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It is shown that the solutions, known in the linear theory of shock-wave stability, having 
shock-wave-front perturbations that neither attenuate nor grow with time and emitting sound 
waves (the so-called sound-wave generation), do not satisfy the causality principle at .rr/ 
2 < T < n-, where T is the angle between the outward normals to the shock- and sound-wave 
fronts. The same holds also for the analogous solutions for three-wave configuration 
(unperturbed and perturbed shock waves and an outgoing weak wave). Spontaneous 
undamped shock-wave perturbations are therefore impossible in the indicated range of the 
angles T.  The results of a nonlinear analysis of the reflection of perturbations from a shock- 
wave front (in the quadratic approximation) point to causal phenomena that can be described 
by the considered solutions of the linear theory. 

It is known from the linear theory of shock-wave stabil- 
 it^'-^ that in certain ranges of the parameter L = J2(du/dp) 
(where J is the flux of matter through the shock-wave front 
and (au/dp) is the derivative of the specific volume u with 
respect to the pressure along the shock adiabat) there exist 
stationary (in the moving coordinate frame) solutions that 
correspond to a perturbed surface (corrugation perturba- 
tions) of the shock-wave front with sound waves that arrive 
at the front or depart from it only at a definite angle. In these 
solutions, the perturbations of all the quantities (e.g., the 
pressure) are proportional to a factor of the form 

exp [ i ( k x + l y - o t )  ] (1) 

with real values of k, 1, and w. (The x and y axes are directed 
respectively along the shock-wave front or perpendicular to 
it.) The ratio k / I ,  which defines the orientation of the sound 
waves, depends on L.  The values ofL for solutions with out- 
going or incoming sound waves are bounded respectively by 
the conditions 

- l<L<Lo,  (2)  

where M is the Mach number of the shock wave relative to 
flow behind it, and 0 is the degree of compression in the 
shock wave. According to the theory of sound reflection by a 
shock-wave f r ~ n t , ~ - ~  in case (2),  when a sound wave is inci- 
dent at the same angle as the incoming wave in solution ( 1 ), 
or in case (2) for reflection at the same angle as for the 
outgoing wave in ( 1 ) , the ratiop, /pf of the pressurep, of the 
reflected wave to the pressure pf of the incident wave be- 
comes zero or infinity, respectively. 

In terms of wave-intersection theory, the pattern pro- 
duced by reflection of a sound wave from a shock-wave front 

by an unperturbed and perturbed shock wave and by an infi- 
nitely weak (acoustic) incoming or outgoing wave.7 

The connection between L and the angle y that charac- 
terizes the mutual orientation of the shock and acoustic 
waves in the three-wave configuration (see Fig. 1) and in 
solution ( 1 ) can be represented in the form7 

The possible range of the angles y for the incoming or outgo- 
ing waves 3 (see the Fig. 1 ) is 

O< y <yO-arccos M, ( 5 )  

Y O < Y < ~ .  ( 6 )  

Note the one-to-one relation between the connection (4)  of 
L with y in the region (3)  for L and in the region (6) for Y . ~  
The meaning of the stationary solutions for the perturbed 
shock wave with only incoming sound wave and the meaning 
of the equationp,/pf = 0 are quite obvious (see, e.g., Ref. 
1 ) . As for solutions with only outgoing waves and for infinite 
p,/pf (resonance, in the terminology of Refs. 4 and 5),  it 
was noted in Refs. 1 and 4 that a special investigation is 

is represented as a configuration of four waves. The condi- 
tions under the reflection coefficient becomes zero or FIG. 1.  Three-wave configuration: 1-unperturbed shock wave, 2-per- 

turbed shock wave, 3-weak outgoing wave, T-tangential discontinuity. 
infinity in the linear approximation are also the conditions The arrows indicate the directions of the stream lines in a coordinate 
for the existence of the three-wave configuration produced frame with immobile point 0. 
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needed to shed light on the physical meaning of these results. 
This is indeed the subject of the following part of the article. 

$1. UNDAMPED PERTURBATION OF THE FRONT OF A 
SHOCK WAVE WlTH OUTGOING SOUND WAVES, AND THE 
CAUSALITY PRINCIPLE 

The phase and group velocities of sound waves (with- 
out dispersion) behind a shock-wave front are equal to c. On 
the other hand, the propagation velocity of a constant phase 
along the surface of a shock-wave front, for solutions with 
only outgoing or with only incoming sound waves, is given 
by 

V,= (c- i7 cos y)lsin y. (7) 

It can be seen from (7)  that V, > c at 

(As for the velocity of the point 0 on Fig. 1 relative to the 
matter behind the shock-wave front, it is supersonic at all 
values of y except y = arccos M. It is important in what 
follows that V, > c in the range (8)  .) It is clear therefore that 
spontaneous propagation of the "ripples" along the front 
surface, with velocity (71, should not mean signal transfer in 
the case (8).  By suitable superposition of solutions of type 
( 1 ) with a constant ratio k /I corresponding to a resonant 
value of the angle y, however, it is possible to form a local 
initial perturbation of the front surface, for example a per- 
turbation in the form of a three-wave configuration (see Fig. 
1 ). Since the sound velocity is independent of frequency, this 
perturbation would propagate, without change of shape, 
with velocity (7) (see Ref. 7). The motion of such a pertur- 
bation, however, has the character of a signal. It can be con- 
cluded from this contradiction that no spontaneous (i.e., not 
sustained by external action) perturbations of a shock wave 
front, which are described by solutions ( 1 ) with outgoing 
waves, are possible in the angle range (8). In the case (8)  
such solutions do not satisfy the causality principle, which is 
known to play a most important part in shock-wave propa- 
gation. 

Solution ( 1 ) in the linear approximation satisfies for- 
mally the hydrodynamic equations and the boundary condi- 
tions (the conservation laws) on the shock-wave front. In 
the angle range ( 8), however, it contains implicitly a certain 
error. The point is that one of the necessary conditions for 
the existence of a shock wave for a flow behind its front is 
known to be (see, e.g., Refs. 8 and 9) the inequality V, < c  
( V,, is the material velocity component normal to the front 
in the coordinate frame of the front). This condition means 
that perturbations of the flow behind the front should over- 
take the front. This condition was assumed satisfied and tak- 
en as an initial condition in Refs. 1-3. In case (8),  however, 
this condition does not hold for the point 0 of the three-wave 
configuration and accordingly for the front surface in solu- 
tion ( 1). Indeed, at the angles (8) the matter-velocity com- 
ponents normal to fronts 2 and 3 at the point 0 do not belong 
at all to the region of the flow behind the front (to the sector 
A in Fig. 1 ). Under these conditions the perturbations from 
sector A do not reach the point 0 ,  and consequently its mo- 

tion and the state of matter in it are not causally connected 
with the parameters of the flow in sector A.  In view of this 
violation of the cause1 connection between the motions of 
fronts 2 and 3 at the point 0 ,  on the one hand, and the flow 
behind the front, on the other, the wave configuration initial- 
ly specified in the form shown in Fig. 1 [or in the form of 
solution ( 1 ) 1 begins to decay immediately: a rarefaction 
wave flows from the point 0 to the interior of the sector A, 
fronts 2 and 3 become bent, an incoming wave and a reflected 
wave are produced at the shock-wave discontinuity, etc. 

A solution of type ( I) ,  obtained in linear stability the- 
ory, does not contain an evolution of this kind. As already 
noted, it does not satisfy the causality principle for the angles 
(8).  Propagation of a supersonic perturbation along the 
shock-wave front should be due to external factors, i.e., to 
incoming perturbations that reach the front. 

The meaning of solution ( 1) with outgoing sound 
waves (and the corresponding solution (4) of Ref. 7) for a 
three-wave configuration, whether this solution has any 
physical application, and the meaning of the limit p,/ 
pf = co will be considered in the next section. 

$2. NONLINEAR ANALYSIS. TRANSITION TO THE LIMIT 
P, - 0  FOR SOLUTIONS OF THE WEAK AND STRONG 
FAMILY. PHYSICAL MEANING OF SOLUTIONS (1) WlTH 
OUTGOING WAVES 

The answer to the questions raised above can be ob- 
tained by analyzing the reflection of weak perturbations 
from a shock-wave front in the quadratic approximation.I0 
It  is shown in Ref. 10 that, given a sufficiently low amplitude 
of the pressure pf of the incident wave, there are two solu- 
tions forp, in the vicinity of the resonant angle y = y,,, . We 
shall call them the weak and strong families of solutions, in 
analogy with the known results for wave reflection from a 
rigid wall.'s9 In the weak-family solution, aspf -0, the pres- 
sure of the reflected wave in the vicinity of the angle y,,, 
tends to zero like p y .  With increase of distance from y to 
y,, the weak-family solution approaches the corresponding 
result of the linear theory. The indicated square-root de- 
pendence ofpf onpf is evidence of the stability of the shock 
wave in region (3)  relative to sufficiently small perturba- 
tions that reach the front at angles close to y,,. Infinitely 
small perturbations reflected from the shock-wave front do 
not produce a finite change of the wave intensity. The re- 
flected-wave amplitude remains infinitely small, and only 
the order of smallness changes. I' This result explains also the 
possible nature of the solution with outgoing sound wave in 
the linear theory of stability.'-3 In the approximation linear 
in p, the primary cause of the perturbation, viz., a wave 
arriving at the resonance angle, has an intensity proportion- 
al top: and consequently remains "out of sight," as do all 
other nonlinear effects. Causality of the phenomenon seems 
absent in the linear approximation, but actually exists, and if 
the cause vanishes ( pf -0) the consequence also vanishes 
( p, -0). 

Obviously, waves from the flow ahead of the front 
which are incident on the front at an appropriate angle can 
also act as a weak external perturbation that is quadratic in 
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the outgoing-wave pressure. In this case the outgoing wave is 
produced as a result of refraction of the incident wave. (See 
Ref. 4 concerning refraction of sound by the front of a shock 
wave in the linear approximation.) 

Aspf + 0 the strong-family solution is independent ofpf 
and does not go over into the result of the linear approxima- 
tion at incidence angles far from the resonance angle. This 
solution corresponds atpf -0 to a three-wave configuration 
with a weak outgoing wave. The dependence of the angle y 
on the pressurep, for such a configuration in the weak out- 
going wave 3 is determined by the equation $(y) = - up, 
and goes over into (4) atp, = 0 (the coefficient a depends on 
the thermodynamic properties of the material ahead and be- 
hind the shock-wave frontJ0). 

The solution ( 1)  with undamped outgoing sound 
waves, obtained in the linear stability theory for region (3), 
can be regarded as the limiting case of the strong-family so- 
lution (as a corresponding superposition of three-wave con- 
figurations in the limitpf = 0 ) .  In contrast to the limit tran- 
sition for the weak-family solutions, in this case one neglects 
near the limit not the incoming waves, but the dependence of 
the angle y on p,. Since, however, in the considered limit 
there are no incoming waves at all, not merely in first order 
in p,, the question of the causality of the solution again 
arises. In a more general formulation this is the question of 
the physical meaning of three-wave configurations not only 
in the limit asp, -0, but also at a finite intensity of the weak 
outgoing wave. 

One can perform a gedanken experiment, perfectly con- 
sistent from the standpoint of causality, in which such three- 
wave configurations might be realized. Imagine an infinitely 
thin flat piston freely sliding along the plane of a tangential 
discontinuity (sector A in Fig. 1 ). In the plane of the figure, 
the piston is shown in the form of an infinitely thin needle 
with one end touching the point 0 (dashed line in the fig- 
ure). The pressures on the two sides of the needle are equal, 
and the needle has no influence whatever on the flow any- 
where except at the singular point 0. The length of the needle 
is immaterial, and it can be, in particular, also infinitely 
small. The needle orientation in a coordinate frame with an 
immobile point 0 ,  and hence also its velocity in the lab, are 
uniquely determined by the parameters of the three-wave 
configuration (for the calculation of the configuration in a 
linear and in a quadratic approximation see Refs. 7 and 10, 
respectively). 

The solution with outgoing sound waves, obtained in 
the linear theory of shock-wave stability, can be represented 
as a superposition of such three-wave configurations with 
infinitely thin pistons. (The piston thickness should in this 
case be of higher order of smallness than the distance 
between the neighboring pistons.) 

Thus, if inequalities (3)  hold, we can point to three 
processes that are accompanied by a stationary (in a coordi- 
nate frame moving together with front and with velocity (7)  
along the front) ripple on the surface of a shock wave and 
with sound waves emitted from the surface. Each of these 
processes constitutes an external action on the shock-wave 
front, an action that does not enter explicitly in the linear 
approximation. Two types of such actions are weak (qua- 
dratic inp, ) waves that arrive from the flow regions ahead or 
behind the front. The third type of action is due to the defi- 
nite motion of an infinitely thin piston (or system of pistons) 
along the plane (planes) of the tangential discontinuity. 

Waves arriving at angles close to the resonant one2' can 
be caused, of course, also by noise or fluctuations, but the 
production of shock-wave front perturbations or generation 
of reflected waves by their action vanish after the cause van- 
ishes, i.e., after the incident wave is damped. 

We emphasize that these causal restrictions on the con- 
ditions for the existence of solutions ( 1)  pertain the angle 
range (8) .  The interval of the values of the parameter L 
corresponding to such angles is determined, according to 
(4) by the inequalities 

"At a fixed difference y - y,,, and at sufficiently large incident-wave am- 
plitude, regular reflection for one of phases of the wave (compression or 
rarefaction) is impossible. lo The more complicated wave configurations 
produced thereby has not been investigated. It consists apparently of a 
forward emitted (along the shock-wave front) three-wave configuration 
with a curved front of wave 3; this configuration perturbs the initial 
shock wave in such a way that regular reflection again becomes possible. 
The amplitudes of all waves (except, of course, the initial and perturbed 
shock waves) tends then in the limit aspf -0 to zero at a rate not slower 
t h a n p y  (Ref. 10). 

"The fluctuation-wave energy is proportional to Ay, and is equal to zero 
for waves emitted strictly at a definite angle y. 
- 
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