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An analysis of nonlinear equations of hydrodynamics for a nematic liquid crystal is used to 
show that the action of low-frequency shear vibrations on a layer of a normally oriented 
nematic creates a spatially periodic structure in the form of domains elongated at right-angles 
to the shear direction. The orientation of molecules in the domains, the domain size, and the 
threshold amplitude of the vibrations are determined. The results of the calculations are 
compared with experimental data. 

Investigations of the influence of a periodic shear on a 
layer of a normally oriented nematic liquid crystal have re- 
vealed effects both linear and nonlinear in the shear strain. 
The former include a periodic (at the shear frequency) de- 
flection of molecules from the normal, which results in mod- 
ulation of a light flux transmitted by a nematic liquid crystal 
layer.' The nonlinear effects give rise to steady-state distor- 
tions of the structure both inhomogeneous along the layer in 
the case of elliptic shear2 and periodic along the layer, mani- 
fested in the form of elongated stripes or The 
domains appear only above a certain threshold; the direc- 
tions of the domains, their width, and the threshold ampli- 
tude of the shear depend on the nature of the shear effect, 
frequency, and layer thickness. An elliptic shear acting on a 
nematic liquid crystal layer creates a structure in which the 
domain directions depend on the ellipticity of the shear.3 
This effect can be explained theoretically by an allowance for 
the quadratic (in the angles of rotation of the molecules) 
viscous moments4; in the absence of ellipticity the effects 
should disappear. 

A domain structure of different nature has been investi- 
gated experimentally5-' and in this case a shear strain has 
been created by moving one of the boundary plates in its 
plane in just one direction, so that there has been no ellipti- 
city. In this case the domains are orthogonal to the direction 
of shear. At low frequencies ( - 1 Hz) the threshold ampli- 
tude of the shear and the domain width exceed considerably 
the thickness of a nematic liquid crystal layer.5 When the 
frequency is increased by two or three orders of magnitude, 
the threshold amplitudes are already less than the layer 
thicknes6 The investigations reported in Refs. 7 and 8 were 
carried out at high frequencies when the initial shear pertur- 
bation was concentrated near a boundary in a region of 
thickness of the order of the wavelength of a viscous wave. A 
theoretical attempt to describe domains in a nematic liquid 
crystal layer made in Refs. 9 and 10 was concerned with a 
periodic shear strain, but the picture developed there does 
not fit that observed experimentally: in particular, the 
threshold values ofthe shear amplitude do not agree with the 
experimental values in respect to magnitude, do not exhibit 
the experimentally observed dependences on the frequency 
and on the layer thickness, and fail to give also the domain 
dimensions. 

We shall develop a theory of the appearance of a domain 
structure in a normally oriented nematic liquid crystal layer 
subjected to a low-frequency shear (when the wavelength of 
a viscous wave in a liquid crystal is greater than the layer 
thickness), created by the motion of one of the plates in its 
plane. We shall analyze the effect on the basis of equations of 
hydrodynamics of a nematic liquid crystal retaining the qua- 
dratic terms proportional to the product of the angle of rota- 
tion of the molecules and the velocity of the liquid. Inclusion 
of these quadratic terms leads to the following picture of the 
effect. A periodic shear in the case of a random slowly vary- 
ing and periodic (along the layer) deviation of molecules 
from the normal creates eddies oscillating at the shear fre- 
quency; the dimensions of the eddies are the same as the 
spatial period of distortion of the structure. The interaction 
of oscillatory eddies with the initial shear field gives rise to 
an average (per oscillation period) moment which increases 
the deflection of the molecules. At the threshold the effect 
may be stabilized the Frank elastic moment. The angle of 
steady-state deflection (rotation) of the molecules govern- 
ing the appearance of domains and the eddy flow velocities 
are related via a self-consistent system of equations with co- 
efficients containing the initial shear strain. The condition 
for solvability of the system determines simultaneously the 
threshold amplitude of the shear above which a domain 
structure appears, and the domain dimensions. 

The equations describing the rotation of molecules and 
their motion in a nematic liquid crystal are" 

Here, n is the director governing the direction of alignment 
of molecules (n2 = 1); v is the velocity; O is the strain rate 
tensor; N = n - I curl[v)<n] is the rotation of molecules 
relative to the surrounding liquid; g is the Frank elastic ener- 
gy, which in the one-constant approximation is described by 

where K is the Frank elastic modulus; p is the density; P is 
the pressure; 3 is the tensor of elastic stresses with the com- 
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ponents 

ai is the Leslie viscosity coefficient. The small viscosity coef- 
ficients a, and a, obtained in writing down the system ( 1 ) 
and the expressions for uii are assumed to be zero; the rota- 
tional viscosity coefficient is y z a ,  - a, = - a;. 

We shall consider the growth of domains in the shear 
plane xz governed by the shear direction ( x  axis) and by the 
normal to the layer (z axis) on the assumption that the rota- 
tion of molecules occurs in the xz plane and the variables are 
independent of y, in which case we find that u,, =O. This 
distribution of molecules in the domains will be justified by 
an estimate of the stability of the structure, made below, 
against the deflection of molecules out of the shear plane. We 
shall assume that the initial shear strain is specified as fol- 
lows: the lower (z = 0) boundary is at rest, the motion of the 
upper (z = h, where h is the layer thickness) boundary plate 
is in its own plane at a frequency w and with an amplitude u,, 
which gives 

We shall consider shear amplitudes which are small 
compared with the layer thickness: u, < h. This condition 
means that the angle p of deflection of the molecules from 
the z axis in the shear field is small and allows us to linearize 
the equations of motion with respect to the angle. At low 
values of p the components of the director n are of the form 

Retaining in the system (1 )  the terms proportional to the 
product of the angle p and the velocity u, or u, , we obtain the 
following system of equations for p, u, , and u, : 

where q = 4(a4 + a, - y ) ;  the dot in the above equations 
represents the total derivative with respect to time and the 
indices after the comma represent the partial derivatives 
with respect to the indicated coordinates. 

We shall describe the variables p, u, , and u, by the ex- 
pressions 

where pi, u,, , and u,, represent the initial perturbation set 
by the periodic shear of the boundary plate and found by 
solving the linear equations of hydrodynamics; the index 0 
denotes the steady-state part of the corresponding quantity; 
p ' and u: are the additional oscillations of the angle and 
velocity which appear in the case of steady-state distortion of 
the structure and are proportional to 9,. 

We shall consider only the frequencies w satisfying the 
inequalities 

KnVyhz~w<pc2/q,  o<q/ph2, 

where c is the velocity of sound in the investigated liquid 
crystal. The first of these inequalities makes it possible to 
simplify the equations for p, and p ' by dropping the elastic 
moments compared with the viscous moments. The second 
condition allows us to analyze the effect by discussing only 
incompressible oscillatory flows and to ignore the acoustic 
modes, the velocities of which arepc2/vw B 1 times less the 
velocities in the flows and which therefore do not affect the 
growth of domains. It  also follows from the second inequali- 
ty that the initial perturbation can be described by 

vtr= ( ~ ~ o ~ l h )  cos at7 vtr=O, cpi=(~o/h) sin ~ t .  ( 3 )  

Retaining in the system (2 )  the terms proportional to 
the product of the angle of rotation of molecules and the 
velocity, and separating the eddy component of the veloc- 
ities, we obtain the following system of equations for oscilla- 
tory perturbations v; and p ': 

and in the case of steady-state perturbations p, and v,, the 
relevant equations are 

div vo=O, (Kly)  ~ c p ~ + v ~ , , , =  [2(cpivZ,:)+(cp,$,,) I ,  
where D is the differential operator: 

and the angular brackets denote averaging over one oscilla- 
tion period. 

Equations (4) and (5) are simplified by dropping the 
terms proportional to the product of p, or u,, and the 
steady-state flow velocity uox , because the order of smallness 
of such products is given by Kp2/y- 1 compared 
with the other terms. Eliminating from the equations the 
oscillatory components and the steady-state flow velocities, 
and then averaging, we obtain the following equation for p,: 

We shall seek a solution for p, which is periodic along 
the x axis and satisfies the condition of rigid binding of the 
molecules to the boundary (p 1, = O,h = 0); this solution p, is 

cp0=900 cos kx sin pz, (7)  

where p = ? ~ / h  and the wave number k will be found later 
from the condition for a minimum (with respect to k )  of the 
shear amplitude u, for which Eq. (6) has a nonzero solution 
and, consequently, a steady-state distortion of the structure 
is possible. Substituting p, from Eq. (7)  into Eq. (6) ,  we 
find the following expression for the amplitude u,: 

where [ = k '/p2 and the function F ( 6 )  is of the form 
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Minimizing the function F({) with respect to {, we obtain lo 
which governs the spatial periodicity of the domain struc- 
ture at the threshold of the effect, as well as the value of the 
threshold amplitude u,,,, : 

At the frequencies under consideration the function F(t0) 
depends weakly on the frequency; the threshold amplitude is 
then inversely proportional to the frequency o and to the 
layer thickness h. The first of these dependences was ob- 
served experimentally in Ref. 6, where the appearance of a 
domain structure was deduced from a diffraction pattern 
obtained on illumination of a nematic liquid crystal layer 
with a light beam. 

A numerical calculation of u,,, from Eq. (8)  and a 
comparison of the results obtained with experimental data 
was made for an MBBA liquid crystal with the following 
parameters: p = 1 g/cm3, K = 0.7 x dyn, a, = 1.04 P, 
a, = 0.46 P, y = 0.78 P (Ref. 11 ), which gives v/y = 0.32 
and (a, + a, ) / y  = 1.92. The values of k d p  = l;'* found 
by numerical calculation (k, is the wave number k at the 
threshold of the effect) and F ( lo )  are plotted in Fig. 1 as a 
function of the parameter a. At low frequencies, when a 1, 
the ratio k,/p is ko/pz0.5. This gives the following expres- 
sion for the domain size: d z a/ko z 2h. 

Figure 2 shows the theoretical dependences of u,,, on 
the frequency f = w / 2 ~  for layers of two thicknesses: 
h = 100 and 20p; this figure includes also the experimental 
values of u,,, for the same values of h and different frequen- 
c i e ~ . ~  Curve 1 (h = 100p) is plotted for frequencies f SI 10, 
Hz, because the low-frequency condition no longer holds at 
higher frequencies; curve 2 (h = 20p) is plotted for frequen- 
cies f 2 lo3 Hz, because at lower frequencies the condition of 
smallness of the shear amplitude uo is not obeyed. Figure 2 
shows that in the range of validity of our calculations the 
theory and experiment agree well. 

We shall now estimate the stability of the new structure 
against deflection of molecules out of the shear plane by a 
small angle t,bo which is homogeneous in the layer. In the case 
of homogeneity of 11, the elastic moments associated with $ 
are absent and the stability of the structure is governed by 
the ratio of the viscous moments. If the angle ll,o above the 

- 
0 0, a 0,5 a 

FIG. 1 .  Dependences of k,/p ( 1 )  and F(&) (2)  on the parameter 
a = pZw2h 4/yZlr4. 

FIG. 2. Theoretical (continuous curves) and experimental dependences 
of the threshold displacement on the frequency: 1 ) h = 20 p ((0; 2) 
h = 100p (0 ) .  

threshold of formation of a domain structure is finite, we 
find that the system ( 1 ) leads to the following equation for a 
homogeneous angle &, which varies with time more slowly 
than does the frequency: 
- . . 

$,,, ~in\~*-((~~v~, ,  )sin cp ,  cos 9,- sin cp, cos rpo. (9)  

Here the bar denotes averaging over the volume of the nema- 
tic liquid crystal layer; v: is the velocity of the oscillatory 
flow along they axis which appears when $#O; $' represents 
oscillations of the angle IC, at the frequency w. In the deriva- 
tion of the system ( 1 ) we allowed for the fact that the com- 
ponent n, and the velocity v;, which vanish at the boundar- 
ies of the layer, can be represented as series in sin mpz 
(m = 1,2,3, ...) and terms of the n,v;, type as a result of 
averaging over the volume. 

For 11,' and v; we find that the system (1)  yields the 
following equations: 

-$ov,,,, cos (Fa sin cp,+v,,~ cos (Po sin (Fo, 

(10) 

Assuming that the angle p, beyond the threshold of the ef- 
fect varies along x as a series in cos mkx (m = 1,2,3, ...) we 
shall seek the velocity v; in the form v; -sin pz sin kx. Using 
the expressions for u; and 11,' from Eq. (9)  and substituting 
them in the system( lo) ,  we find-after averaging-the fol- 
lowing equation for ICr,: 

where the following notation is employed: 

S,--sin 9, cos cp, cos kx sin pz>O, 

S,=sin3 (F, cos 90 cos k x  sin pz>O. 

The behavior of the perturbations t,bo depends on the ampli- 
tude of the angle of rotation of the molecules p,, in the do- 
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mains. In the case of small values of poo, we find that 
la,lS, > 2yS3 and perturbations decay exponentially with 
time. In the case of high values of poo, when J a , J S ,  < 2yS3, 
the angle $, rises with time, the molecules are deflected out 
of the plane of the shear, and the domain structure changes. 
The threshold value q, ,,,, can be estimated by representing 
the angle p0 in the form q,, zpo0 cos kx sin pz. This gives 

Poo,~~  = (-8a6/9y) ". 
In the case of MBBA, we have p,,,, ~ 0 . 5  

Inhomogeneous perturbations of $ at low values of po 
may be suppressed not only by viscous moments of the type 
discussed above, but also by the Frank elastic moments 
r, = KV(V$ sin2 p, ) .  The domain structure is also stable 
in the presence of such moments. Therefore, directly cbove 
the threshold of the effect the molecules are in the shear 
planes and the domain structure has the form discussed 
above. 
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