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The evolution of a perturbation that constitutes at the initial instant of time a sum of a pulsed 
regular signal and stationary noise is investigated on the basis of the Burgers nonlinear 
equation. Notice is taken of the effect of slowing down of the leading front of the pulse, of its 
spreading by turbulent viscosity, of the abrupt increase of the noise dispersion in the 
discontinuity region, and the decrease of the noise on the trailing edge of the pulse. Results of a 
numerical simulation are presented. 

1. INTRODUCTION 

The interaction between regular and noise signals in 
nonlinear nondispersive media is of great theoretical and ap- 
plied interest. In acoustics, for example, many sources of 
intense noise, such as explosions, cavitation, or electric dis- 
charges, have both a regular and a noise component.' The 
ensuing phenomena are quite varied and depend strongly on 
the spatial scales and on the amplitudes of the interacting 
fields. 

Propagation of finite-amplitude waves in nondispersive 
media is described by the known Burgers equation2 

In terms of the reduced variables in Eq. ( 1 ), u (x,t) is the 
vibrational velocity, (x,t) are the coordinate and the time, 
and p is the coefficient of high-frequency viscosity. The 
Burgers equation is used as the model equation for hydrody- 
namic turbulence, and also describes the propagation of 
electromagnetic-wave in ferrites and in distributed rf lines, 
of magnetosonic waves in a plasma, and of intense acoustic 
waves in liquids and in gases.14 

The problem of nonlinear interaction of noise with reg- 
ular signals reduces to finding the statistical characteristics 
of the solution of Eq. ( 1 ) with the initial condition 

u (5, t=O) =uo ( x )  =E ( x )  +uc ( I ) ,  (2) 

which constitutes a superposition of the noise field g(x)  and 
the regular field u, (x). In contrast to the linear problem of 
wave scattering by specified inhomogeneities, an important 
role is played here by the self-action of the components and 
by the inverse influence on the inhomogeneities. The nonlin- 
earity of the medium leads to intense self action of the com- 
ponents of the initial perturbation and to their nonlinear dis- 
tortion, up to formation of discontinuities. As a result, the 
properties of the waves change in the course of propagation, 
and this leads to different interaction mechanisms during the 
different stages. 

The interaction of periodic perturbations with station- 
ary noise in a linear nondispersive medium were heretofore 
investigated in the initial propagation stage, while there were 
still no discontinuities and the field could be adequately de- 

scribed within the framework of the Riemann e q u a t i ~ n , ~ , ~  
during the intermediate stage when discontinuities were al- 
ready present but did not yet coalesce,' during the stage of 
advanced discontinuities,' and finally in the concluding 
stage, when the wave propagation became linear as a result 
of energy ab~orption.~ 

We consider in the present paper the evolution of a 
mixed perturbation comprising a sum of a regular pulsed 
signal and stationary acoustic noise. It is known that the 
evolution of a pulsed signal differs fundamentally in many 
respects from that of a periodic one,'.2 and therefore the in- 
teraction between a pulsed signal and noise also proceeds 
qualitatively differently from that between periodic and 
noise fields. This problem is timely also in view of the exten- 
sive use of high-power pulsed acoustic waves generated by 
detonation of underwater  explosive^.'^ Besides the analytic 
treatment, we present here the results of numerical simula- 
tion of the propagation of a mixed perturbation in a nonlin- 
ear medium during the stage of intense coalescence of shock 
fronts. Comparison of the data of a numerical experiment 
with the results of the theory has shown that the asymptotic 
theory developed in the present paper describes quite satis- 
factorily the nonlinear interaction between noise and regular 
signals in nonlinear nondispersive media. 

2. INITIAL EQUATIONS AND QUALITATIVE PICTURE OF 
THE INTERACTION BETWEEN A PULSED REGULAR 
SIGNAL AND NOISE 

Equation ( 1) can be reduced to a nonlinear Hopf-Cole 
tran~formation".'~ to a linear diffusion equation, so that a 
solution of the initial equation can be obtained in quadra- 
tures: 

It follows from ( 1 ) that the relative influence of the nonlin- 
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ear and dissipative effects in wave propagation is character- 
ized by the acoustic Reynolds number Re = ul /p, where u 
and I are respectively the characteristic amplitude of the 
characteristic spatial scale of the initial perturbation. We 
consider the case of infinite Reynolds numbers, when the 
initial field is subject to strong nonlinear distortions. As 
p -0 a contribution to the integrals in (3)  is made only by a 
small vicinity of the pointy, in which the function G(y;x,t) 
has an absolute maximum. This enables us to write the solu- 
tion of the Burgers equation in the form".'3 

where y(x,t) is the coordinate of the absolute maximum of 
G(y:x,t). 

If a pure noise perturbation f (x)  is specified at the ini- 
tial instant, with a characteristic amplitude a(& = (f ')O 
and with a spatial scale 1, the function y(x,t) in (5) is at 
t > tin = I /a a discontinuous piecewise-constant function of 
x with jumps at the discontinuity points x = x,, and the 
continuous field u(x,t) is transformed into a sequence of 
sawtooth pulses with equal slopes u: = l/t and with discon- 
tinuities at x = x,. The coordinates of the discontinuities in 
a separate realization of the noise field are obtained from the 
condition G(y,;x,,t) = G(y, + , ;x,,t) (Ref. 13): 

where 7, is the distance between the zeros of the field and V, 
is the velocity of the k th discontinuity. 

Owing to the random character of the initial field, the 
discontinuities move randomly and coalesce, thereby in- 
creasing the field's external scale l ( t ) ,  equal to the character- 
istic distance between the zeros. Note that it is convenient to 
describe the coalescence of the discontinuities by using the 
analogy with a gas of noninteracting randomly moving ine- 
lastically colliding particles,13 with the particle velocity v, 
and its mass m, expressed in terms of the discontinuity ve- 
locity V, and amplitude AV, in the form 

The coalescence of the discontinuities turns out to be equiva- 
lent to absolutely inelastic particle collisions in which the 
mass and momentum conservation laws are satisfied. The 
particle velocity, and hence also the rate of their coalescence, 
is determined by the behavior of the structure function 
Go(y) (Ref. 4).  We consider the case when the fluctuations 
of Go(y ) are bounded: 

The characteristic distance I(t) between the particles, and 
hence also the particle mass m, z I ( t ) ,  the characteristic ve- 
locity v, z V,,  and the momentump = mkvk vary with time 
as 

We consider now the evolution of a regular pulsed per- 
turbation in a nonlinear medium, assuming that u, (x) 
differs from zero over a finite interval XE [OJ, 1, and 

If A, is the characteristic amplitude of the pulse, then any 
finite perturbation acquires at t > t, = X, /A, the universal 
triangular form2 

X, = X, (t) =(2Pt)'", V, = d~,/dt=(P/2t) '",  ( 10) 

i.e., the information on the fine structure of the initial pertur- 
bation is completely forgotten in the medium. The motion of 
the discontinuity can then be interpreted as the motion of a 
regular discrete heavy particle in an immobile substance 
having a continuous density p = 1 (Ref. 4).  As it moves, the 
heavy particle gathers matter from the interval XE[O,X,], its 
mass M, = X, increases, and the law ( 19) of its motion is a 
consequence of the momentum conservation law X, V, = P. 

We discuss now qualitatively the interaction of the reg- 
ular and noise perturbations over times t > t,,, t,, when 
these fields have already acquired the universal sawtooth 
form. It follows from the foregoing analysis that the laws 
governing the growth of the scale X, of the regular perturba- 
tion ( 10) and of the characteristic scale of the noise field (8) 
have the same time dependence, so that the character of the 
evolution of the mixed perturbation is determined by the 
relation between the total pulse P of the regular perturbation 
and the characteristic noise-field p z u .  At p% P, when 
I ( t )  )X, ( t ) ,  the characteristic noise amplitude AUn -I(t)t 
is much larger than the regular-perturbation amplitude A U, 
= X,t, so that the regular perturbation is practically sup- 

pressed by the noise perturbation in this case. 
If the inverse relation P%p(P)u. ) holds, the problem 

of the interaction of the signal with the noise is equivalent to 
the problem of motion of a heavy particle with initial mo- 
mentum P in a gas of randomly moving light particles whose 
average velocity is zero, while the characteristic mass m, the 
velocity v, and the momentum p vary with time in accor- 
dance with (8). In each inelastic collision event, the momen- 
tum of the heavy particle, its velocity, and its mass vary in- 
significantly, in virtue of the condition p(P. Indeed, the 
mass M, of the heavy particle is approximately equal to X, 
and it increases in small discrete steps AM, z m ( t )  
z l ( t )  (X,  = M,. It follows from the momentum conserva- 
tion law that as a result of one collision the particle velocity 
also changes by a small amount A V,mu, /M, 4 v, -4 V,. The 
coordinate of the heavy particle is therefore described ap- 
proximately, as before, by expression ( lo) ,  but owing to the 
collisions with randomly moving light particles the coordi- 
nate will fluctuate about its mean value. 

Thus, if the condition P ) u  is met, the regular pulsed 
perturbation will retain on the average its coherent structure 
(9 ) ,  and the main effect of the noise will be manifested by a 
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"turbulent" broadening of the shock front. We obtain below 
asymptotic expressions for the probabilistic distribution of 
the field of the mixed perturbation u (x,t) and for its mean 
value (u (x,t) ) and variance (x,t), and discuss a number 
of more subtle effects that arise when a regular pulsed per- 
turbation interacts with stationary noise in a nondispersive 
nonlinear medium. 

3. ONE-POINT PROBABILITY DENSITY AND MOMENTS OF 
THE VELOCITY FIELD 

We proceed to an asymptotic analysis of the evolution 
of the statistical characteristics of the mixed perturbation 
u(x,t) during the stage of interactions of fully developed 
discontinuities. It is shown in Refs. 8, 13, and 14 that the 
approximate behavior of the nonlinear wave during this 
stage is determined by the form of the energy spectrumS(k) 
of the initial field at low wave numbers. In our formulation 
of the problem, g(x)  is a Gaussian stationary noise signal 
whose spectrum at zero isS(0) = 0, so that the action Go(y) 

u 

is a statistically homogeneous Gaussian process with vari- 
ance 

+m 

<co2)=o..=0212 = J d k S ( k ) / k 2 .  (11) 
- m 

At t)t, = l/a the parabola contained in the functional 
G(y;x,t) (4) is a smooth function of y compared with the 
initial action Go(y). The absolute maximum of G(y;x,t) is 
then chosen from among a large number of local maxima 
go(y) of a noise field, and the statistical characteristics of 
the mixed perturbation can be analyzed by the asymptotic 
theory of overshoots of random processes. 14*15 

We confine ourselves next to an asymptotic analysis of 
the statistical characteristics over times t) t, , tin, at which, 
as shown above, a regular pulsed perturbation is trans- 
formed into a universal triangular pulse with slope u: = l/t 
and with a discontinuity at the point Xr = (2Pt) ' I 2 ,  and the 
information about its fine structure is lost. If X ,  <I, i.e., the 
initial spatial scale of the regular pulse is less than the char- 
acteristic scale of the noise, one can replace, without loss of 
generality, the smooth increase of the regular component of 
the initial action Go(y ) from 0 to Pin the region ye [O,X,,, ] by 
an action discontinuity of amplitude P at the point y = 0. 
The total number of times that the level H is crossed by 
G(y;x,t), needed to determine the one-point probability of 
the mixed per turba t i~n ,~ ' '~  can then be represented by a sum 
of two terms 

= N ,  ( H ;  [-m, O] ) +1V2 ( H ;  (0, m] ), (12) 

which take the form, since the noise field is Gaussian," 

N2W; 10, "I) 
m 

where E(y)  is the unit step function and A = 1/1. 
Since the mixed perturbation is inhomogeneous and 

contains therefore a regular pulse localized in the region 
XE[O,X, ( t )  1, it is convenient to analyze the statistical char- 
acteristics by subdividing the entire interval x into a number 
of subregions. We consider initially the evolution of the one- 
point probability distribution in the region - w < x  < Xr ( t )  
= ( 2 ~ t ) " ~ .  If the condition P)a. is met, it follows from 
(13) and (14) that N,)N, and N, ( H ) z N , ( H ; [  - w,O] 
in this interval and one can obtain for the one-point probabil- 
ity distribution of a mixed perturbation, using the procedure 
described in detail in Refs. 8 and 14, the expression 

exp [-u2/2b2 ( t )  ] x 
, 1 1 2 - ,  

b ( t )  @ ( - d l  ( t )  ) 1 

b2 ( t )  = I 2  ( t )  / t ' = ~ . ~ / H ~ t ,  L 2  ( t )  = o . 2 t / ~ j 0 ,  (15) 

m (x) = -- J erp ( - t 2 i 2 )  dt,  

where I ( t )  is an asymptotic expression for the characteristic 
external scale of the noise field during the stage of coales- 
cence of developed discontinuities, while Ho is the solution 
of the transcendental equation 

Using ( 15 ), we obtain for the mean value (u (x,t) ) and for 
the variance 4 (x,t) of the mixed perturbation 

b ( t )  < u ( x ,  t )  )= (17) 
Q (-211 ( t )  ) 

x  e x p  [ -x2/212 ( t )  I 
ou2(x,  t )  = b 2  ( t )  [1+ -1 

I ( t )  Q ( - d l  ( t )  ) 

- e s p  1 -x'l12 ( t )  ] 
o2 (-xi1 ( t )  ) 

The mutual influence of the regular pulse and the noise as 
they interact nonlinearly leads thus to a transformation of 
the one-point probability distribution of the mixed perturba- 
tion u (x,t). In the region where the pulse hardly affects the 
statistical characteristics of the noise, x <  - I(t) ,  it follows 
from ( 15) that the probability distribution u (x,t) is Gaus- 
sian with zero mean value and with variance 4 = b '(t), the 
same as obtained in Ref. 14, where the one-point probability 
distribution of stationary noise was obtained for developed 
discontinuities. With increase ofx, when the presence of the 
regular pulse begins to manifest itself, the one-point distribu- 
tion is transformed into a truncated Gaussian distribution. 
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This lowers the variance of the mixed perturbation and leads 
to a nonzero mean value in the region x < 0. 

One must single out particularly the region of the trail- 
ing gently sloping edge of the regular pulse, I(t)  < x  

(2Pt) 'I2. Using the asymptotic representation for the 
function @ [ - x/l(t) ] with large values of the argument, 
the expression for the probability distribution of the abso- 
lute-maximum coordinate can be reduced to the form 

At x/l(t) ) 1 the distribution w (y;x,t) becomes exponential 
and localized in a narrow region Ay-I 2(t)/x on they axis. 
Taking (5)  into account, we obtain from ( 19) for the one- 
point distribution of the mixed perturbation u (x,t) 

xt x2 uxt X 

~me.PImle.Pl-,l 7 U ~ F  
W ( u ; x , t ) =  

0, u<x/ t  ' 

and for the mean value and the variance we have the follow- 
ing asymptotic expressions: 

Consequently, the variance of the noise on the trailing edge 
of the regular pulse decreases quadratically with increasing 
x, -xP2 while the mean value approaches asymptotically 
the universal form (9)  of the regular pulse. 

The dependence of the statistical characteristics of the 
mixed perturbation on x in the region - cr, < x  < (2Pt) ' IZ  

can be qualitatively explained by using the analogy, de- 
scribed above, with quasiparticles. Let a heavy particle (dis- 
continuity of the regular signal) having a momentum P >  0 
be located at the initial instant t = 0 in a point with coordi- 
nate x = 0 in a gas of randomly moving noninteracting light 
particles (discontinuities of the noise field, and let the veloc- 
ity of the particle be directed along the positive x axis. This 
regular perturbation introduces a substantial asymmetry in 
the one-dimensional problem. When the heavy particle is 
displaced (the discontinuity moves) to the right along the x 
axis, it drags along all the light particles from the interval 
XE [O& (t)  ] with which it collided inelastically. At the same 
time, the only light particles that can penetrate into the re- 
gion XE [0, XI ( t )  ] are those located at the instant t = 0 in the 
region x < 0 and having a momentum p > 0, i.e., an initial 
velocity directed along the x axis. The asymmetry intro- 
duced by the motion of the heavy particles upsets the dynam- 
ic equilibrium of the light particles. Thus, only particles with 
momentump > 0 are located in the regionx~ [O,XI ( t )  ] at the 
instant t > 0, and particles with momentum p < 0 flow con- 
tinuously out of the region - I ( t )  < x  < 0. This loss of parti- 
cles is not compensated for, since the heavy particle acts as 
an inpenetrable "barrier" for light particles with negative 
momentum and located at x > 0 at the instant t = 0. The 

heavy particle absorbs in the course of its motion the possible 
competitors for replacement of the produced vacancies 
(light particles with p < 0)  and its mass is accordingly in- 
creased. It can be concluded from this qualitative considera- 
tion that violation of the dynamic equilibrium of the light 
particles leads to an excess of particles having a positive mo- 
mentum in the region - l ( t )  < x  < (2Pt)'I2. This leads to 
the appearance of a nonzero mean field and to a decrease of 
the noise variance within this region. 

Consider now the statistical characteristics of the 
mixed perturbation u(x,t) at x- (2Pt) 'I2, i.e., in the region 
where the shock front of the regular pulse is located. At 
x - (2Pt) ' I2  the terms in ( 12) become of the same order, and 
a contribution to the total number of crossings of the level H 
is made by the local maxima of the functional G(y;x,t), 
which are located in narrow regions L ,  and L, on the nega- 
tive and positive y axes (y(L,e( - 2 2(t)/x,0), 
L2~( (2P t ) ' I 2  - I(t), (2pt)'I2 + I(t)  ) .  In this case one of 
the two dominant velocity values is realized with a definite 
probability, and one can obtain for the probability distribu- 
tion of the coordinates of the absolute maxima of G(y;x,t) 
the expression 

rc. ( y ;  2, t )  = 
1 

a [2n12 ( t )  ] '" 

xr Y 
x ~ X Y  [rn] ~ ( - y ) +  exp[ - 

(x, ( l + ~ ) - y ) ~  
212 ( t )  I} 7 (23) 

Using (23) and (5) ,  it is convenient to represent the expres- 
sions for the mean value and variance of the mixed perturba- 
tion u (x,t) in the form 

where 

Thus, the mutual influences of the regular and noise 
components in the discontinuity region of the regular pulse 
lead to an anomalous increase of the noise variance and to a 
turbulent broadening of the shock front; the value of the 
broadening can be found from (24) and (25) to be 

In addition, when an intense pulse propagates in a station- 
ary-noise field, an effect takes place similar to that observed 
when a regular pulse propagates in a nonlinear viscous medi- 
um. That is to say, the shock front moves at a velocity lower 
than that of the discontinuity of a regular pulse propagating 
in a nonlinear medium in the absence of noise at infinite 
Reynolds numbers. It follows from (24) and (25) that with- 
in one and the same time the shock front of the pulse nego- 
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tiates in a low-viscosity nonlinear medium, in the absence of 
noise, a distance x = X,, while the influence of the noise (of 
the turbulent viscosity) lowers the velocity of the discontin- 
uity, which is displaced during the same time by a distance 

Consequently, propagation of a pulse in a stationary-noise 
field in a nonlinear medium is equivalent in a certain sense to 
propagation of a regular pulse in a viscous medium with a 
high-frequency viscosity coefficient p, = 2, /2H,. Note 
that the concept of turbulent viscosity was invoked in Refs. 4 
and 8 to describe the interaction of a regular periodic signal 
with noise. 

In the region X >  (2Pt) 'I2 we have N2 > N ,  in ( 12) and 
the local maxima of G(y;x,t) are located on the positive y 
axis. The pulse has practically no effect on the statistical 
characteristics of the noise, and to find the method described 
in Ref. 14 is perfectly suitable for finding the probability 
distribution of the mixed perturbation. In this case, the one- 
point probability density of the mixed perturbation is Gaus- 
sian with zero mean value and variance 4 = b ( t )  . 

We conclude by briefly formulating the main conclu- 
sions that follow from the foregoing analysis. In contrast to 
the interaction between a regular periodic signal and station- 
ary noise, when a pulsed signal and noise propagate simulta- 
neously, no disruption of the coherent structure of the pulse 
in the nonlinear medium is produced by the noise modula- 
tion at t)  ti,, , t, . The mean field at t)  ti,, , t, is a triangular 
pulse of scale (2Pt)'I2 with a smeared-out shock front 
Ax-l2(t)/X, and a smeared-out transition region of the 
trailing edge, compared with a pulse propagating in a nonlin- 
ear medium in the absence of noise at infinite Reynolds 
numbers. The influence of the noise is also manifested by a 
slower velocity of the shock front of the regular pulse. The 
noise variance, remaining constant and equal to b ' ( t )  out- 
side the pulse, increases on the trailing edge of the regular 
pulse and increases anomalously in the region of the shock 
front. All these effects are reflected in the results, presented 
in the next section, of a numerical simulation of the nonlin- 
ear interaction of a regular pulse with a stationary Gaussian 
noise during the stage of interaction of fully developed dis- 
continuities. 

4. RESULTS OF NUMERICAL SIMULATION OF THE 
PROPAGATION OF A REGULAR PULSE AGAINST THE 
BACKGROUND OF STATIONARY NOISE 

To analyze the evolution of nonlinear waves whose be- 
havior is described by the Burgers equation ( 1 ), we propose 
in the present paper a synthesized approach based on invok- 
ing the result of numerical simulation, using the determina- 
tion of the coordinate of the absolute maximum of G(y;x,t) 
to find the statistical characteristics of the field u(x,t) from 
the analytic expression (5). The problem of determining the 
characteristics of the field u (x,t) consists of the following: 
first, calculation of the initial-action integral Go(y); second, 
summing Go(y) and the parabola 0 = - (x - y)2/2t, i.e., 
finding the functional G(y;x,t); third, determining the coor- 
dinate y(x,t) of its absolute maximum; last, substituting 

y(x,t) in (5 )  to obtain the field u (x,t) at the point (x,t). This 
procedure of constructing an analytic solution by invoking 
results of numerical simulation yields the profiles of the non- 
linear waves during the stage of interaction of developed dis- 
continuities and to analyze them statistically, without con- 
sidering beforehand all the preceding propagation stages. 

We use as the example in our analysis a high-power 
unipolar pulse u, (x)  = PS(x) against the background of a 
Gaussian stationary noise c ( t ) ,  in a nondispersive nonlinear 
medium. We assume that the noise spectrum at zero spatial 
frequency is zero, so that the variance of the initial action is 
bounded. We consider the evolution of the field u (x,t) for 
times t) ti,, , when discontinuities are produced in the non- 
linear-wave profile and the characteristic distance between 
them I(t) is much larger than the initial correlation radiuspc 
of the stationary noise. The absolute maximum of G(y;x,t) is 
chosen from a large number of independent local maxima of 
the initial action. This allows us to carry out the numerical 
analysis in steps A>I and simulate the process G,,(y) by a 
discrete sequence of independent Gaussian random numbers 
having equal variances 

It was assumed in the numerical experiment that (ci)  = 0, 
(6 f )  = 1, a. = 0,l. The integral of the pulsed perturbation 
was simulated by a unit step function of amplitude 
P = 1 (P)a)  at the point x = 1.5. The initial field u,(x) was 
simulated in discrete x steps A = 0.05 over a realization 
length X = 5, and the statistical characteristics of the field 
u (x,t) were investigated for different times t. The reduction 
of the numerical simulation was based on N = 1000 realiza- 
tions of the field u (x,t) and for a single point (x,t). 

Figure 1 shows one realization of a mixed perturbation 
u (x,t) at two instants, t, = 1, and t, = 2. The field u (x,t) is a 
sequence of sawtooth pulses with equal slope u: = l/t. It 
follows from the theory and is easily seen from Fig. 1 that 
when the time is increased the discontinuities move random- 
ly with velocities V, (7) ,  the zeros of the field (7)  remain 
immobile, and the slopes of the sections between the discon- 
tinuities decrease. 

Figures 2 and 3 show respectively the results of a nu- 
merical simulation for a mean value (u(x,t)) and variance 

(x,t) at t, = 1 and t, = 2. For comparison, Fig. 2 shows 
also, for the same times, the profile of a regular pulse propa- 
gating in a nonlinear medium without the noise component. 

FIG. 1. Realization of the random field u ( x , t ) .  
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Comparison of the experimental I, ( t )  and the theoretical Id 
for the external turbulence scale at the values A = 0.05 and 
u. = 0.1 yields 1, ( t  = 1) = 0.228; I, ( t  = 1) = 0.2006; 
1, ( t  = 2) = 0.303; 1, ( t  = 2) = 0.283. The theoretical val- 
ues of the characteristic noise scale exceed thus the experi- 
mental. The discrepancy is due to the asymptotic character 
of the developed theory (t>)ti,, ), and the relative error 
Per, ( t )  decreases with t; thus, Per, ( t  = 1 ) z 13%; 
Per, ( t  = 2) ~ 9 % .  

0, q Recognizing that the form of the probability distribu- 
tion of mixed excitation over long times is universal and is 
determined by two scales, X, ( t )  and I(t),  we compared the 

1 2 x shapes of the theoretical and experimental mean-value and 
variance plots. The scale I(t)  for the theoretical equations 

FIG. 2. Evolution of the mean value (u(x,t)) ( N  = 1000, u. = 0.1, to be the characteristic noise scale obtained from P =  1); O-theoretical results for t, = 1; 0-theoretical results for 
t ,  = 2; the dashed lines show the profile of the regular pulse in the absence experiment. It can be seen from ( 15 ) and ( 18 ) , in the region 
of noise. 

The number of averaged field realizations is N = 1000. It 
can be seen from Figs. 2 and 3 that the results of the numeri- 
cal simulations confirm qualitatively the predictions of the 
asymptotic theory developed above (the smearing of the reg- 
ular-pulse boundaries on account of turbulent viscosity, the 
deceleration of the shock front, as well as the decrease of the 
variance on the trailing edge and its anomalous increase in 
the shock-front region). 

The results of the numerical simulation were compared 
with the theory not only qualitatively but also quantitative- 
ly. To this end, the characteristics of the noise were analyti- 
cally calculated for a discrete model, in which the noise was 
simulated by a set of discrete random independent quantities 
of equal variance 4 and discrete steps A. The results have 
shown that in the case of a discrete model the statistical char- 
acteristics of the mixed perturbation are described by Eqs. 
( 17), ( 18), (24), and (25), but with a characteristic noise- 
field scale Id determines by the variance d, and by the dis- 
crete step spacing A 

FIG. 3. Evolution of the variance 4 (x,t) (N = 1000, u. = 0.1, P = 1): 
O-theoretical results for t, = 1, O-theoretical results fort, = 2. 

where noise has practically no influence on the pulse, the 
noise variance is constant at 4 = I ( t )  /t 2, SO that the exter- 
nal scale I(t)  can be uniquely determined from the experi- 
mentally obtained noise variance. The theoretical mean val- 
ue (u (x,t) ) and variance (x,t) calculated from Eqs. ( 17), 
( 18), (24), and (25) are represented by the marker points in 
Figs. 2 and 3. Theory and experiment are practically in full 
agreement in the region of the trailing edge of the regular 
pulse and deviate insignificantly (P,,, z 5%) in the region of 
the shock front. 

Comparison of the theory with the numerical simula- 
tion leads thus to the conclusion that an asymptotic theory, 
including one that employs the notion of turbulent viscos- 
 it^,^ describes satisfactorily the statistical characteristics of 
a mixed perturbation with fully developed discontinuities. 

In conclusion, the authors thank A. N. Malakhov and 
A. I. Saichev for a discussion of the work and for a number of 
helpful remarks. 
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