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A quasiclassical solution that describes a strong wave-collapse regime with finite energy 
trapped in the collapse zone is constructed within the framework of the three-dimensional 
nonlinear Schrodinger equation. The quasiclassical solution is matched to the linear one. The 
role of radiation in collapse is clarified and the stability of the quasiclassical solution is 
investigated. 

INTRODUCTION 

Wave collapse, as a phenomenon in which a singularity 
is produced within a finite time, plays in the dynamics of 
nonlinear waves just as fundamental a role as to solitons. 
Classical examples of wave collapses are well known, such as 
formation of discontinuities in gasdynamics, whitecaps on a 
choppy sea, self-focusing of light in non-linear dielectrics, 
and collapse of plasma waves. 

The existence of solitons is due to the equilibrium 
between two opposing effects-dispersive spreading of 
waves, and nonlinear increase of their gradients; this equilib- 
rium is stable. In wave collapses,the equilibrium is upset and 
the nonlinear processes predominate. Whether a given medi- 
um is characterized by stable solitons or by wave collapse 
depends essentially on the dimensionality of the problem. 
Experience has shown that collapse is more typical of multi- 
dimensional systems, whereas stable solitons are typical of 
lower dimensionalities. 

The present paper is devoted to three-dimensional wave 

tion, a Bose gas with attraction. It is this attraction which 
causes the collapse. In the one-dimensional case, however, 
the compression of the wave packet by attraction is halted by 
dispersion, and a stable soliton results. In the two- and three- 
dimensional cases, collapse is already possible, and a suffi- 
cient condition for it is that a negative Hamiltonian of the 
system ( 1 ) : 

1- j[ 1 v$~ ' - l Ip~~ldr .  

This conclusion, rigorously proven theoretically,'.' is cor- 
roborated by numerical  calculation^.^-^ 

Of great fundamental and practical interest is the struc- 
ture of the field $(r,t) in the vicinity of the singularity point 
in a collapse. This question is quite difficult at d = 2. It was 
suggested in Ref. 6, on the basis of an analysis of numerical 
experiments that were quite flawed in their time, that the 
amplitude of the field $ has near the collapse point a self- 
similar character: 

collapse in one of the fundamental models of nonlinear phys- 
ics-the nonlinear Schrodinger equation (NLS): (2)  

This equation has a broad spectrum of various applications. 
In particular, it describes the evolution of a quasimonochro- 
matic wave packet in a conservative isotropic medium with 
positive dispersion (a" > 0) and inertialess nonlinearity. 
This situation is realized, for example, for sufficiently long 
(kr, < (me/mi ) 'I2) Langmuir waves in a plasma or for 
electromagnetic waves in nonlinear dielectrics of certain 
types. 

Equation ( 1 ) is derived by averaging the initial system 
of equations that describe the nonlinear medium over the 
fast frequency w (k,) corresponding to the center of the wave 
packet. Compared with the initial system, Eq. ( 1 ) contains 
an additional integral of motion-the wave action or the 
"number of particles" 

N =  S llplZdr, 

which corresponds, apart from small terms, to the wave- 
packet energy. 

Equation ( 1) is a Schrodinger equation with a potential 
u = - ( $ I 2 .  From the quantum-mechanical viewpoints this 
equation describes, in the self-consistent-field approxima- 

with the function R (c) well defined and of the same form as 
a stationary two-dimensional soliton (with the so-called 
Townes mode). Equation (2)  means that at as t -to there 
flows into the collapse point r = 0 a finite amount of energy 

m 

N=2n 5 r R 2 ( r )  dr. 
0 

Such a collapse was called strong in Ref. 2. Equation (2)  was 
tested later with moreexact experiments and is not subject to 
doubt at present. However, the expression f = (to - tl2I3 
obtained in Ref. 5 on the basis of simple variational estimates 
is too crude and is not confirmed by an accurate numerical 
experiment. It agrees better with the expression 
f =: (to - t)"'(ln(t0 - t )  ( - ' I2  proposed in Ref. 3. The now 
most accurate numerical experiment, reported in Ref. 4, of- 
fers the best corroboration of the relation f = (to - t)"'. 
We shall show that this relation follows from quite general 
considerations based on the virial theorem. Nonetheless, 
this relation has not yet been successfully deduced consis- 
tently from Eq. ( 1 ) , the acknowledged best approach being 
that of Fraiman.' On the whole, the problem of the character 
of two-dimensional collapse cannot be regarded as solved, 
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although there is no doubt that this collapse is strong. 
In the three-dimensional case (d  = 3) the situation is at 

first glance simpler. Equation (1) permits the self-similar 
substitution2 

Analysis of the corresponding self-similar solution shows 
that as t- to singularities are formed, of the type 

At d = 1 and 2 this singularity is not integrable and a self- 
similar solution has no physical meaning. At d = 3, how- 
ever, the singularity is integrable and a physical meaning can 
be give to the self-similar solution. This solution, which we 
discuss in greater detail below, corresponds to a "weak" col- 
lapse in which, formally speaking, zero energy enters the 
singularity point. It was previously suggested that this weak 
collapse is all that can be deduced within the framework of 
Eq. ( 1 ). The actual amount of energy absorbed in a weak 
collapse is determined by that level of the amplitude $ at 
which Eq. ( 1 ) becomes meaningless and dissipation sets in. 

However, the conclusion that a collapse is weak in the 
three-dimensional case contradicts to some degree our phys- 
ical intuition. Let a caviton be compressed and its total num- 
ber of particles N be preserved. Then the intensity at center 
of the caviton will increase more rapidly than in the two- 
dimensional case, and the role of the nonlinear effects should 
at any rate be not weaker. Thus, we are justified in expecting 
a strong collapse to be possible in the three-dimensional case. 
The same conclusion should hold also for the equation 

which describes in the "static approximation" the collapse 
of Langmuir waves in a p l a ~ m a . ~  

The question of whether a collapse is strong or weak 
within the framework of Eqs. ( 1) and (6) is important also 
because its solution determines whether the collapse is effec- 
tive as a nonlinear energy-dissipation mechanism. 

We show in the present paper that in the three-dimen- 
sional case in the nonlinear Schrodinger equation there ex- 
ists a strong wave-collapse regime in which a finite amount 
of energy is trapped in the singularity. This collapse regime 
sets in under quasiclassical initial conditions, with the quasi- 
classicism criterion improving in the course of compression. 
This collapse regime is therefore called quasiclassical. It was 
reported by us, jointly with Musher, in a preliminary com- 
munications that contains also the results of a numerical 
calculation. We confine ourselves here to theoretical ques- 
tion, viz., construction of the solution itself and matching it 
to the linear solution, investigation of the stability of the 
quasiclassical solution, and assessment of the role of radi- 
ation in the collapse. We do not touch upon numerical simu- 
lation of a wave collapse and the associated questions, which 
we hope to cover in a separate paper. 

81. INSTABILITY OF THREE-DIMENSIONAL SOLITONS 

We begin with a discussion of the role of three-dimen- 
sional solitons in the dynamics of the system ( 1 ). We recall a 
few known facts. 

We represent Eq. ( 1 ), which is related to Hamilton's 
equations, in the form 

with the Hamiltonian H of Eq. (3).  With this we construct in 
standard fashion the Lagrangian 

and formulate a variational principle for the action 

S =  J L I I .  (1.2) 

The soliton solutions &(r,t) = exp(iA 't)g(r) are sta- 
tionary points H a t  a fixed number N of quanta 

It can be easily seen that in this solution the number of parti- 
cles decreases in inverse proportion to A: 

where f ( 6 )  is determined from the equation 

Among the stationary solutions described by Eq. ( 1.5) there 
is one solution with a minimum value of H (at a fixed N). 
This is the ground state, with respect to which the eigenfunc- 
tion is real, is spherically symmetric, and has no zeros. 

It is known (see, e.g., Ref. 9) that the soliton solution 
corresponding to the ground state is unstable. This result 
follows directly from an analysis of equations linearized with 
respect to the soliton solution. According to Ref. 9, the insta- 
bility condition is of the form dN, /dA < 0, so that according 
to ( 1.4) the instability is exponential. The existence of insta- 
bility is implied also indirectly by the following arguments. 
Consider a scale transformation that preserves the number 
of particles: 

Under these transformations, the Hamiltonian becomes a 
function of the parameter a: 

H ( a )  ='/,(I,/a2-I,a3), (1.7) 

where 

= l ~ ~ ~ d r ,  I , =  5 1tp.14dr. 

(A plot of this function is shown in Fig. 1 .). As a + 0 this 
function is unbounded from below, and as a -. co it tends to 
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FIG. 1. 

zero. The maximum of this function is reached precisely on 
the soliton: a = 1 and H, = A  'N, (Refs. 10 and 11 ). 

If we consider another very simple transformation, a 
gauge transformation $o(r)  - q0(r )exp[ ix ( r )  I, which also 
preserves N, then the soliton, conversely, realizes a mini- 
mum: 

I I = H ~  + J (ox) '9.' dr. 

Thus, in the three-dimensional case the soliton is a sad- 
dle point of an energy functional. In systems with a large 
number of degrees of freedom, this fact usually leads to in- 
stability of the equlibrium state. 

Note that in the one-dimensional case the soliton mini- 
mizes the Hamiltonian, and is therefore stable. 

To identify qualitatively the nonlinear stage of develop- 
ment of this instability, we use a variational principle for the 
nonlinear Schrodinger equation, stipulating minimization of 
the action ( 1.2) on trial functions of the form 

where a and p are real functions of the time. 
Substitution of ( 1.8) in the action ( 1.2) and integration 

with respect to r  leads to the following expression for S: 

where H ( a )  [Eq. ( 1.7) is the value of the Hamiltonian on 
the functions ~ - ~ ' ' $ , ( r / a )  (and coincides with that in Ref. 
7 ) , and c = $6 'g2df.  

Variation of ( 1.9) with resepct t o p  and a yields 

Substituting ( 1.10) in ( 1 . 1  1 ) we obtain for a the Newton 
equation 

In this equation the soliton corresponds to the unstable equi- 
librium position a = 1. On moving to the left from a = 1, the 
particle falls after a finite time to the center [and a corre- 
sponding singularity appears in the distribution ( 1.8) 1. As 
the point a = 0 is approached, the influence of the dispersive 
term proportional to I, becomes negligible, and we have thus 

Integration of this equation specifies the law of singu- 
larity formation in ( 1.8 ) : 

It will be shown later that this behavior near a singular- 
ity corresponds to a quasiclassical wave-collapse regime, 
while a substitution of the type ( 1.8) corresponds to a quasi- 
classical wave function for Eq. ( 1 ). 

52. VlRlAL THEOREM 

The results of the preceding section are qualitative in 
character and cannot be regarded as exact. Exact results for 
a three-dimensional collapse were obtained by one of us.' 
They comprise a generalization of the known result of Vla- 
sov, Petrishev, and Talanov,' obtained for the case d = 2. 

We present below these results, since in our opinion 
their consequences have not been fully utilized. Equation 
( 1 ) leads to the relation 

which is usually called the virial theorem.*' 
At d = 2 the relation (2.1 ) is integrated twice: 

with the constants C ,  and C ,  determined from the initial 
data: 

Obviously, C, > 0. A sufficient condition for collapse is the 
vanishing of the right-hand ,side at certain t  = to > 0. At 
H > 0 it is necessary to satisfy the conditions 

which mean a certain "additional focusing" of the initial 
distribution. In the case of the general condition 
C :  > 8HC,/N the quadratic trinomial in (2 .2)  crosses the 
real axis, and in the special case C :  = 8HC,/N tangency 
takes place. 

Assume that the general condition is satisfied and the 
asymptote of the amplitude + is given by Eq. (2). More accu- 
rately speaking, as t -+  t,, we have 

I $ 1 2 = + { ~ z ( + )  + O ( L  j)). 
where O( f ) -0 as f -0 .  Then 

Substituting (2.6) in (2 .2 ) ,  we verify that 

Here is a certain constant. 
At d = 3 theequality in (2.1 ) is replaced by an inequali- 
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ty, from which follow the previous sufficient collapse crite- 
ria (2.3) and (2.4), where the constants C ,  and C, have the 
same meaning. In this case, however, it is possible to ascer- 
tain from (2.1 ) when (r2) vanishes. This calls for finding a 
solution of Eq. ( 1 ) . 

$3. WEAK SELF-SIMILAR COLLAPSE 

The simplest of these solutions is the self-similar one 
mentioned above, determined by the substitution (4).  We 
consider only spherically symmetric solutions, for which the 
function x satisfies the equation 

Here = r(to - t )  - ' I 2  is the self-similar variable. 
The solution of Eq. (3.1 ) is accurate to within a phase 

factorexp(i8). It can have at somef = f o  a singularity ofthe 
form 

(the terms discarded are singular to a lesser degree). Here a 
and q are certain constants. We are interested only in a regu- 
lar solution of (3.1) that decreases as f-- w and satisfies the 
equation 

Consequently x has an asymptote 

where Cis a certain constant that can be assumed, without 
loss of generality, to be positive and real. 

The requirement that the solution be regular eliminates 
the ambiguity in the choice of the constants a and C. We 
have in fact a nonlinear eigenvalue problem for Eq. (3.1). 
This problem can be solved numerically by the "shooting" 
method, which yields 

Plots of the functions lx(f) 1 and V ( 6 )  = a@/ 
af (@ = arg X )  are shown in Fig. 2. 

We proceed to interpret the self-similar solution. We 
note first that for any fixed point of physical space with coor- 
dinate r, the corresponding self-similar coordinate f tends to 
infinity as t- to. The self-similar solution goes over then into 
its asymptote (3.4), which takes in the physical variables r 
and t the form 

i.e., it remains finite as t- t,. The self-similar solution is real- 
ized in physical space in a certain region with coordinate 
r < r,, where ro is the dimension of the region. The integrable 
singularity (3.6) "grows out" at the center of this region as 
t-to. At first glance, the self-similar substitution (4) leads 
to nonconservation of the integral 

FIG. 2. Plots of I x ( { )  I and V ( { ) .  The dashed lines correspond to the 
asymptotics I x ( { )  I -c / {  and V ( 6 )  - - 2a/{. 

and corresponds by the same token to a value N = w for the 
integral. This is indeed the case if the self-similar solution is 
considered in all of space. In any finite region r < r,,, how- 
ever, the value of the integral N remains constant. 

Indeed, after substituting (4)  in (3.7) we have for the 
region r < r, 

When account is taken of the asymptote (3.4), the integral 
in (3.8) diverges on the upper limit and tends to a finite 
value as t-  to. Let now ro be large enough. The value of the 
integral N in the region r < r, should be close to its value in 
this region at the instant of the collapse t = to. In other 
words, the following equation should hold: 

This equation was verified with high accuracy for the com- 
puter-generated ~ ( f )  and C. 

Note that a similar situation with formal nonconserva- 
tion of the integral of motion is a frequency occurrence for 
self-similar solutions. It was analyzed in detail in Ref. 14, 
using as the example the integral of the total number of parti- 
cles for supersonic collapse of Langmuir waves. l 4  The solu- 
tion constructed here corresponds to weak collapse-for- 
mally speaking, zero energy enters the singularity at r = 0. 
This means in fact that if the characteristic amplitude value 
at which energy absorption in the collapse sets in and Eq. ( 1 ) 
no longer holds is of the order of $,, then the amount of 
energy absorbed in one collapse act is 

Herelo- is the characteristic dimension of the absorp- 
tion region. 

To conclude this section, we note that the weak regime 
of wave collapse was first demonstrated in numerial experi- 
ments' and later in Ref. 8. 
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55. QUASICLASSICALLY STRONG COLLAPSE 

We discuss now the feasibility of realizing a strong col- 
lapse within the framework of the nonlinear Schrodinger 
equation ( 1 ). We note first that this collapse must be quasi- 
classical in the sense that as the collapse point is approached 
the conditions for applicability of the quasiclassical approxi- 
mations improve for Eq. ( 1 )  regarded as a Schrodinger 
equation with a potential U = - ($('. In fact, these condi- 
tions are of the form 

Here U- ( $ o ( 2  is the characteristic value of the potential, 
and a is its characteristic scale in space. In the case of strong 
collapse, the relation Ua3 - 1 go,,) 2a3 - const = N is satisfied, 
so that Q-const/a. In a collapse we have a  - 0  and the con- 
dition (4 .1 )  can be met regardless of the value of the con- 
stant N. To obtain the corresponding solution of ( 1 ), we 
separate in it the amplitude from the phase 

$=Aeta, ( 4 . 2 )  

6'A2/dt+div A2V @=O, ( 4 . 3 )  

When the quasiclassicism condition (4 .1  ) is met, the right- 
hand side of ( 4 . 4 )  can be neglected. The resultant system of 
hydrodynamic equations 

describes a gas with negative pressure and with an adiabatic 
exponent y = 2. We seek a solution of these equations in self- 
similar form, assuming this solution to be spherically sym- 
metric and to conserve the total number of particles 

Substitution of ( 4 . 6 )  in ( 4 . 3 )  leads to the equation 

which has an integral of the form 

Substituting ( 4 . 8 )  in ( 4 . 5 )  we get 

Hereil is an arbitrary constant, and a  ( t )  obeys the Newton 
equation 

that describes the falling of a classical particle to the center 
in a potential V =  - U 2/3a3.  As t - t o  we get 

The solution ( 4 . 9 ) ,  (4 .10)  is meaningful only at { g  1 ,  and if 
l> 1 we must set A equal to zero. 

The solution constructed describes a strong collapse of 
a wave packet as a whole. I t  is interesting that this collapse 
regime is qualitatively described correctly with the aid of the 
rather crude estimates given in 5 1 .  This can be easily verfied 
by comparing Eqs. ( 1.12) and ( 4 . 1 0 ) .  Qualitatively fair 
agreement is obtained also for the concluding stage of the 
collapse. 

The solutlon ( 4 . 9 ) ,  ( 4 .10 )  is not valid, of course, in a 
certain region near the poinst 6 = I. The size of this region 
can be estimated by comparing the quantities 

from which we have 

It can be seen from (4.11 ) that as a  - 0  the relative width of 
the region in which the self-similar solution ( 4 . 9 )  is not valid 
becomes narrower as the collapse point is approached, and 
the problem of finding the solution in this narrow region 
(spherical layer) becomes esentially one-dimensional. 

To solve this problem, we note that the phase ob- 
tained from Eq. (4 .3 )  is determined by integration over the 
entire region off and that near the point f = 1 it should be to 
the quasiclassically specified expression ( 4 . 9 ) .  

The phase enters in Eq. ( 4 . 4 )  for the amplitude only in 
the combination 

Here A ( r , t )  is the quasiclassical value of A * specified by 
Eq. ( 4 . 9 ) .  

Equation 4.4 has thus taken the form 

We change over in this equation to a new coordinate 

rl=r-a ( t )  (4 .14 )  

and expand A : ( r , t )  in a Taylor series in the vicinity of the 
point r' = 0. Recalling that A [ a ( t ) , t  ] = 0  we retain only 
the term linear in r'. Next, replacing the spherical Laplacian 
by a planar one, we get 

By a simple change to nondimensional variables 

we rewrite (4 .15 )  in the form 

This equation has a solution expressed in terms of Painleve 
transcendental functions. 

We shall not consider here the theory of these functions 
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(see, e.g., Ref. 15). We indicate only that Eq. (4.17) has a 
solution p ( x )  with an asymptotic q,- = ( - x ) " ~  as 
x -+ - cc . The general solution of (4.17) has for x -. - 00 an 
asymptotic 

Ci 
rp+ (-x) '" + - exp l4i (-x) yz] 

(-x)'~' , 

c2 + -- exp[ -4i (-x) 1'1, 
( - x )  '" 

where c, = c: is a certain complex constant to be deter- 
mined. A more detailed analysis shows that in the next ap- 
proximation in the parameter E = (a/W ') ' I2  the constants 
c, and c, become slow functions of x ,  and moreover c ,  # c:, 
so that Eq. (4.17) must be replaced by a more general com- 
plex equation. This difficult task is outside the scope of the 
present article. We note only that Eq. (4.17) becomes a lin- 
ear Airy equation asx - w , and its solution must be matched 
to the solution of the linearized Schrodinger equation. The 
character of this solution can be understood from qualitative 
considerations. 

We consider now the behavior of the oscillation energy 
N, (of the integral N) contained in this layer. Assuming a 
layer of width x - 1, we have 

N, -0 as a - 0, so that the boundary layer loses energy as the 
collapse point is approached. This energy is emitted as low- 
amplitude waves through the transition zone. The charac- 
teristic emitted wavelength is of the order of the boundary- 
layer thickness and tends as t+t0 to zero like 
;1 -a4'3- (to - t)8/15. 

A quasiclassically collapsing caviton is thus an emitter 
of low-amplitude waves. 

Besides the considered self-similar solution (4.9), 
(4.10 1, which describes a strong collapse, the quasiclassical 
equations (4.5) admit of large class of self-similar solutions 
of the form 

at 
A2= (to-t) -an (I),  (D = A' (- 

(to-t)" 
+ (to-t) '-"rp (E) , 

(4.19) 
g=r(to-t)a/2-1, 

where n and q, are determined from the solution of the set of 
equations 

The quasiclassicism criterion (4.1 ) is satisfied for the solu- 
tion (4.19) if a > 1. All these solutions have a power-law 
time-independent asymptotic form A + C2?a'(a - 2, This 
means that as t -to a singularity of the form C;La"" - 2, is 
produced at the point r = 0. This singularity is integrable if 
a < 6/5 (only such solutions have any meaning). Thus, the 
solutions (4.19) describe an intermediate collapse regime, 
ranging from the fastest with scale ro- (to - t)'12 to the 

slowest with ro- (to - t),I5. All are weak wave collapses. It 
should be added that the quasiclassical approach is not valid 
also for these self-similar solutions if r exceeds a certain val- 
ue R determined from a comparison of A and AA /A. 

Note that the existence, within the framework of 
(4.20), of regular quasiclassical solutions that describe a 
weak self similar collapse is still a moot question. 

$5. STABILITY OF QUASICLASSICAL SELF-SIMILAR 
COLLAPSE 

Let us examine the stability of the obtained solution 
(4.9), (4.10). Since ) $ 1 2 >  1/a2 for a strong collapse, the 
most dangerous from the standpoint of stability are short- 
wave perturbations with k% l/a. Recall that the growth rate 
of the modulation instability of a monochromatic wave with 
k = 0, +b =A exp(i1A I2t), called the condensate, is defined 
as 

It is a maximum at k = 2JA 1' and is equal to T,,, = /A 1 ,, 
i.e., the dispersion terms in the region of the maximum 
growth rate are of the order of the nonlinear ones. At 
k ( /A '1 the dispersion terms, conversely, are insignificant 
and the instability is quasiclassical in this case. 

According to (5.11, the maximum growth rate for the 
investigated solution should be located at k - 1 $ I 2 %  l/a2 in 
the short-wave region. We can therefore use this expression 
for estimates, replacing IA 1' by A ,/a2 and assuming a t-de- 
pendence of the perturbations in the form exp S r d t  '. In ad- 
dition, we must take into account the spatial shrinking of the 
wave packet. This means that the wave number k also de- 
pends on the time: k = p/a ( t ) ,  wherep is a conserved quan- 
tity. 

As a result we have for 

r, (t) = [p2h2/a5-pb/4a4] %. ( 5 . 2 )  

It can be seen from this equation that as a -0 the principal 
term under the square-root sign is the first. This means that 
as the perturbations increase they become quasiclassical. 
Recalling that as t - to we have 

we obtain r, ( t )  - (3/25) "%/(to - t) ,  and 

Since p >  1, Eq. (5.2) demonstrates the instability of the 
strong-collapse regime to short-wave perturbations; this in- 
stability is of the disruptive type. This result follows also 
directly from Eqs. (4.3) and (4.4) if they are linearized 
against the background of the quasiclassical solution (4.9), 
(4.10): 

dn' 3at 
-f (vV)nl - n' + div(A,2V@')=O, d t a 

a@' 1 An' -+ (vV) (Dl-n'= -- 
at 4 A: . 

Here n' and @' are the perturbations of the intensity A and 
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of the phase Q,, while v = VQ, = a, r/a. If we change in these 
equations to the self-similar variables 6 = r/a ( t )  and t ' + t, 

it can be seen by comparing the last term of (5.5) with n' that 
as a -0 the contribution of this term tends to zero. It follows 
thus directly from the equations that as a-0 the perturba- 
tions become quasiclassical. If we neglect the spatial depen- 
dence of A 6 on 6 by putting A 6 = il 2/a3, then Eqs. (5.3) 
and (5.4) have as t- to solutions of the form 

(Df-  ( t , -t)? exp (ipg), 

where we obtain the earlier result (5.3) for y = - 3L'2p/ 
5( P B  1 ) .  

For long-wave perturbations with wavelengths com- 
parable with a ( t ) ,  account must be taken of the dependence 
ofA i on 6. In this case, as t- to, we obtain for the perturba- 
tions 

the following spectral problem: 

with the condition that x be regular at the points x = 0 and 
x = 1. Replacingx = xl W(x2) by Wwe obtain the differen- 
tial equation for the hypergeometric function. The solution, 
regular at x2 = 0 and x2 = 1, is expressed in terms of Jacobi 
polynomials P :'+ (1 - 2 x 2 )  ; then 

At I = 0 the solution of (5.6) is expressed in terms of a Le- 
gendre polynomial: ~ ( x )  = x-'P2, + I (x) .  

The solution (4.9) is stable if h '/A -0 as t-+to, i.e., at 
y > - 1/5. According to (5.7), all the perturbations are un- 
stable, and the instability is stronger the shorter the pertur- 
bation wavelength. For smooth initial conditions, the insta- 
bility will come into play later than for jagged ones. 

It can be seen, in analogy with (5.1) and (5.2) , that all 
other self-similar quasiclassical regimes will likewise be un- 
stable, since as t-+t, we have A 2 @  l/a2(A - (to - t )  - " , 
a-(to - t ) ' - a / 2  , 6/5 > a > 1 ) . This is a modulation insta- 
bility. Nothing can be said concerning the regime with 
a = 1, for in this regime A '- l/a2. It is possibly stable, but 
this cannot be rigorously proved. 

Thus, the considered quasiclassical self-similar solu- 
tions that describe three-dimensional collapse have all 
turned out to be unstable. This raises the natural questions of 
their significance and of the role that they can play in the 
dynamics of the system, in view of their instability, and 
moreover since the only regime that can be regarded as sta- 
ble is already known. 

These questions have several answers. First, collapsing 

solutions have meaning only so long as the nonlinear equa- 
tion itself is applicable, i.e., up to a certain finite but quite 
large amplitude. If the initial condition is close to one solu- 
tion, albeit unstable, the system can nonetheless exist 
(evolve) for some time in accordance with the described 
scenario, until the instability alters greatly the given solu- 
tion. It may also turn out that the field amplitude had 
reached its applicability limit before the instability had time 
to develop. This is precisely the situation observed in 
Musher's numerical calculations that were published in our 
joint article.' An approach to the strong-collapse regime was 
observed under initial conditions close to the solution (4.9). 
Second, in the same experiments with initial conditions d@/ 
a r ( ,  =, = 0 the intensity of the collapse was observed to in- 
crease like (to - t )  -' at r = 0 (see also Ref. 5),  with simul- 
taneous trapping of finite energy in the collapse zone. The 
two observed tendencies, which are related simultaneously 
to weak and strong collapses, find a natural explanation 
within the framework of the given theory. Trapping of finite 
energy into the collapse zone should have led to a quasiclas- 
sical strong, but unstable, collapse. A reflection of this insta- 
bility and of its nonlinear stage is the formation, near r = 0, 
of a zone of the fastest of the weak collapses, with the intensi- 
ty at the center of the zone varying as (to - t )  - '. The energy 
stored in this zone is low and is proportional to the zone 
dimension: ro oc (to - t)  ' I 2 .  This zone is produced as a result 
of development of instability of the shortest perturbations. 
Next, this zone should be surrounded by a transition region 
with smoothly varying scales R - (to - t ) " ,  with f l  ranging 
from 1/2 to 2/5. The transition region contains information 
on the unstable perturbations with intermediate scales- 
from the shortest to the longest. This region terminates in an 
energy-containing region that should evolve quasiclassically 
and should vary in size as (To - t)'I5. The energy-contain- 
ing region should also determine the collapse time of the 
entire collapsing region, estimated at ~ - a ; ' ~ & z ,  where&,,, 
is the energy fed to the collapse zone and a, is the initial 
scale. 

These arguments apply to the spherically symmetric 
case. In general, when no symmetry is imposed by the nu- 
merical-experiment conditions, another behavior is possible. 
It follows from ( 5.2) that as the collapse point is approached 
all the short-wave perturbations, which are stable at the ini- 
tial instant of time, become unstable, and near the instant of 
collapse they increase faster the shorter their wavelength. By 
the same token, as the instant of collapse is approached, la- 
tent perturbations are, figuratively speaking, awakened in 
the caviton. As a result, a three-dimensional collapse de- 
scribed by the nonlinear Schrodinger equation can be ac- 
companied by a stochastic fragmentation of the scales, 
where the collapsing caviton breaks up into a "spray" of 
smaller ones. Each of the resultant droplets will subsequent- 
ly contract self-similarly and will also be stochastically frag- 
mented. All this can be regarded as a new form of stochastic 
behavior in dynamic system. The final answer to the ques- 
tion of the character of the three-dimensional collapse can be 
provided by a numerical experiment. As shown by the pre- 
ceding reasoning, such an experiment must be essentially 
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three-dimensional. This is as yet a difficult task even for the 
better modern computers. 

CONCLUSION 

Let us discuss briefly the possible application of these 
results in the theory of a Langmuir collapse described by Eq. 
(6)  that is similar in structure to the nonlinear Schrodinger 
equation ( 1 ). Equation (6)  is also Hamiltonian with 

and descibes the total number of waves (energy) 
N =  $IVJI12dr. It is clear therefore that for Eq. (6)  there 
exists the same classification of collapses as for the NSE. 
Indeed, we can make in (6),  just as in ( 1 ) the self-similar 
substitution 

which describes a weak collapse regime with row (to - t )  ' I 2 .  

As t - to  singularities IV$I2- C 2(9,p)/r2 are formed also in 
the intensity distribution, and the distribution cannot be 
normalized-the total number of quanta is infinite. 

To describe a strong-collapse regime, it is necessary to 
go in (6) to the quasiclassical limit. Putting JI = A exp(iQ), 
we find, after straightforward but rather laborious calcula- 
tions, that the quasiclassical equations for ( 1 ) and (6) coin- 
cide: 

Here n = A2(V@) is equal, with quasiclassical accuracy, to 
the wave intensity. It might seem therefore that all the re- 
sults of $83 and 4 can be applied to a Langmuir collapse. 
Equation (6), however, which has a vector structure, has in 
the case of spherical symmetry a solution with a field 
E = VJI equal to zero at the center. Consequently, the inten- 
sity ]El2 is also zero at the center. Our solution (4.9), obvi- 
ously, does not meet this condition. This means that for a 
strong Langmuir collapse the solution must be asymmetric, 
and should most likely have a dipole structure. As for the 
self-similarity of the quasiclassical Langmuir collapse, the 
simplest estimates, and the conclusions concerning their sta- 
bility, all remain of course the same as before. 

It must be added to the foregoing that the quasiclassical 
equation (6.1 ), in contrast to (6),  admits formulation of a 

virial theorem [cf. (2.1) 1 : 
0 - I r2n dr=IH-  ( d - 2 )  I n' dr.  
,It2 

from which we get for the quasiclassical equations the suffi- 
cient condition for collapse, H < 0. 

In conclusion, we are grateful above all to S. L. Musher 
for performing the numerical experiments that contributed 
to the writing of the present paper, and to L. N. Shchur for 
computer calculation of the self-similar solution. 

"It appears that this approach was first used in Ref. 12 for the self-focus- 
ing problem. 

''This is, strictly speaking, not quite accurate. The virial theorem is cus- 
tomarily used for quasiperiodic motion and is assumed to incorporate 
timeaveraging. Theanalogy is based on the fact that thesimplest method 
of obtaining the virial theorem in mechanics is to calculate the second 
derivative of the moment of inertia with respect to time (cf. Ref. 13); the 
role of this moment is played in our case by the quantity .f ?l$12dr. 
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