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The pattern of the cumulation of an axisymmetric (but not cylindrical) converging shock wave 
is investigated theoretically. If dissipative processes are neglected, the cumulation is 
unbounded. 

Converging shock waves are among the best known ex- 
amples of cumulative flows and are related with important 
technical applications' as well as with interesting scientific 
problems. 2s3 

It was shown already in the early papers by Guderley, 
Landau, and Stanyuk~vich~-~ that flow behind a converging 
shock wave having spherical or cylindrical symmetry is self- 
similar, while the amplitude and especially the velocity V of 
the wave increase without limit as the wave radius a tends to 
zero: 

(for a cylindrical wave and for an adibat exponent y = 7/ 
5.). 

The important question of the limit of amplitude 
growth was repeatedly raised in the literature. Obviously, if 
the radius a becomes comparable with the mean free path, 
the dissipative processes on the wave front cannot be ne- 
glected. In a plasma, for example, allowance for the finite 
width of the front imposes a limit on the velocity of a con- 
verging wave.' The present paper does not deal with such 
small scales, and is restricted to the gasdynamic approxima- 
tion. 

Another mechanism that limits the wave amplitude was 
considered by Zababakhin (see Ref. 3 and 8 and the citations 
therein). In his opinion, cumulation of a spherical shock 
wave with a cylindrical one is due to the degenerate one- 
dimensional character of these flows, and suvervosition of a - - 
three-dimensional pertubation should limit the cumula- 
tion-the energy density will everywhere be finite. Favoring 
this assumption is, in particular, the fact that the Guderley- 
Landau-Stanyukovich solutions are unstable to small three- 
dimensional distortions of the front.9-' ' 

This raises an important question: is unlimited cumula- 
tion of non-one-dimensional converging shock wave possi- 
ble? Such a question was posed in an experimental paper12 
and answered in the affirmative. It was found that the wave 
produced by an annular discharge in a gas accelerates and 
becomes enhanced as the center of the ring is approached. 

The present paper is devoted to a theoretical investiga- 
tion of non-one-dimensional cumulative shock waves. It is 
shown that cumulation is a feature of converging axisym- 
metric-not necessarily cylindrical-waves and is unbound- 
ed if dissipative processes are disregarded. Such waves can 
be produced not only in annular discharges but also, e.g., in 
noncylindrical z-pinches. l 3  

We use here the approximate theory developed by 

Chester, Chiswell, and Witham (CCW).9 A function 
@(x,y,z) was introduced to describe the surfaces of the 
shock-wave fronts at each instant of time t in accordance 
with the relation 

@ ( x ,  y, z)+V,ot=O, 

and an equation is obtained for this function 

div (M"" grad 0) =0, ( 3  
M= j grad 0 I-'. ( 4 )  

Here V,, is the speed of sound in the unperturbed gas, M is 
the local Mach number for the shock wave, and n -- 5.1 for 
y = 1.4. At present there is no consistent derivation of Eq. 
(3)  from the gasdynamics equations, and the degree of its 
validity for each class of problem can be estimated only by 
comparison with exact solutions (such a comparison is given 
in Ref. 9 for Guderley-Landau-Stanyukovich flows). 

It is assumed in the present paper that the CCW theory 
can be used also for two-dimensional axisymmetric converg- 
ing shock waves. In particular, good quantitative agreement 
(within 5 4%) is obtained when the solutions obtained for 
the stability of spherical converging waves to non-one-di- 
mensional perturbations in the CCW appro~imation'~ are 
compared with a rigorous gasdynamic approach. I '  Since all 
the results of the present paper were obtained, just as in Ref. 
10, from an analysis of a linearized Eq. (3),  the use of the 
CCW theory here seems justified. 

1. BEHAVIOR OF EQUATION (3) NEAR A SYMMETRY AXIS 

Clearly, to assess the feasibility of unbounded cumula- 
tion of an axisymmetric shock wave it is necessary to study 
the behavior of the solution of ( 3 )  near a symmetry axis. It is 
less obvious that it suffices to consider the solution in an 
infinitely small vicinity of an individual isolated point on the 
axis, and not, say, in the vicinity of a finite line segment. An 
investigation of the instability of a cylindrical wave to arbi- 
trary axisymmetric perturbations shows that when a wave 
that deviates arbitrarily little from cylindrical approaches 
the axis, it reaches the latter in the general case just at indi- 
vidual isolated points (in contrast, e.g., to axisymmetric per- 
turbations of a cylindrical z-pinch, when the neck produced 
on the axis can have an arbitrary length). We choose one 
such point as the origin r = 0, z = 0 of the coordinate frame 
and let t = 0 at the instant when the wave arrives at this 
point. 

We proceed to study the possible types of local behavior 
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of a shock wave in the vicinity of the origin. From the math- 
ematical standpoint we deal here with a classification of the 
structurally stable zeros of the equation 

2 - ( n + l ) / Z  

LA{ r dr r $ [ ( % ) '  +(:) ] 1 

since @ vanishes at the point r = 0, z = 0 by virtue of the 
foregoing assumptions [see (2)  1 .  

We seek the solution of (5) in the vicinity of the origin 
in the form of a series in powers of (not necessarily integer) r 
and z: 

where 

is the set of terms with smallest powers of a. It should be 
noted that @ can be represented by the series (6) only if t(0, 
inasmuch as at t > 0, i.e., after the cumulation, secondary 
(intersecting) shock waves can be produced, and the CCW 
theory used here must be modified. 

It is convenient to seek the function @, in the form 

Oo=Ra erp  [ j F ( 0 )  d0 1, (8 

where R = ( r  + z2)Il2 and sin 19 = r/R. Substituting (8) 
in (5)  we can separate the variables R and 0 and obtain one 
first-order equation for F(8). A qualitative analysis of this 
equation allows us to assume that there exist only three1' 
solutions free of singularities at least at t < 0, viz., 

a=l, @,"'=R cos 0=z,  

They correspond to one-dimensional flows: plane, converg- 
ing cylindrical, and converging spherical shock waves. 

As R -0, the terms of higher power in (6) are small 
compared with @,, so that at small R one can seek a solution 
(5) in the form @ = cP, + @, and linearize ( 5 )  with respect 
to a , .  We emphasize that this approach differs from the 
linearization procedure used in  investigation^^.'^ of the sta- 
bility of one-dimensional solutions to non-one-dimensional 
perturbations. The small parameter here is not the ampli- 
tude of the perturbation of the initial data, but the distance R 
to the null point. 

We consider next the corrections to all three possible 
functions 

1. @A1' = C,y. Here and elsewhere C stands for various 
positive constants. The equation for @I1' is 

so that 

The surfaces @'I' + V,, t = 0 describe an axisymmetric con- 
vex shock wave propagating along thez axis. Another type of 
null point can be obtained by combining two such solutions, 
at z(0 and z)0. This type corresponds to encounter of two 
waves at the point r = 0, z = 0. We shall not dwell on this, 
since the feasibility of such a local behavior of shock waves is 
perfectly obvious. 

2. @A2) = Corl + l'" . In this case 

The solution of ( 13 ) takes as R + 0 the form 

Consequently the flow near the investigated null point (we 
call this a "neck," since it constitutes, in particular, a nonlin- 
ear stage of instability of a cylindrical wave to neck-type 
perturbations) is described by the equation 

With decrease of the minimum neck radius a ( t )  the 
second curvature radius d of the shock-wave front, at points 
wherez = 0, also tends to zero (in accord with Ref. 12), with 

At small R, the equation for the boundary surface 
@(*) = 0 is 

It is a paraboloid rmzk with 1 < k < 2. The shock-wave ve- 
locity at the vertex (at z = 0)  becomes infinite like 

The velocity increases more slowly than in the case of a cy- 
lindrical wave, but the principal terms are the same for a - 0. 

Let us examine the restrictions on the validity of the 
procedure used to linearize the equation for The corre- 
sponding conditions 

are met at 

i.e., in a region bounded by the parabola (17) (in other 
words, at KO), and r is small enough. 

3. @A2' = R ' + ' In .  In this case it turns out that the solu- 
tion of the equation for the perturbation @i3' decreases as 

Its solution as R -0 is R -0 more slowly than the zeroth approximation @A3'. This 
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means that a singularity such as a focus of a spherical con- 
verging wave is structurally unstable in the class of two-di- 
mensional flows. 

Thus, in the absence of secondary waves, the general 
behavior of an axisymmetric shock wave near the point of 
intersection with the symmetry axis can be the following: 
(a)  wave propagation along the axis; (b) encounter of two 
shock waves (followed by formation of secondary waves), 
or (c) cumulative flow such as a neck with unbounded in- 
crease of the wave amplitude. 

2. ANNULAR SHOCK WAVE 

Consider the flow produced as a result of an annular 
discharge in a homogeneous immobile gas having a density 
p, and a pressure Po. The energy input Eo (assumed instanta- 
neous for simplicity) is then distributed over a thin ring with 
a major radius R,. An experimental investigation of just 
such a flow is described in Ref. 12, where particular atten- 
tion is paid to enhancement of the shock wave near the cen- 
ter of the ring. 

The results of the preceding section lead to the conclu- 
sion that wave propagation towards the ring center is de- 
scribed by a neck-type solution and is indeed cumulative. In 
the simple case 

the wave can be regarded as strong up to the instant of the 
start of the cumulation. The parameters in Eqs. ( 15 )-( 18) 
can then be expressed to within numerical coefficients, and 
quantitative laws can be obtained for the variation of the 
amplitude and shape of the shock wave near the center. 

The flow produced after the discharge (non-self-similar 
and nonlone-dimensional) is determined by three dimen- 
sional constants, E,, p,, and R,, and by one dimensionless 
constant y. The neck produced at the center should be de- 
scribed by Eqs. ( 15 )-( 18 1, in which the dimensional con- 
stants are combinations of E,, p,, and R,. We find as a result 
that the shock-wave form near the ring center is given by 

a( t )  '+'/* 
(r /Ro)  - = (p /Ro2)  [ (n-1) z2+r2-a2 ( t )  1, 

(22) 
whereB is a dimensionless constant that depends only on y. 
The wave velocity v = (da/dt I satisfies the relation 

Here S is one more unknown dimensionless constant. The 
values of f l  and S can be obtained from experiment or by 
numerical calculation of the entire dynamics of the annular 
shock wave. 

CONCLUSIONS 

1. Cumulation of converging shock waves is not an ex- 
clusive property of one-dimensional flows. The presence of 
cumulation points on the symmetry axis is also a feature of 
two-dimensional axisymmetric waves. 

2. The wave amplitude increases without limit near the 
cumulation point if dissipative processes are neglected. Such 
a flow is produced, in particular, in an annular discharge in a 
gas. 

I conclude by thanking G. M. Batanov, S. V. Bulanov, I. 
A. Kossoi, and V. E. Terekhin for a discussion of the result, 
and also L. G. Gvozdev and K. V. Krasnobaev for consulta- 
tions about the references. 
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