y .  

For the isotropic case Lebedev7 used for 2, the local 
operator 

and demonstrated the renormalizability of Lagrangian (4) 
with Y,  from (6) .  In the limit B -. 0 the local counterterms 
which renormalize 2, vanish. In this case the corrections 
to the Lagrangian are due to power-law diagrams and are not 

local. Of course, this statement also applies to the anisotrop- 
ic case at momenta k)m. Nevertheless, in the long-wave- 
length limit k(m the dissipative terms become local, so that 
the modified equation of motion for the field n assumes a 
local form, though different from ( 1 ) . 

The real part of the spectrum is renormalized in the 
limit B-0 independently of the imaginary part, and the 
equation obtained in Ref. 7 for the coefficient A in this case 
becomes 

dlnA -- g ' --- 
dlnA 4x2 '  

(7) 

Since the fields n and p are subject to constraints, it will 
be necessary to use a definite parametrization of these fields, 
introducing two independent components for each of them. 
We choose the coordinate system such that the spatially uni- 
form ground state no about which the small fluctuations are 
considered is directed along the x axis, while the vector v 
giving the direction of the anisotropy axis is alongz. As inde- 
pendent variables we take p and $ = cos 0, where 0 and p 
are the angles of the vector n in a spherical coordinate system 
with polar axis z, and 

p,= (1-$2)"'(p2 cos (p-pi sin (p), 

(8) 
p * = p d i - q 2 )  - i ,  

where p, are the component of the vector p in this same 
system. In the equilibrium state at T = 0 we have p = $ = 0. 
At small T the restrictions on the range of variation p and II, 
are unimportant, and these variables, likep, andp+, can be 
treated as unrestricted variables. 

In the chosen parametrization expression (2)  for H be- 
comes 

H = A / ~  1 d 2 r { ( V l p ) 2 / ( l - $ 2 ) +  (V(p)'(L-lp2) + m21p2). (9)  

The reactive part of the dynamic Lagrangian (5) is written 
in the form 

Let us expand this expression in a power series in the fields p 
and II, to fourth order: 

The dissipative terms are written to lowest order in the fields 
as 

9dce)dl+9d2, 
(14) 

where we have introduced the notation p, = p ,  p2 = $, 
p1 =pa , p2 = p+ . The additional vertices deriving from dis- 
sipative terms are unimportant for our purposes. 

The quadratic part of the Lagrangian 212'.+ 2, gov- 
erns pairings of the type (pa p, ) and (pap,  ). The averages 
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(pa  p b )  form a matrix of linear response functions Gab 
(Ref. 6), the poles of which determine the excitation spec- 
trum: 

Similarly, for the binary averages of the order parameter we 
obtain 

The corrections to the spectrum are determined by the sin- 
gle-particle irreducible self-energy part Xab according to 

det G-'=det(G,-l+iZ) =O. (17) 

The self-energy function Xab and the polarization oper- 
ator nab for configurations close to equilibrium are connect- 
ed by a relation that follows from the fluctuation-dissipation 
theorem. To formulate this condition we note that the vari- 
ables q, and $ are Hamiltonian conjugates of each other.4 In 
arbitrary coordinates @, parametrizing the space of order- 
parameter values (in this case it is the sphere S 2 )  and the 
function Fa in a nondissipative equation of the form 

is generally not a total derivative. In addition to the deriva- 
tive of the Hamiltonian with respect to the corresponding 
variable, Fa contains the metric of the space in which the 
order parameter varies in the given parametrization. Be- 
cause of this it is difficult to obtain a concrete form for the 
fluctuation-dissipation theorem. 

If, however, the parametrization is such that the non- 
dissipative equations of motion can be written in the form 

with a matrix Wab that does not depend on @ , ,  then the 
fluctuation-dissipation theorem assumes the form 

which is equivalent to a relation between Gab and Dab of the 
form 

These relations are valid for a system of type (17) with an 
arbitrary N-component order parameter @, under the con- 
dition that the matrix Wab is antisymmetric and specifies a 
"Hamiltonian structure" on the space of variables a,. 

For the case when equations ( 18) are Hamilton's equa- 
tions and describe a conservative system in a state of thermal 
equilibrium, the fluctuation-dissipation theorem in form 
( 19) has been proved in general.9 Here it is more convenient 
to use the time representation, in which the fluctuation-dis- 
sipation theorem ( 19) is written in the form 

a 
0 ( t )  dt L ( t )  = igZnc ( t )  Wd.  (21 

The series for Zab ( t )  and nab ( t ) ,  which are formed by skel- 
eton diagrams containing the complete G and D functions, 

represent an expansion in powers of the renormalized charge 
gR , which is also present in expressions ( 19)-(2 1 ) . The con- 
tributions which arise include the state renormalization of 
the parameters of the Hamiltonian in addition to the charge 
g. We will be convinced of this from the example of an easy- 
plane ferromagnet. 

To the given order in g R ,  the differentiation with re- 
spect to t of an arbitrary diagram contributing to nab ( t ) ,  
leads to a Xab ( t )  in accordance with (21). Conversely, every 
contribution to Xab ( t )  in the given order can be obtained in 
this way. Without giving the whole proof here, let us demon- 
strate, for example, how Eq. (21) is satisfied for the lowest 
contributions to Zab ( t )  and nab ( t ) .  Suppose the Hamilto- 
nian H can be expanded in a series in even powers of @,  (in 
equilibrium @, = 0). Then, keeping the fourth-order terms 
in the dynamic Lagrangian for Eq. ( 17), we obtain 

Here IT, are auxiliary boson fields, Fa,, = H,, W,  , Fa,,, 
= H,,,, W,, , and the vertex matrix is symmetrized with 

respect to the last three indices. 
In the time representation, Eq. (20) becomes 

1 a 
G*(t)= --- on, ( t )  Wd-'0 ( t )  . 

g at 
The first fluctuation corrections to 3 comes from the dia- 
grams of Fig. l for the contributions to Xab and nab, respec- 
tively. Here the solid line corresponds to the field pa and the 
dashed line to the field pa.  The arrangement of the momenta 
q,, qz, and q, = q, + q, - k is indicated in Fig. 1. 

The corresponding analytical expressions are of the 
form 

(25) 
Using (23) and symmetrizing by relabelling the momenta, 
we transform (24) into 

a 
X -Dm (-3) Whm-'O ( t )  at 

42 

FIG. 1. 

822 Sov. Phys. JETP 64 (4), October 1986 D. V. Khveshchenko 822 



Comparison of this expression with ( 2 5 )  with allowance for 
the relation between F,,,, and H,,,, demonstrates that 
Eq. (21 ) holds for the corrections in question. 

We have said that if the charge g is among the charges 
which are renormalizable in statics, expression ( 2 1 )  con- 
tains its renormalized value g, due to higher corrections. 
Inasmuch as the nature of the static renormalizations de- 
pends on the specific system, in verifying this fact below we 
shall consider only problems of ferromagnetics. 

Ill. DIAGRAM TECHNIQUE 

In our case Wab is simply the two-component antisym- 
metric tensor E , ~ .  The matrix of G functions is written 

where E = A k ( k  + m 2 )  ' I 2  is the unperturbed spectrum, 
P2  = k + m2, and 2  + is the imaginary part ofthe spectrum, 
which we assume tobe  negligible. The functions Dab are 
constructed from Gab according to (19). Neglecting the 
bare 2 ,  , we obtain 

ow=- (nglk? [ti (o-e) +6 (o+e) I ,  

Naturally, we can neglect 2 ,  only if the functions 8 ,  ( k )  
fall off at small k  no slower than the real part of the spectrum 
~ ( k )  . As we shall see, the fluctuation contributions 8  , re- 
tain a k  * dependence even in the long-wavelength limit and 
can therefore be neglected. 

The integral ofDab over frequency reproduces the static 
correlators: 

The nonzero components of the vertex function are 

The choice of variables q, and IC, to parametrize n permits 
exact allowance of the anisotropy. 

Calculation of the logarithmic corrections to 2' leads 
to a renormalization of the coefficients of the various opera- 
tor structures contained in 2. To obtain a relation between 
these coefficients that is analogous to the bare relation under 
the condition that the factor multiplying the combination 
p, dq, /d t  + p,d$/dt, is normalized to 1 ,  we must assign 
multiplicative Z factors to the fields pa and pa and to the 
parameters m  and g. For example, in the one-loop approxi- 
mation we have 

All the Z factors in ( 3  1 ) are defined as ratios of the renor- 
malized quantities to the bare quantities. We show below 
that in this case formulas ( 2 4 )  and (25 ) give expressions for 
Im Zab and nab that do not contain In ( A/m ) . However, the 
fluctuation-dissipation theorem should apply to the opera- 
tors 2  and Il with allowance for the Z factors of the "brack- 
ets" in which they are taken. Therefore, in the presence of Z 
factors multiplying the fields q~, and pa ,  relation (19) ap- 
plied to the lowest order contributions ( 2 4 )  and ( 2 5 )  be- 
comes 

In our case, the explicit expression ( 3  1 ) imply the possibility 
of collecting the Z factors of the fields into the renormaliza- 
tion of g. This action is equivalent to allowing for the loga- 
rithmic corrections to expressions ( 2 4 )  and ( 2 5 ) ;  these cor- 
rections are of the next higher order in g and come from 
more-complicated diagrams. The appearance of a renormal- 
ized value g, on account of the presence of nontrivial Z 
factors is not accidental but is due to the geometric nature of 
the model. 

According to ( 2 5 ) ,  the contribution to nab of second 
order in g is, after integration over frequencies, 

where { = E~ - E' - E ~ ,  E~ = &(qi ), and the functions Ma, 
are of the form 
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Heres = q,q2 - q,q, - q2q, - k2 andpf = qf + m2. We see 
from ( 3  1 ) - (34)  that the differential cross sections for mag- 
non scattering processes fall off rapidly with increasing mo- 
menta for q, > m.  It is for this reason that the classical treat- 
ment is self-consistent. 

We note that Eqs. (34) - (36)  can also be obtained by 
the procedure of Halperin andHohenberg1° in analogy with 
the calculation done in Ref. 8 or by direct analytical continu- 
ation for the temperature technique in a theory with a La- 
grangian 

Here we shall use the dynamic Lagrangian method to estab- 
lish unambiguously the relation between the G and D func- 
tions-a nontrivial problem for an arbitrary parametriza- 
tion of n. 

In expressions ( 3 4 ) - ( 3 6 )  we have kept only the terms 
corresponding to the scattering of a magnon of momentum k 
by a thermal magnon and have neglected the contribution of 
the decay of one magnon into three magnons in view of the 
small statistical weight of such processes. The reason for this 
is that the governing contribution in integrals ( 3 3 )  is from 
the region with momenta ofintegrationq, - m .  In decay pro- 
cesses the energies of the outgoing magnons do not exceed 
the energy ~ ( k )  of the decaying magnon, so that these con- 
tributions are smaller by - ( k  /m)' than the scattering con- 
tribution. For this reason we can neglect w in the arguments 
of the S functions for k ( m  (from now on we are assuming 
that w and k are not too far from the unperturbed mass shell, 
so that [w  - E (  k) ] / ~ ( k )  - 1 ). Therefore, we shall not take 
into account the contribution II , ,  = - II*, which con- 
tains an extra small factor -w/Am2- k / m  as compared 
with I-I, and I-I,, . One can see that allowance for n,, will 
lead to corrections of the form k to the imaginary part of the 
spectrum for k 4 m.  In addition, the bare spectrum is suffi- 
ciently nonlinear that we can neglect k together with w in the 
resonance condition w + 6 = 0 .  This is most easily seen by 
establishing the finiteness of the contribution of small mo- 
menta to the expression 

in which one can pass to the limit w,k+O without having an 
IR divergence (this expression is understood to be cut off at 
the upper limit, e.g., at qi - m).  For q, > m integral ( 3  1 ) 
falls off as the denominator l/pT comes into play. The inte- 
gral for I-I ,, has an ultraviolet divergence of degree zero. We 
shall show below that this integral is finite. 

The reader is reminded once again that all these re- 
marks refer to the limit in which the bare B goes to zero. For 
finite B ( A  the analogous integrals, as was shown in Ref. 7, 
give a logarithmic contribution 

which comes from the region qi ) m. 
In addition to the simplifications mentioned, in our case 

we can directly average the integrand in II,,, over the direc- 
tions of q, and q,, and to leading order we can neglect the k 
dependence in I-I,, . As a result we obtain 

where the coefficients B, and B,, are given by the integrals 

gZ '4 B dq, dq2 e ,  M a ( O i z O )  
a -  2 (22-t)' (4E;+m4)' I sin 8,: 1 ( 3 8 )  

in which the value of the angle 6 y,, determined from the 
resonance condition { = 0, is 

The expression for M,, is given by ( 3 4 ) ,  while M,, is ob- 
tained by averaging (35) over the angle between k and 
41 + 4 2 :  

An approximate evaluation of integrals ( 3 8 )  gives 

According to what was said above, the leading contributions 
arising in higher orders can be taken into account by replac- 
ingg in ( 3 7 )  and ( 4 1 )  by gR and m by mR and using the 
solution of Eq. ( 7 )  for A. This remark also pertains to the 
damping in the isotropic limit, as presented in Sec. 4 [see Eq. 
( 5 6 )  1 .  In the formulas which follow below, the parameters 
g, m, and A are understood to mean the renormalized values. 

Using relation ( 19) between 2,, and Hob,  we obtain 
the contributions to the components Z,, that give rise to the 
imaginary part of the spectrum (these are Re 2,, , Re Z,, , 
and also Im 2,, = Im Z,,,, which contain an extra small 
factor - k / m  ) . To leading order we have 

The contribution to the imaginary part of the spectrum from 
Re 2,, and Re Z,, are of the same order. To see this, let us 
solve equation ( 1 7 ) ,  neglecting the terms quadratic in 
Xob -g2: 

Recall that spectrum ( 4 3 )  obtains under the condition 
k ( m .  The dissipative term ( 14) with 2,, from ( 4 2 )  can 
also be represented in a different form obtained from the 
equation of motion with dissipative corrections after it is 

d solved for - @, . For the general system ( 17) the quadratic 
at 

form in the dynamic Lagrangian with allowance for (21 ) 
becomes 
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In the case of a local (in the time arguments) operator nab 
transformation of the variables T,,, according to 

will reduce quadratic form (44) to 

Let us assume that the product (II W - ') is a multiple of the 
unit matrix. Then Eq. (46) can be written 

(47) 
where Cis the coefficient in the relation 

Matrix equation (48) is satisfied, for example, for an arbi- 
trary Hamiltonian system in the case when the operator nab 
is isotropic (nab  = Haab ). Quadratic form (47) corre- 
sponds to the dissipative corrections arising in a system de- 
scribed by the equation6 

in which 

Fa=-CW.bH.b, S.,=-CH,oIg, 

and the random forces fa are correlated as (fa fb ) = 2ya,. 
For system (49) a fluctuation-dissipation theorem of 

the f ~ r m ~ . ~ . '  ' 

is satisfied for the dissipative terms in (47) with allowance 
for (50). Conservative system ( 18) with the first fluctuation 
corrections in the case in which (48) holds is thus renormal- 
ized subsequently like a system with random forces that is 
described by Eq. (49) in which the form of the dissipative 
terms is "induced" by the fluctuation contribution. 

It has been shown for system ( 18), as was done in Ref. 6 
for Eq. (49) and fluctuation-dissipation theorem (51 ), that 
the fluctuation-dissipation theorem in form ( 19) leads to the 
correct static limit for the distribution function, 
P,, -exp( - H/g).  

In the case when sufficient condition (48) holds, this 
essentially follows from the aforementioned equivalence to 
system (49). A more detailed comparison of the various 
forms of the fluctuation-dissipation theorem is planned for a 
separate paper. 

In the present case condition (48) holds, and for the 
operator Eab we have 

and the local operators II,, and II,, in the region of interest 
k g m  are given in (37). Transformation (45 ) leads to 

This expression holds to the same accuracy as in (42). 

IV. ISOTROPIC LIMIT 

For k)  m all the channels in (33), including the decay 
channel, and all the components nab are of the same order of 
magnitude. The reason is that in this case the governing re- 
gion is for values g, - k. In this limit nab is expressed as 

(52) 
where 

In calculating the corrections to the spectrum in orderg2, the 
function Xab (w,k) should be taken on the corresponding 
part w = f Ak of the unpertubed mass shell. We note that 
this statement remains valid when the three-loop contribu- 
tions to Xab , which are of order g3, are taken into account. 

Neglecting the terms quadratic in Zab, we obtain the 
contribution to the imaginary part of the spectrum: 

60 (k) =-(ikZ/4g) (nw+I1,,-2iII,+ sign o ) .  (54) 

On the mass shell Eq. (54) gives a correction 
So(k)  = - iBk to the spectrum, with 

It should be noted that the contribution of the decay chan- 
nels vanishes on the mass shell. This is a consequence of 
conservation of the total spin in an isotropic magnet. 

The integral in (55) can be calculated explicitly; it gives 

Let us make an additional remark here concerning the use of 
other pararnetrizations. The invariant result, independent of 
the choice of coordinates on S 2, is the excitation spectrum; 
this means that, to leading order ing is agreement among the 
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values of the functions 2, (mk)  calculated using different 
parametrizations on the unperturbed mass shell w = f Ak 2, 
while the functions 2, (w,k) themselves can be different in 
different representations. Let us consider, for example, the 
parametrization in terms of the transverse components n2 
and n, of the vector n and the components p, and p, of the 
auxiliary vector field p. In the linear approximation the 
fields q, and $ coincide with n, and n,, andp, andp, withp, 
and p,. In an isotropic model there is explicit symmetry 
between n2 and n,, so that we have exactly 

At the same time, however, Eqs. (52) and (53) imply that 
Z, is not the same as - Z*, on account of the contribu- 
tion of the next higher terms of the expansion of n, and n, in 
powers of q, and $. In terms of the elementary fields q, and $, 
the fields n, and n, are compound operators, so that in calcu- 
lating (napb ) to order g2 one must take into account the 
contributions illustrated in Fig. 2b in addition to those in 
Fig. 2a. 

Despite the lack of symmetry between the variables q, 
and $, our choice is the most convenient in the anisotropic 
case, since diagram technique (27)-(30) does not involve 
vertices associated with the anisotropy or formal diver- 
gences of the individual diagrams at small momenta. On the 
other hand, when using complex coordinates; which are 
more convenient in the isotropic situation, one must keep 
careful track of the cancellations of the factors of the type 
m2/q: which arise in the integrands, being mindful of all the 
anisotropic vertices and anomalous pairings. 

V. EQUATION OF MOTION OF VORTEX EXCITATIONS 

Let us now consider an effective equation of motion 
with allowance for dissipative term (13) with Zab from 
(42): 

To terms linear in the deviation of n from equilibrium, this 
expression can be rewritten in a vector representation as 

where Pa, = aab - va vb is the operator for projection onto 
an orthogonal plane. The equation of motion for n at large 
scales R ) l/m becomes 

dnlat=A [n, V2n] -Am2[n, v] (nv) -B&P[n, dnldt] 
+BQm-'v(v[n, v2an/at]). (59) 

In solving this equation for B, and B, by pertubation the- 
ory, one should take into account in the dissipative terms 

FIG. 2. 

only the part that is linear in the deviations of n from equilib- 
rium. 

In accordance with the discussion of Sec. 3, Eq. (59) 
can be written in the equivalent form 

dnlat=A[n, V2n] -Am2[n, v] (nv)+BflVZn+B,v(vV2n). 

(60) 

We stress that we are considering scales R ) l/m. At scales 
R 4 l/m, as follows from the results of Sec. 4, the dissipative 
term is the same as the phenomenological Landau-Lifshitz 
term, the coefficient of which is given by (56). 

Vector-multiplying Eq. ( 59) by n and then scalar-mul- 
tiplying by V, n and afterward integrating over the area oc- 
cupied by vortex excitations, we obtain equations in the col- 
lective degrees of freedom, which are the coordinates Ri of 
the vortices (the subscript i numbers individual vortices) : 

where the coefficients I ,,, are given by the integrals 

I. =(1/4n) 5 d2r{(Vn)'- (v[n, Vnl)'), (62) 

Here q and a are the topological charges of the vortices, 
which can be classified relative to 7r2 (S 2,S l )  (Ref. 4). The 
second term in (61) is the force acting on the ith vortex on 
the part of all the others. In contrast to the phenomenologi- 
cal dissipative term in form ( 1 ), which can also be written 
AB[n,dn/dt]/(A + B '), the dissipative terms in (59) do 
not lead to logarithmic divergences of the integrals I ,,, . Let 
us consider, for example, the potential of a single vortex, 
which can be written4 

cp=!lx- 
C. (mr) -'he-m' , mrW1, 

1={ I--~~(mr)~'q', mr << I, (64) 

where the coefficients c,,, are of the order of 1. Here r is the 
radius in the two-dimensional plane, andx is the aximuthal 
angle. The long-range Coulomb force due to the field q, can- 
cels out in the integral I, and is absent from I, by virtue of the 
equation V2q, = 0 in a vortex-free space. Since expressions 
(62) and (63) incorporate the contribution to the dissipa- 
tive terms only from scales large compared to l/m, they 
cannot be used for exact determination of the dissipative 
coefficients in (61 ). By virtue of the cancellations men- 
tioned above, the contributions of scales R < l/m and R > 1/ 
m are quantities of the same order. For an estimate of the last 
term in (61) we use the approximate one-vortex solution 
(64) for R < l/m and the value of B from (56), assuming 
roughly that the dynamics at distances smaller than the size 
of the vortex is isotropic. As a result we find that the coeffi- 
cient of c3 R, /at in the third term in (6 1 ) is of the order of 
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If follows from (41 ) that the use of an isotropic dissipa- 
tive coefficient Bz0.06g2A can only give an overestimate. 
The coefficient c2 in asymptotic expression (64) is also close 
to unity, so that even near the transition temperature kT, 
where g- l/ln(A/m) -4 (Ref. 2),  the above quantity is of 
order lop3 for Iqi I - 1 (the formation of vortices having a 
large circulation is suppressed by the Boltzmann factor). 

In conclusion we note that the result n,, -k 2/m2 and 
the consequent absence of a diffusion pole in the spectrum 
and the cancellation of the divergence In R in the equation of 
motion of the vortices agree with the usual view" that the 
kinetic coefficient for a conserved quantity vanishes for spa- 
tially uniform distributions. In an anisotropic magnet the 
component of the moment along the anisotropy axis $ is a 
conserved quantity, and the corresponding kinetic coeffi- 
cient is n++ . 

For Hamiltonian (2) we can see this directly, since the 
field q, appears in H only through gradients, giving rise to an 
external momentum k at each vertex having an external line 
p+ . An important element here is the lack of IR divergence 
in the present diagram technique. 

The conclusions reached could be affected by the pres- 
ence of various neglected factors, such as in-the-plane an- 
isotropy leading to corrections to H of the form cos (Iq,) , the 
presence of a dipole interaction, and scattering of magnons 

by vortices. In this case our treatment is valid only fork, (k, 
where k, specifies the momentum boundary beyond which 
the neglected terms in H become the leading terms. 

I am grateful to V. L. PokrovskiK for suggesting the top- 
ic and for abiding interest in this study. 
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