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Transfer of energy of vortical motion in multidimensional systems between low-frequency and 
resonantly excited high-frequency oscillations becomes possible, and under certain conditions 
predominant, in multidimensional systems. Energy exchange via the vortical mechanism has 
surprising features associated with breaking of the usual symmetry, inherent in systems with 
few dimensions, of the energy transfer over the Raman spectrum. 

INTRODUCTION 

The interaction between fast and slow forms of system 
motion is usually greatly enhanced if the fast subsystem con- 
tains high-Q oscillation modes excited by high-frequency 
fields near resonances. Raman resonances can produce in 
this case intense energy transfer from the fast to the slow 
subsystem or in the reverse direction. Phenomena of this 
type have long been under investigation and have found 
many applications. These include the operation of parame- 
tric amplifiers and oscillators, and also phenomena such as 
stimulated Raman scattering of light, or gas cooling by reso- 
nant optical fields. The many phenomena of this type in- 
clude a special class that should display a rather unusual 
character of energy conversion up and down the Raman 
spectrum. This class is the subject of the present paper. 

Waves of frequency w in a resonant medium, with reso- 
nance frequencies {wk ), are usually scattered, on account of 
the Raman resonances 

in such a way that, when w exceeds the frequencies wk , the 
oscillations at the difference frequencies R = Iw - w, I are 
enhanced, and phenomena such as stimulated Raman scat- 
tering become possible; deexcitation and suppression of the 
oscillations of frequency R take place when w is lower than 
@k. 

This dependence of the energy exchange on the detun- 
ings w - wk takes place in simple systems (when the fast and 
slow subsystems are one-dimensional), such as the Man- 
del'shtam-Papaleksi parametric motor,' and in many com- 
plicated multidimensional and distributed systems (see Lui- 
sell2 and Bloembergen3). For systems with reactive 
nonlinearities, in which only lower-order nonlinear pro- 
cesses are effective and level-population changes are inessen- 
tial, this directivity of energy exchange is so prevalent and so 
widely invoked in the study of oscillation and wave phenom- 
ena, that it is regarded in fact as an indisputable rule. 

This rule, however, does not hold for the discussed class 
of Raman resonance phenomena. It is possible, for example, 
to amplify oscillations of frequency R at all values of w rela- 
tive to the position of the {ak) spectrum, including 

w <minimk ). What are meant here the same conditions as 
implied above, in which the nonlinearities are reactive, only 
the Raman resonances ( 1 ) and (2)  are set in action, and 
system oscillations other than at the frequencies w, w + R, 
and R can be neglected. 

I was probably the first to point out the possibility of 
such phenomena.4 They are due to the special role played in 
the excitation of combined oscillations of a low-frequency 
system by the vortical reaction forces exerted by the field of 
the high-frequency resonance oscillations. For vortical reac- 
tion forces to set in, both the fast and the slow subsystem 
must be multidimensional (have not less than two dimen- 
sions). A similar symmetry-breaking mechanism in excita- 
tion and deexcitation of combined oscillations can be expect- 
ed also for Raman resonances of higher order. 

Since questions involving the symmetry of energy con- 
versions up and down the Raman spectrum are connected 
with fundamental physical principles, it is expedient to dis- 
cuss the general aspect of the problem in greater depth than 
in Ref. 4. The present article deals, from this viewpoint, with 
the character of energy exchange induced by resonances ( 1 ) 
and (2)  in multidimensional systems. 

The prevailing opinion is that the characteristic mecha- 
nisms of energy transfer via the resonances ( 1 ) and (2)  are 
accounted for by the model of three nonlinearly coupled 
waves (three oscillators), which has been investigated in 
sufficient detail.3 This model leads in natural fashion to the 
notion that energy conversions over the Raman spectrum 
are reactions in which photons of different frequencies decay 
and coalesce. The decays h -hk + fiR are related to ener- 
gy transfer from a wave of frequency o to waves of frequency 
wk and R, while the coalescences h + fiR -h, are related 
to energy extraction from waves of frequency R. Obviously 
that w > wk in the former and w < w, in the latter processes. 
The aforementioned rule follows therefore directly from 
quantum principles. Note that quantum interpretations of 
Raman processes are in essence classically corroborated in 
the Manley-Rowe t h e ~ r e m , ~  since this theorem is equivalent 
(see Ref. 6) to conservation laws for the energies of different 
frequencies transformed by a reactive nonlinearity, if they 
are regarded as quantized. 

This raises the question: are not these fundamental 
premises negated by the considered vortical phenomena? 
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Note that the proof of the Manley-Rowe theorem and the 
treatment of quantum decay and coalescence processes in- 
volve energy conversion by one reactive two-terminal ele- 
ment. Transfer of vortical-motion energy, however, occurs 
under conditions corresponding in fact to a branched 
network of such nonlinear elements loaded by finite-Q fre- 
quency filters. Such a situation is in general more representa- 
tive of the physics of real systems. It will be clear from the 
analysis, however, that the point is not so much the ensuing 
deviations form the Manley-Rowe relations as the fact that 
the theorem and the directivity rule for the energy exchange 
are not uniquely related. 

It turns out that from the standpoint of symmetry with 
respect to the detunings w - w ,  the energy exchange in Ra- 
man resonances can be divided into two parts. One is vortical 
and the other is not. There is no vortical part in the three- 
wave model. From this standpoint, "fundamental" for the 
mechanisms of energy transfer for resonances ( 1 ) and (2)  in 
many-dimensional systems should be the four-wave rather 
than the three-wave model. 

Energy exchange by the vortical mechanism can play a 
significant role when the fast motions have close frequencies 
ok and the frequencies of the slow motions are also close to 
one another. As applied to oscillations and waves in distrib- 
uted system, this is the usual situation, and its inverse is more 
readily an exception. 

WHAT IS MEANT BY ENERGY EXCHANGE OF VORTICAL 
TYPE 

Consider energy exchange between nonlinearly inter- 
acting high- and low-frequency motions, produced by reso- 
nant excitation of high-frequency oscillations of frequency 
w .  We denote by x = (x ,, x,, . .. ) the generalized coordinates 
of the slow forms of motion (of the frequencies R <w ), and 
by c = (c,, c,, ... ) the variables of the high-frequency modes. 
The energy exchange during one cycle of the periodic vari- 
ation of x amounts to 

where F =  (F,, F,, ... ) are the generalized forces corre- 
sponding to the coordinates and brought about by interac- 
tions with the c oscillations. Being interested in the energy 
exchange averaged over the time 2& for the slow motions 
x ,  we must replace the values o fF in  (3)  by their averages. 
Assuming this done, we retain the earlier symbol F for the 
average forces. 

A contribution to (3) is made, obviously, only by thex- 
dependent part1' of F. Since the reaction of the force of the c 
oscillations lags the x motions, F is a retarded functional of 
x. In the case of small harmonic changes Sx the oscillations 
SF are harmonic in the linear approximation and are shifted 
in phase relative to Sx. Separating the in-phase (proportion- 
al to Sx) part of S F  from that shifted by a/2 (and propor- 
tional to Sx), we represent them in the form 

where (SF), contains the entire reversible part of SF, which 

does not contribute to (3) .  The irreversible terms are of the 
form 

where K and T are certain real matrices that are even func- 
tions of fl. From the irreversibility condition it follows that 
the matrix K should be antisymmetric and I? symmetric. 
Physically, ( 6 F ) ,  are dissipative forces characterized by a 
friction-coefficient matrix T, and (SF), are vortical forces 
characterized by a vorticity-coefficient matrix K. 

In the general case of anharmonic perturbations 

bx = x b ( Q )  e-"I 

we arrive at the representation (45) with vortical and dissi- 
pative forces 

(6F),=i x QI'(Q)  b ( Q )  e-in', 
n 

The parameters K and r are functions of the degree of 
tuning of the combination resonances. If the energy ex- 
change between x and c is unilateral at certain tunings, so 
that only amplification or only damping of small x oscilla- 
tions with frequency R takes place, regardless of their phase 
shift), the quadratic form ( x r x )  (where the angle brackets 
( ) denote averaging over the time 2a/R) should be of defi- 
nite sign, positive or negative. Moreover, we must also have 

since the power ( xKx )  reverses sign, depending on the phase 
differences of the components {x ,  ). 

Probably no attention was paid in the earlier physical 
investigations to the energy exchange generated by vortical 
forces in combined resonances. The condition (6)  is general- 
ly not satisified, so that the energy fluxes can have arbitrary 
directions, and in particular opposite to those expected for 
combined resonances. We proceed to a detailed treatment 
based on the analysis of Ref. 4. 

MODEL OF INTERACTIONS 

Consider a class of systems for which the energy of the 
high-frequency oscillation modes c, including their coupling 
to the motionsx and the external field of frequency w ,  has the 
structure 

k,,, 

The connection between c and x is contained in the relations 
w,, (x) = wZk (x) ,  and ek ( t )  -exp( - iot).  It is assumed 
(without loss of generality) that at fixed x, about which the 
considered oscillations Sx take place, the matrix w,, is diag- 
onal and the diagonal elements {w,  ) are the eigenfrequen- 
cies of the corresponding c modes. 

Interaction models having this structure are widely 
used. They are employed to approximate conditions when 
the excitation of the high-frequency system is resonant and 
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the excitation level is low, so that the anharmonicity of the c 
subsystem (at x = const) is still negligible. The case hereto- 
fore investigated in greatest detail is three-wave interaction, 
which corresponds in (7) to two-dimensional oscillations of 
c and one-dimensional ofx, representing, as does also each of 
the c,  oscillations, an oscillator. Note that in the three-wave 
model, and for a one-dimensional x in general, the irrevers- 
ible part of (4) can contain only the term (SF), , and there is 
no vortical term. 

The power flux from c  to x is equal to 

where 

The coefficients of x in (8)  are obviously the generalized 
forces F. The irreversible terms in Fare due to the response 
of the c oscillations to the changes of x, since it can be seen 
from (8) that the forces F are potential if this response is 
neglected. 

We are interested in the general structure of forms qua- 
dratic in Sx and defined by matrices K and r representing 
the vortical and dissipative energy exchanges. There is no 
need to specify the dynamics of the x subsystem in this case. 

We choose the variablesx to be real. Note that the anal- 
ysis pertains not only to interactions for which x in (7)  are 
generalized coordinates. We can take x to mean a set of arbi- 
trary variables of the slow system, including arbitrary com- 
binations of coordinates and momenta. In this general case 
the energy exchange is given as before by Eq. (8).  The quan- 
tities F, however, which are equal to coefficients ofx in (8), 
will no longer be strictly speaking generalized forces. The 
energy flux from the fast to the slow system, however, is still 
determined by (3) in which, as previously, we can separate 
the vortical and dissipative parts in accordance with (4). 

Considering resonant regimes, we assume the Q of the c 
modes to be finite, and use the standard substitution 
wk - wk - iyk , where yk are the damping frequencies of the 
corresponding c modes. 

Thus, when estimating the parameters K and r and the 
energy exchange at small Sx, we start from Eq. (8)  where the 
dynamics of c is defined by the set of equations 

ANALYSIS 

The calculation yields 

n.1 

Here a = (a,, a,, ... ) are the amplitudes of the c oscillations 
of frequency w  and are stationary at Sx = 0. The parameters 
D y' and D '_k' are equal to 

Expression ( 10) are exact (see Ref. 4). 
For the power transferred from c to x at small oscilla- 

tions 

we obtain, averaged over the period 2?r/fl, 

+ , ('2) P (O) -<P81)= bg(k)b*~Ik) - I bx(k)b*~'k '  

where R :' are nondimensional functions of the detuning 
w  - w ,  and of the frequency fl, and are given by 

The behavior of their ratio is shown in Fig. 1. 
The first and second sums in ( 12) are the energy ex- 

changes due to the action of the dissipative and vortical 
forces, respectively. Note that ibq',' b  * is a real quantity, as 
is also bg',' b  *. The two expression are of the same order of 
magnitude. The quadratic form bg'k' b  *, however, is always 
non-negative, while ibx',' b  * can be of either sign, depend- 
ing on the relations between the ( 6 , )  and {a, ) phases, but 
always 

This result follows, for example, from the fact that the rela- 
tions 

are non-negative, and we obtain for them from (9) 

where dk' and zck' are symmetric and antisymmetric ma- FIG. 1. Ratio of the factors R (:' and R '!' as a function of W y ,  and of 
trices with elements 6= (W - W L  ) / y k .  
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P y' stands for the average power dissipated by the c oscilla- 
tions of the k mode at the frequencies w + R in the oscilla- 
tion process ( 11 1. We denote by c+ and c- the correspond- 
ing harmonics of the c oscillations. 

We consider now the dissipative part of the energy ex- 
change in ( 12). It is proportional to the factors R (!', which 
reverse sign simultaneously with the detunings w - w,. 
From this and from the fact that bg',' b * are non-negative it 
follows that the dissipative energy exchange is determined 
by the signs of the detunings: the resonances with frequen- 
cies w, < w produce a positive energy flux from c to x ,  and 
the resonances with wk > w cause energy to be drawn from 
thex subsystem. This agrees fully with the usual viewpoints 
concerning the direction of the energy flow in the combined 
resonances ( 1) and (2).  

A different character of energy exchange is brought 
about by vortical forces: the resonance denominators D y' 
and D 'k' are the same, but the vortical contribution to the 
energy exchange ( 12) is determined by factors R (t' that do 
not depend on the sign of the detunings w - ok . Recogniz- 
ing furthermore that the quantities ibx',' b * reverse sign, 
depending on the {b,) phases, it becomes clear that for the 
vortical part it is immaterial whether the energy of the oscil- 
lations of frequency w is transformed into the Stokes or anti- 
Stokes region of the spectrum. At w = w, the contribution 
to (12) from the k th terms comes only from the vortical 
forces. 

We call attention to the fact that R y' > IR '!'I always, 
and that equalities are possible in ( 13 ) at all k simultaneous- 
ly. For example, for a non-gyrotropic system with two-di- 
mensional motions c = (c,, c,) and x = (x , ,  x,) the equali- 
ties take place, for example ast a ,  = ia,, b ,  = ib,, and 

The possibility of ( 13) turning into an equality at all k means 
that vortical energy exchange can be predominant at all val- 
ues of w and fl. The power P can then be of either sign re- 
gardless of the location of w relative to the {wk ) spectrum, 
including, in particular, P >  0 at w < min{wk ). An example 
of a system with predominant energy exchange in the case of 
three-dimensional c oscillations and two-dimensional x is 
the vortical parametric motor whose idea is described in Ref. 
4. 

Let us compare P ( R )  with the powers P+ and P- dissi- 
pated by the system at the combined frequencies w + R and 
w - fl. We have 

k k 

It  follows from ( 12), ( 14), and ( 15) that 

The presence of vortical terms in P y' causes partial or total 
(if (13 ) represents equalities) suppr~ssion of the Raman os- 

cillations c at the Stokes or anti-Stokes frequencies, regard- 
less of the location of w relative to {w, ). This is indeed the 
cause of the breaking of the usual symmetry of P ( R )  relative 
to the detunings w - w, , and is not due at all to violation of 
the Manley-Rowe theorem. In fact, Eq. ( 18) differs from the 
relation that follows from the theorem 

in that the denominators a, of P '2' and P y' in ( 18) are 
replaced by w - R and w + a, respectively. For high-Q re- 
sonances ( T ~  4 ~ ~ )  and at Sl4w the difference between 
( 18 ) and ( 19) is immaterial. 

BROADBAND ACTIONS 

The difference between the dependences of the vortical 
and dissipative parts of the energy exchange on the detun- 
ings w - wk points to interesting and important differences 
between their behaviors under conditions of broadband ac- 
tions e ( t )  = {e, ( t )  1. Heretofore the e ( t )  were assumed har- 
monic. Let the e ( t )  contain high frequencies in a ceratin 
band Aw: 

0 

If this sum has components that differ in frequencies by R, a 
nonzero energy exchange between c and x can occur also 
without allowance for the influence of the motions ofx in the 
c-oscillation regime. Neglecting the reaction force, we have 
F = F O ( t ) ,  where 

here a,, = (w - wk + iyk 1-'ek,. 
Oscillations o fx  stimulated by the forces F o ( t )  causes, 

besides the discussed effects of the reaction forces, a redis- 
tribution of the energy fluxes at the combined frequencies. In 
particular, they cause high-frequency oscillations at the 
anti-Stokes frequencies w, = 2w' - w" (here w' > w" ). 
These effects can be related to phenomena called in nonlin- 
ear optics coherent anti-Stokes Raman scattering (CARS). 
To differentiate from them, we consider conditions when the 
sum (20) either contains no components that differ by R, or 
the number of such components is large and their phases are 
sufficiently uniformly distributed in the interval (0, 277). It 
suffices in this respect to have the sum ( 2  1 ) for F (' vanish at 
Iw' - a" I = R. We shall assume that this is the case also at 
(w' - wl'I = 2.n. 

The results of the calculation of the parameters K and r 
and of the powers P and P 2' redyce then simply to the fact 
that the summation over k in their expression is supplement- 
ed by summation over w. For example, for the power P ( n )  
we now obtain 

h , ~  k , o  

whereg(k.~d and x(k.cd) differ from g'" and x ' ~ '  in that a,*a, 

are replaced by az(,a,. The terms proportional to the factors 
a:<,, a,,. with w' #w" vanish as a result ofthe time averaging. 
The same results are obtained if the pump (20) is regarded 
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as a random stationary field and statistically averaged char- 
acteristics are considered. 

Let the intensity of the e( t )  spectrum be relatively uni- 
form in a wide band Aw that overlaps the spectral band 
{w,  + R) for the c modes that participate in the interactions 
with x .  The value of r and the energy-exchange part corre- 
sponding to it then become negligible. On the other hand, the 
vortical energy exchange may in this case not only decrease 
in intensity, but also increase. It can be controlled by varying 
the phases of the components {e,, ) with different k. 

Thus, energy exchange via the vortical mechanism 
should, generally speaking, become predominant in the case 
of broadband pumping of many-dimensional systems. Of 
course, for vortical Raman effects to set in, the slow forms of 
motion must have close eigenfrequencies. If there are no spe- 
cial resonant modes in the low-frequency system, vortical 
irregular motions can apparently be excited. 

The analysis above was carried out for the case of har- 
monic perturbations Sx. For perturbations Sx containing a 
spectrum of frequencies R it is necessary to regard b and b * 
in the expressions given above for the energy fluxes as func- 
tions of R and carry out additional summation over R. 
Terms containing factors b, ( R )  b ;(a') with a'# R will 
vanish as a result of the averaging. Thus, a generalization to 
the case of anharmonic Sx encounters no difficulties and 
does not alter the statements above. 

CONCLUSION 

Thus, for resonances ( 1 ) and (2)  we must distinguish, 
from the standpoint of the symmetry of energy conversions 
over the Raman spectrum, between two energy-exchange 
mechanisms, vortical and dissipative. 

Only one dissipative mechanism is realized if the mo- 
tions are one-dimensional in the fast or slow subsystem (or 
in both). Actually, only the dissipative mechanism served as 
the basis of the present views concerning the character of 
energy conversion over the Raman spectrum. The existence 
of the vortical mechanism upsets these views and makes pos- 
sible excitation or suppression of low-frequency oscillations 
irrespective of the position of the frequency w relative to the 
{w, ) spectrum. 

In the general case, energy exchange via the vortical 
mechanism is no less significant than via the dissipative one. 
Both are determined in fact by one and the same system of 

interaction matrix elements {w,,,, ) and the corresponding 
selection rules. Both are quadratic in these elements. 

It is understandable that in many-dimensional systems 
close to degeneracy in the high and low frequencies, with 
more than one component of the pump e( t ) ,  the excitation of 
combined oscillations should be manifest primarily in exci- 
tation of vortical motion. This is clear because the instability 
growth rates are extremal for those forms of low-frequency 
motion for which both forms of energy fluxes are significant. 
Vortical energy fluxes are quite important also from the 
standpoint of realization of inverse phenomena in such sys- 
tems, i.e., deexcitation and suppression of slow motions by 
high-frequency fields. For suppression to take place it is nec- 
essary that the detunings w - wk be negative. Even in this 
case, however, the presence of a vortical energy-exchange 
channel can lead to warming-up of definite forms of motion, 
reducing the summary effect to zero. 

A particularly important role can be played by energy 
exchange via the vortical mechanism if the low-frequency 
subsystem has enough inertia (inasmuch as the ratios R ';'/ 
R 'k' -+ 0 as R -- O), and also when the high-frequency pump 
has a large bandwidth. 

The author thanks S. G.  Rautian for helpful questions 
concerning the relation between CARS and the phenomena 
considered here. 
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