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The superfluid phases forp pairing in the presence of strong spin-orbit coupling are classified. 
It is found that the quasiparticle excitation spectrum in some phases is of a double-gap nature. 
New branches of the collective nuclear excitations are indicated. The asymptotic angular- 
momentum dependence of the moment of inertia of a nucleus in a high-spin rotational-band 
state is obtained. The results of the theory are compared with the experimental data. 

INTRODUCTION 

Triplet Cooper pairing (pair spin S = 1 ) in nuclei has 
thus far not been considered." At the same time we do not, 
on the basis of the properties of the interaction between nu- 
cleons, see any grounds for ruling out triplet pairing. It is of 
interest to identify the physical nuclear effects that could be 
produced by triplet pairing. Attracting particular attention 
are three groups of qualitative consequences of triplet pair- 
ing: 

1) enrichment of the collective nuclear excitation spec- 
trum as a result of the multiphase nature of a superfluid 
Fermi liquid with triplet pairing; 

2) the anisotropy of the triplet nuclear superfluid liq- 
uid, as inferred from the presence of a physically preferred 
axis (let us note that the latter does not stem from any non- 
spherical mean field introduced without justification); 

3) a two-gap structure of the quasiparticle excitation 
spectrum for a number of superfluid phases. 

The theory of triplet pairing was developed specifically 
for superfluid 3He (see Ref. 3).  The nucleus, as a Fermi 
liquid, differs significantly from 3He mainly because of the 
fact that triplet pairing in nuclei should be accompanied by 
strong spin-orbit coupling (in the case of 3He it is extremely 
weak, so that it is neglected in the first approximation) .2' As 
a consequence, the superfiuid phases that are possible for 
3He are different from those for nuclear matter. 

Notice that in nuclear physics we are interested not only 
in the ground states (corresponding to the absolute mini- 
mum of the free energy), but also in the excited (quasista- 
tionary) states. Among them could be the states pertaining 
to the various superfluid phases. Therefore, it is important in 
nuclear theory to know the entire set of possible superfluid 
phases." Accordingly, in Sec. 1 we carry out a complete 
phase analysis for triplet p pairing in the presence of strong 
spin-orbit coupling. 

The nuclear states corresponding to the various super- 
fluid phases should, in a sense, be "highly orthogonal" to 
each other (e.g., the radiative transitions between them 
should be inhibited). This should lead to the appearance of a 
band of nonintercombining levels. In order to determine the 
degree of inhibition of the interphase nuclear transitions, we 

must have the superfluid-state wave functions in the various 
phases. This problem is solved in Sec. 2 with the aid of the 
group formalism often called the "quasispin method." 

In Sec. 3 we consider the quasiparticle-excitation spec- 
trum. Here we indicate the phases that give a two-gap spec- 
trum, elucidate the structure of the two-gap multiplet for 
even-A and odd-A nuclei, and determine the multipole or- 
ders of the electromagnetic transitions between the compo- 
nents of the multiplet. 

Section 4 is devoted to the rotational spectra of nuclei in 
states with triplet superfiuidity. Here we obtain asymptotic 
dependences of the moment of inertia on the angular mo- 
mentum. The results are compared with the experimental 
data. 

In Sec. 5 we discuss those boundary conditions for the 
order parameter which are specifically for the superfluid 
phases under consideration. 

The final section contains a summary of the principal 
results and conclusions. 

Let us emphasize that, in the present paper, we do not 
consider models of the interactions leading to triplet pairing. 
What we aim is to identify the observable consequences of 
the assumption that triplet pairing occurs in nuclei. 

1. THE PHASE ANALYSIS 

For the benefit of the reader, we shall briefly recall the 
basic points of the theory that are relevant to our subject, 
although they are expounded in the papers cited above.2 

We define the wave function of a Cooper pair as the 
matrix element 

Here N is theAnumber of identical fermions (neutrons or 
protons); the Y (ri ) are the anticommuting annihilation op- 
erators for the fermions located at the points ri ; the spinor 
indices a and B assume the values 1 and 2; and the variables 
p and r are the coordinates of the relative position and center 
of mass of the particles of the pair: 
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To separate from the direct product of the two spinors the 
scalar (pair spin S = 0)  and the vector ( S  = 1 ), let us ex- 
pand the matrix f = ( faB ) in terms of the basis matrices: 

(the u are the Pauli matrices). It follows from the equality 
(1.1) that 

Hence (with allowance for the fact that a, is antisymmetric 
and the matrices a,u are symmetric) we obtain 

These formulas indicate that the singlet pair (the wave func- 
tion is the scalar a )  can be in states with only even orbital 
angular momenta L for the relative motion, while the triplet 
pair (the wave function is the vector b)  can be in states with 
only odd L. Below we consider only triplet p pairing 
(L = 1). 

In the case of strong spin-orbit coupling the orbital and 
spin angular momenta combine into a total pair angular mo- 
mentum J that assumes the values O,1, and 2. The state of the 
Cooper pair is thus characterized by the angular momentum 
J and its component M along the axis of quantization. The 
superfluid state is a Bose condensate of Cooper pairs, i.e., an 
ensemble of identical (with one and the same J) pairs in one 
and the same state (the same M for all pairs with a given J ) .  

It follows therefore that each phase is specified by giv- 
ing the values of J and M. Here the phases differing only in 
the sign of M are equivalent (since b and its complex conju- 
gate b* are equivalent). On the whole we obtain six super- 
fluid phases specified by the possible values of the pair of 
numbers J and 1 M 1. This r e ~ u l t , ~  which is based on qualita- 
tive physical arguments, should be supplemented by a for- 
mal derivation that allows the establishment of the explicit 
form of the wave functions b for each of the phases. 

For a fixed orbital angular momentum for the pairing, it 
is expedient to separate out the angle variables 6 = p/p. Dis- 
carding the unimportant-for the phenomenological analy- 
sis-function of the scalar p, we have 

The complex tensor B is the order parameter (OP). The 
system's energy can be written in the form of a functional 
of the OP: 

a-lqn j. 

The functional Fcontains real scalars formed from Bij and 
B ;. In the case of strong spin-orbit coupling the tensor in- 
dices of the OP are indistinguishable (contractions over the 
orbital and spin indices are possible). The scalars thus ob- 
tained are invariants of the SO(3) group. 

Moreover, the real functional F is invariant under the 
transformation B-. eiaB from the group U( 1 ) . Therefore, 
the full symmetry group for triplet pairing in the presence of 
strong spin-orbit coupling is the direct product 
G =  SO(3) e U(1): 

Two OP's B and B ' that cannot be transformed into 
each other by a G(B ' #gB)  -group operation clearly describe 
different phases. In particular, this means that the irreduci- 
ble second-rank tensors B :, ( J  = 0,1,2 correspond to dif- 
ferent superfluid phases when the J values are different (the 
weight Jof  an irreducible representation of the SO(3) group 
is the angular momentum of the Cooper pair). 

The degeneracy space .(gB) ( g  runs through the entire 
group G and B is a fixed tensor) i.e., all the OP's pertaining 
to the same phase coincide with the factor space G /H of the 
group G with respect to the maximal stationary subgroup H 
of the tensor B: 

The subgroup H contains discrete and continuous elements. 
In the present case the continuous part of H depends on one 
parameter: the angle of rotation about an axis specified by 
unit vector 2. Let us denote by h, the generator of the sub- 
group H. Then instead of ( 1.5) we can write 

The phase analysis amounts to the solution of Eq. (1.5) or 
(1.6) for all the subgroups H (notice that the discrete com- 
ponents of these subgroups can be determined if the explicit 
form of the B tensors satisfying Eq. ( 1.6) is known). 

Let us find the generators h, . The continuous subgroup 
of SO(3) is the group of rotations about the axis 2. Let us 
denote that generator of the irreducible SO(3) representa- 
tion of weight J which corresponds to these operations by 1: 
and its eigenfunctions by B JM: 

It is clear that h,  = I :  only when M = 0. In order to satisfy 
Eq. ( 1.6) for M #O, we must supplement a rotation about 2 
through an angle p, i.e., the transformation 

by a transformation (B  JM-+e - jMPB JM) from U( 1 ), to 
which transformation corresponds the generator 
iMd/d@(ei@ is a phase factor that appears for all compo- 
nents of B JM). Thus, 

Evidently, it is sufficient to consider the solutions to Eq. 
( 1.6) with the generators ( 1.9) only for the M values of one 
sign. 

The formal analysis carried out above leads to the same 
results as the qualitative arguments used earlier: the possible 
superfluid phases are specified by the pairs of numbers 
J,IM 1. But besides that, we now have Eq. ( 1.7), the solution 
to which (with the generators ( 1.9) ) allows us to determine 
the tensor structure of the OP for each phase, which in turn 
allows us to find the discrete elements H,, of the stationary 
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TABLE I. Structure of the order parameter in the case of tripletp pairing with strong spin-orbit 
coupling. 

subgroup H and, thus, completely determine the degeneracy 
space G /H. 

The procedure for solving the equations ( 1.7) is a stan- 
dard one, and does not require special explanations. The re- 
sults are presented in Table I (the scalar factors in the ex- 
pressions for the B tensors are omitted). Also given in the 
table are the first and second homotopy groups T, and T, for 
the degeneracy space. The nontriviality of these groups indi- 
cates the possibility of the appearance in nuclear matter of 
stable OP inhomogeneities determined by singular lines 
(T, ) and singular points (n,). 

The principal result of the present section consists in the 
fact that, in all the phases with J #0, the superfluid nuclear 
liquid is anisotropic: the axis of quantization of the compo- 
nents of the angular momentum of the Cooper pairs is physi- 
cally distinct. Thus, in nuclei with triplet pairing the spheri- 
cal symmetry is spontaneously broken. The (J,M = 0)  
phases retain their axial symmetry. 

2. THE WAVE FUNCTIONS OF NUCLEI IN STATES WITH 
TRIPLET PAIRING 

The nuclear wave functions I J M  ) corresponding to dif- 
ferent superfluid phases (J,M) should, as has already been 
noted, be "strongly orthogonal" to each other, since the 
transition from one state into another requires the recon- 
struction of the entire condensate. 

The strong orthogonality implies that the off-diagonal 
matrix elements 

of the product of any finite number of quasiparticle creation 
and annihilation operators go to zero exponentially in N as 
N- CE ( N  is the number of identical fermions), as do the 
scalarproducts ( J 'M'  I J M  ) themselves. Inmacroscopiccon- 
densed media N is very large, and it is clear that the quanti- 
ties ( J  'M ' 1 J M  ) are negligibly small. In nuclei, however, N 
does not, in order of magnitude, exceed 10'. Therefore, the 

question of the degree of inhibition of the interphase transi- 
tions (e.g., the radiative transitions) needs to be investigat- 
ed. 

To do this, y e  shall use the quasispin formalism. In it 
the Hamiltonian H of the system is expressed in terms of the 
generators I = (I,, ..., I, ) of some Lie group: 

Here k is the quasiparticle momentum (as usual, we assume 
that fermions with opposite momenta pair up, and therefore 
the sum is a single one) and the a, are numerical functions 
of k. Let us introduce the operators D(o ,  ) that diagonalize 
the terms a, *I, : 

They are clearly the operators from the quasispin group that 
correspond to the finite (fairly large) values of the group 
parameters o,. The eigenfunctions ( JM ) of the Hamilto- 
nian (2.2) are obtained from the particleless state 10) 
through the "rotation" 

k 

In the paper of Hasegawa et ~ 1 . ~  on the theory of 
superfluidity of 3He, the Lie algebra of the SO(5) group is 
used as the quasispin. It will be seen below that, in the gen- 
eral case of triplet pairing, we can manage with the six gener- 
ators ofthe SO(3) e SO(3) group [instead ofthe ten genera- 
tors of the SO(5) group]. 

The linear dimensions of nuclei are much greater than 
l/kf ( kf is the radius of the Fermi sphere). This allows us to 
consider the properties of nuclear matter, classifying the 
quasiparticle states according to the momenta. On the other 
hand, the radii of even the heavy nuclei are smaller than the 
correlation length. This means that we can be interested 
mainly in the homogeneous superfluid states (the order pa- 
rameter B does not depend on r). The Hamiltonian corre- 
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sponding to such states with 'P pairing has the form 

Here k is the quasiparticle momentum (k = k/k), E, is the 
quasiparticle energy (measured from the Fermi energy E ~ ) ,  
the Greek subscripts indicate the quasiparticle spin compo- 
nents, G is a tensor containing the effective constants g, of 
the short-range pair forces in the pair states with different 
J =  0, 1, 2: 

In the formula (2.5) the k and k' sum is over the half- 
space k,, k ; > 0 (the normalization volume has been taken 
to be equal to unity, and summation over repeated tensor 
and spinor indices is implkd). Next, let us go over to the 
approximate Hamiltonian H ', the eigenvectors of which are 
coherent states I f ): 

For a g iv~n value Jo f  the pair angular momentum the Ham- 
iltonian H ' has the form 

k 

(2.10) 

Here the order parameter B, is normalized as follows: 

B t j 3  -- (2.11) 

The vectors b(k) are connected with the Bij  by a relation 
similar to the equation ( 1.4) : 

Of importance for the determination of the appropriate 
quasispin group that diagonalizes the Hamiltonian (2.10) 
are the commutation relations between the terms in the 
Hamiltonian. Triplet pairing is characterized by the pres- 
ence in the Hamiltonian of the spin matrices u*b. Therefore, 
an important role is played by the commutator 

[ (ob) , (ob*) ] =2io [bb'] . (2.13) 

Under rotations about the quantization axis 2, the ten- 
sor B ;y transforms according to the law ( 1.8). It follows 
from (1.8) and (2.12) that, when M = 0, the vectors b and 
b* are collinear, and [b x b*] = 0. It is clear that the quasi- 
spin group should be the same as for singlet pairing (al- 
though the spin matrices are present, they do not affect the 
required commutation relations). According to ( 1.8) and 
(2.12), for M #O, b and b* change under rotations about $ 

and besides they change differently. The latter fact indicates 
that b and b* are not collinear. The vector [b x b*] #O, and 
the commutator (2.13 ) also does not vanish, and this can 
affect the Lie algebra of the quasispin group. It is therefore 
advisable to consider the indicated two cases ( M  = 0 and 
M #O) separately. 

Let us introduce the operators: 

Here the set of three basis vectors 3, f ,  and 2 are defined as in 
Table I ([f  ~ 9 1  = 2). 

The commutation relations between the operators 
(2.14), (2.15) correspond to the Lie algebra of the SO(3) 
group; moreover here I :  = 0, so that the irreducible repre- 
sentations with weights 0 and 1/2 are realized. The Hamilto- 
nian (2.10) can be written in the form of a linear combina- 
tion of the generators of this representation: 

where 

The finite-rotation operators D(o ,  ) that diagonalize the 
terms of the Hamiltonian (2.16) have the form 

where a = + 1/2 is the quasiparticle spin component along 
the axis z of symmetry of the condensate, and 

Er 
C O S O k  =:A 

[ek2+g,'b' ( k )  b ( k )  1''' ' 

The particleless state 10) is the eigenvector of the generators 
I,(k) corresponding to the eigenvalue - 1/2. 

The ground-state wave function JJO) of the condensate 
in the phases with M = 0 can be found from the formula 
(2.4) by letting the operators (2.17) act on the vector 10). 
The ground-state energy can be found through3irect com- 
putation of the mean value of the Hamiltonian H ': 

=gJ s p  B+B +C k a { ~ k - [ ~ k 2 + g . ' b ( k ) b .  ( L )  1%). (2.19) 

As was expected, for M = 0, the results are similar to the 
formulas for singlet S pairing ( 1  = 0). In both cases the 
SO (3) group serves as the quasispin group. The D(o ,  ) op- 
erators for singlet pairing are obtained from (2.17) through 
the replacement of 2a by 1, while the o, parameters are 
obtained from the equality (2.18) through the replacement 
of the vector b by the corresponding scalar. 
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In the phases with M #O the vectors b and b* are not 
collinear, and [b x b* ] #O. Using Table I, we find, for exam- 
ple, for J = M = 2: 

i[bb']Lzl [bb'] 1 .  
Accordingly, the vector bl2. The Hamiltonian (2.10) can, 
as before, be written in a form similar to (2.16), but another 
quasispin group must be chosen. Let us consider the opera- 
tors 

1 b (k) -2ip [bi] 
I+ (k, p) = 7 aka+a+rp (-ia2d a@ , (2.201 

1 2  [bb*-2p I [bb'] I 1'" 

Here p = + 1/2 is the quasiparticle spin component along 
the 2 axis. It is not difficult to verify that, for a fixedp, the set 
of three operators I,, I- = I , and I, are the generators of 
the SO(3) group, while operators corresponding to different 
values of p commute. Thus, we have the Lie algebra of the 
SO(3) e SO(3 ) group. As before, the irreducible represen- 
tations with weights 0 and 1/2 are realized, the particleless 
state 10) being the eigenvector of the generators 13(k, p ) 
belonging to the eigenvalue - 1/2. 

The Hamiltonian (2. lo), expressed in terms of the gen- 
erators (2.20) an$ (2.21), has the form (2.16) with the fol- 
lowing operator H ( I )  : 

The finit~quasispin-rotation operators that diagonalize the 
terms ofH(I)  are given by the formula (2.17), with the only 
difference that the rotation parameters o now depend not 
only on the momentum k, but also on the spin variable a: 

cos ora=ek/[~r"gJZ(b(k)b*(k)-2al [b(k) b'(k) ] I)]". 
(2.23) 

The condensate wave function ( JM ) in the phases with 
M # 0 can, as before, be obtained from the formula (2.4) by 
letting the operators (2.17) with the parameters (2.23) act 
on the vector 10). Notice that the state IJM ) is P-even, since 
the operators (2.17) acting on the vector (0) are invariant 
under space reflections. 

The ground-state energy Em of the condensate with 
M # 0 is given by the expression 

It can be seen from the formula (2.24) that the energy of the 
quasiparticles in the phases with M # 0 depends on their spin 
component along the axis of symmetry of the condensate. 
This circumstance gives rise to a two-gap quasiparticle-exci- 
tation spectrum structure. This question is discussed in 
greater detail in Sec. 3. 

Knowing the condensate wave functions in the various 
superfluid phases, we can compute the scalar products 
(J'M'IJM ), and, as noted at the beginning of this section, 
thus determine the degree of inhibition of the interphase 
transitions (including the radiative transitions) in nuclei. 
To estimate the order of magnitude of the effect, it is suffi- 
cient to consider the scalar product ('So13Po) of the conden- 
sate wave function with singlet S pairing ( I 'So) ) and the 
wave function with triplet p pairing in the J = M = 0 phase 
( 1 ,Po) ) . AS noted above, the SO ( 3 ) group serves as the qua- 
sispin group in both cases. In order to obtain an estimate for 
the degree of orthogonality in the case when the characteris- 
tics of the two superfluid states are as close as possible, let us 
assume that the quasispin-rotation parameters w [formula 
(2.18)] for these states are identical. Using the preceding 
results for the wave functions, we obtain then: 

Here we have set 

Performing the integration over k in (2.25) in the standard 
approximation [with upper cutoff of the integral at k, and 
the replacement of A, by the constant A (k  = k, ) 1, we find 

( N  is the number of nucleons of the same kind in the nu- 
cleus). In real nuclei N=: lo2, EF z 4 0  MeV, and the gap 
A z  1 MeV. Substituting these numbers into (2.27), we ob- 
tain the estimate: 

This means that the probability suppression factor for the 
interphase radiative transitions is, in order of magnitude, 
equal to 

Thus, assuming the existence in nuclei of the various 
types of Cooper pairing, we arrive at the qualitatively new 
conclusion that there exist groups of levels corresponding to 
different superfluid phases, and practically not intercombin- 
ing with each other. 

3. THE QUASIPARTICLE EXCITATIONS 

The wave functions of the excited n-quasiparticle states 
of the condensate are obtained through quasispin rotations 
of the vector 10) : 

The diagonalization of the Hamiltonian (2.10) by the meth- 
od expounded in Sec. 2 yields the quasiparticle energy spec- 
trum 

eJ, (k, p) = {er'+gJ2(bb'-2p1 [bb'] I)}". (3.1) 

Let us recall thatp = + 1/2 is the quasiparticle spin compo- 
nent along the axis i[b X b*] . As follows from (3.1 ), the 
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quasiparticle excitation spectrum is a two-gap spectrum if 
[b X b*] #O. According to the foregoing, this is the case for 
the phases with M $0. Notice that this spin splitting of the 
terms of the quasiparticle spectrum has nothing to do with 
the spin-orbit coupling in the pairing forces. It is not diffi- 
cult to show that it occurs also in the so-called P and y 
phases in the case of triplet pairing without spin-orbit cou- 
pling, which is characteristic of superfluid 3He. This circum- 
stance has not been discussed in detail in the literature prob- 
ably because of the fact that other phases are realized in the 
homogeneous state of the superfluid state of 3He.4' But re- 
cently Volovik and Salomaa8 put forward the hypothesis 
that the0 phase exists at the core of a 3He-B vortex. Let us 
emphasize that the existence of double-gap phases is a quali- 
tative characteristic of triplet pairing. In the case of singlet 
pairing with any admissible (i.e., even) orbital angular mo- 
mentum the quasiparticle excitation spectrum will always be 
a single-gap spectrum. The outwardly similar ( L  = 2, 
M #O)  singlet and ( J  = 2, M #O) triplet phases, for exam- 
ple, differ from each other by, in particular, the fact that the 
quasiparticle excitation spectrum is a single-gap spectrum in 
the first case and a double-gap one in the second. The equa- 
tions for the gaps are also naturally different. Amundsen and 
Ostgaard, in the cited paper on the superfluidity of neutron 
stars,' considerjust the triplet pairing with J = 2 and M = 0, 
2, using for the M = 2 case the equations corresponding to 
the single-gap spectrum, which cannot be considered to be 
correct. 

Let us now consider those quasiparticle excitations of 
an even-even nucleus in the triplet superfluid phase with a 
double-gap spectrum (i.e., with M #O)  which are closest to 
the ground state. Such excitations are obtained through the 
breakup of one Cooper pair, and are therefore two-quasipar- 
ticle excitations: 

In the single-gap phases [E,, (k, p)  does not depend on the 
component of the quasiparticle spinp 1, including the singlet 
ones, to this two-quasiparticle excitation corresponds one 
level. In the double-gap phases the picture will be different: 
for fixed k, and k, there will arise four nondegenerate levels 
corresponding, according to the formula (3.2), to the fol- 
lowing possible sets of values of the number pair p , and p,: 
p1 =p2 = _f 1/2 andp,  = -p, = f 1/2 (Fig. I).'' 

The radiative transitions between the ( p, = p , )  and 
( p , = - pZ) levels, transitions which correspond to the 
flipping (Ap = f 1)  of the spin of one quasiparticle, are 
magnetic dipole ( M  1) transitions. As to the transition 
between the two extreme (the topp, = p, = - 1/2 and bot- 
tomp, = p, = + 1/2) levels of the double-gap multiplet, it 
should be suppressed: it requires a two-unit change in the 
angular momentum component, and, consequently, cannot 
belong to the M 1 class. According to the selection rules, such 
a transition can be an electric quadrupole (E 2) transition. 
But an E 2 transition without a change in the orbital angular 
momentum of the quasiparticle can occur only as a result of 
the presence of relativistic corrections (for nuclei the sup- 

FIG. 1 .  The double-gap multiplet of the two-quasiparticle excitations in 
even-even nuclei and the radiative-transition scheme ( p, andp2 are the 
quasispin components along the axis of symmetry of the condensate). 

pression factor due to this circumstance is, in order of mag- 
nitude, equal to 10W2). 

It follows from the foregoing that the triplet pairing in 
nuclei in the phases with M #O should, in particular, mani- 
fest itself in the occurrence of successive single-particle M 1 
transitions accompanied by the release of energies close to 
the magnitudes of the gaps given by the formula (3.1 ). The 
expected numerical values of the level separations in the 
double-gap multiplet lie in the range from 0.1 to 1 MeV. 

4. THE ROTATIONAL SPECTRA 

The combination of the anisotropy of the superfluid 
Fermi liquid in the phases with J # O  and the smallness ofthe 
nuclear dimensions (compared to the correlation length) 
leads to the possibility of the appearance of rotational excita- 
tions corresponding to the rotation of the nucleus as a whole. 
The existence, as a result of the anisotropy, of distinct spatial 
directions allows us to indicate what precisely rotates. But 
the smallness of the drop dimensions (in the scale indicated 
above) prevents the appearance of rotation-related volume 
textures (of the quantized-vortex type). 

Our aim in the present section is to determine the de- 
pendence of the moment of inertia of a nucleus on the rota- 
tional angular momentum. We shall also find out how the 
rotational angular momentum is oriented relative to the axis 
of quantization of the angular momentum of the Cooper pair 
in the triplet phases with different M values. 

Traditionally, in nuclear physics the investigation of 
these problems is based on the introduction of a rotating 
nonspherical (but axially symmetric) mean field that en- 
sures the quasiparticle energy quantization stemming from 
the finiteness of the nuclear size. 

The basic object in the approach expounded below is the 
order parameter (OP). We use (without special justification 
in the particular problem under consideration) the Ginz- 
burg-Landau approximation (the energy is assumed to be a 
polynomial function of the OP). We shall show that a physi- 
cally transparent and satisfactory description of the rela- 
tionships observed in rotational nuclear spectra can be 
achieved on this basis. 

The energy EJM (I) of a rotating nucleus with a rota- 
tional angular momentum I can be written in the following 
form: 
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EjX (1) =E,, (P) +lP. (4.1 ) into it the equilibrium value A (0 = 0)  = a/2y .  To this val- 

Here R is the angular velocity vector and EJM (0) is the 
energy of the nucleus in the reference frame rotating togeth- 
er with the nucleus. This latter quantity can be expressed in 
terms of scalars constructed from the OP and the angular 
velocity vector. 

For the (J, M # O )  phases the expansion of EJM ( R )  in 
powers of R begins with a linear term. This is due to the fact 
that, as indicated above, the vector ei j  ,Bin B z ,  which is par- 
allel to the quantization axis 4, is not a null vector in the case 
when M $0. Using the formulas given in Table I, we easily 
obtain 

Let us set 

=1'=Sp BB+. 

Then, assuming R is a small quantity, we can write 

[notice that all the invariants of fourth order in B can be 
expressed in terms of (4.2) 1. In order for the energy to have 
a minimum at A # 0, R - 0, the coefficient a should be posi- 
tive. We can, without loss of generality, assume thatP> 0. It 
can be seen from (4.3) that the energy has its minimum 
value at R.4/R = - 1. This means that the steady-state ro- 
tation of the nucleus will occur about the internal quantiza- 
tion axis 4. This unusual-for nuclear physics--orientation 
of the axis of rotation of a nucleus is due to the fact that the 
axial symmetry of the nuclear matter is broken in the case 
when M #O: the order parameter B is not invariant under 
rotations about 4 [see the formula ( 1.8) 1,  and therefore the 
rotation about & has a real physical meaning [the orienta- 
tions of the nuclear-matter-anisotropy basis vectors % and 9 
perpendicular to 4 (see Table I )  vary]. Thus, in the M # O  
case the approach under consideration differs greatly from 
the standard cranking model. The minimization of the ener- 
gy (4.3) yields the equilibrium value of A ( R )  : 

An important conclusion following from (4.4) consists in 
the fact that the superfluidity in the phases with M #O is not 
destroyed by the rotation (at least in first order in R ) ,  since 
there are no values of R that make the OP minimizing (4.3) 
vanish. 

Let us now compute EJM ( I ) .  By definition we have 

I=-aE,, (P) Ida. (4.5) 

Combining the formulas (4.1)-(4.5), we find 
1 

E , ~  ( I )  -EJM (0) = - ( (IZ)'"-10) ' .  (4.6) 
2a0  

Here we have introduced the notation 

Notice that I,, can be obtained from (4.5) by substituting 

ue ofA co~responds the energy EJM (0)  of the lowest rota- 
tional-band level (it is negative because it is measured from 
the energy of the state in which there is no condensate in the 
(J, M #O)  phase: to such a reference point corresponds the 
absence in (4.3) of an A 2-independent term). 

Differentiating the energy (4.6) with respect to 12, we 
find the dependence of the moment of inertial 4(I) on I' 
( 1 2 ~ 1 ; ) :  

This expression differs qualitatively from the traditional for- 
mula (see, for example, Ref. 9) used in the theory of rota- 
tional nuclear spectra at sufficiently large (but not very 
large) values of 12: 

( C  and D are positive constants). We show below that the 
formula (4.9) is valid for the (J,M = 0)  phases. In this case 
the asymptotic behavior, as I increases, of the moment of 
inertia in the indicated phases turns out to be considerably 
different from the behavior prescribed by the formula (4.8), 
according to which in the (J,M #O)  superfluid phases 

The phases whose asymptotic behavior is described by 
(4.10) can be called rotationally stable phases (since in 
these phases the superfluidity is not destroyed by the rota- 
tion). 

The assertion made above about the rotational spectra 
of the (J,M #O) triplet phases is valid also for the 
(J = L = 2,M # O )  singlet phases, since the OP in such 
phases is identical to the OP of the (J,M $0) triplet phases 
(let us also recall that the quasiparticle excitation spectrum 
in any singlet phase will be a single-gap spectrum, in contrast 
to that of an M # O  triplet phase). 

For axially symmetric (J,M = 0)  phases e,,, B,, B is a 
null vector. Therefore, the formula expressing EJ, ( R )  in 
terms of the OP will not contain a term linear in R.  The 
rotation of the homogeneous (textureless) condensate as a 
whole in such phases can occur only about a direction per- 
pendicular to the symmetry axis & (I.& = 0; the mutual ori- 
entation of I and 4 is the same as in the standard cranking 
model with an axially symmetric mean field). 

In terms of the OP, the energy EJo ( R )  defined by (4.1 ) 
has the form 

The coefficients a, v, and yare positive. The condition 7 > 0 
corresponds to the requirement that the second-order per- 
turbation-theory correction to the energy of the system be 
negative (let us recall that we are considering a sufficiently 
slow rotation: the rotational-level spacing is assumed to be 
much smaller than the quasiparticle-excitation energies). 
The significant difference between the expressions (4.3) and 
(4.11 ) is apparent here. In the first case the sign of the term 
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of lowest order in the frequency is no way connected with not coincide analytically with (4.13), although it does give 
perturbation theory; in the second, it is entirely due to the in certain cases nearly the same numerical values and the 
smallness of the angular velocity. Minimizing the energy asymptotic form (4.15). Differentiating (4.15) with respect 
(4.11), we obtain to 12, we find the asymptotic value of the moment of inertia 

AZ(Q) =(a+qSJ2)/2y. (4.12) 
9: 

Using, as before, the formulas (4.1 ), (4.5), (4.11 ), and 
(4.12) [the two last formulas replacing (4.3 and (4.4) I, we 
find the levels of the rotational band corresponding to the 
(J,M = 0) phase: 

(4.13) 

Here EJo (0)  is given by the formula (4.7), and 

I,2=2/2ia3q/y2. (4.14) 

For 1'41 f ,  the expansion in powers of 12 (right up to the 
terms of second order in 12 inclusively) leads to the formula 
(4.9), with the coefficients given by the expressions 

In the case of asymptotically large values of 12 I : ,  we ob- 
tain from (4.13) [with I :  and EJo respectively given by 
(4.14) and (4.7)] 

Let us note that an asymptotic formula similar to (4.15) is 
obtained in Ref. 10 on the basis of a completely different 
physical approach (a  variant of the model of interacting bo- 
sons). In Ref. 11 a fit formula is proposed (without any 
physical justification) for the description of the rotational 
bands with a variable moment of inertia. This formula does 

Notice that the formulas (4.11 )-(4.16) are valid also for 
singlet pairing (L = 0,2) in the phases with M + 0. 

It follows from all that has been said in the present sec- 
tion that multiphase superfluidity should give rise to rota- 
tional bands with a qualitatively different rotational-angu- 
lar-momentum dependence of the moment of inertia. This in 
turn makes probable the intersection of the levels at some I 
values, which gives rise to the well-known feedback effect. 

Let us now proceed to compare the formulas (4.6) and 
(4.13) with the experimental data. We carried out such a 
comparison for the rotational bands of the nuclei of 34 iso- 
topes: 130Xe, Iz8Ba, Ce (128, 130), I5"Gd, Dy ( 156, 158), Er 
(158, 164, 166), Yb (164, 166, 174), Hf (166, 168, 170, 
174), W (166, 168, 170, 172, 174, 176), Hg (184, 186), Th 
(222,228,232), U (232,234,236,238), and Pu (242,244). 
The quantities a, P, y, and 77 served as the adjustable param- 
eters that did not vary along the bands described by them. In 
all the cases the discrepancy between the theoretical and ex- 
perimental data ranged from 1 to 5%; for the majority of the 
nuclei, from 1 to 2%. 

In Table I1 we give a significant example of the Is6Dy 
spectrum (the experimental data were taken from Ref. 12) 
with two rotational bands, one of which (based on the 
ground state of the nucleus) is described by the formula 
(4.13), while the other is described by the formula (4.6) 
[with the constant asymptotic value of the moment of inertia 
(see the formulas (4.8) and (4.10) 1. 

Figure 2 shows the behavior of the moment of inertia in 
the indicated rotational bands of the 164Er and 168Hf nuclei 
(the experimental data were taken from Ref. 13). 

TABLE 11. Rotational spectrum of the IshDy nucleus. The experimental data were taken from 
Ref. 12. The theoretical level-energy values obtained in the present paper are given in brackets. 
The band a is based on the ground state of the nuclei, and corresponds to the formula (4.13 ). The 
band b is rotationallv stable lformula (4.6) 1 .  

I+ I a 
E, MeV I b  E, MeV 

713 Sov. Phys. JETP 64 (4), October 1986 V. I .  Fal'ko and I .  S .  Shapiro 713 



FIG. 2. Angular-momentum dependence of the moment of inertia $ ( I )  
for the rotational bands of the nuclei '"'Hf (a)  and IMEr (b).  The points 
correspond to the experimental data (see Ref. 13) and the curves 1 and 2 
are the results of computations with the formulas (4.13) and (4.6) .  

5. THE BOUNDARY CONDITIONS 

In the vicinity of the nuclear boundary (on the scale of 
internucleon distances) the OP is inhomogeneous in the di- 
rection of the normal n to the surface because of the contin- 
uity of the normal OP component niBij  ( r )  and its first de- 
rivative along n. Since Bij = 0 outside the nucleus, we 
should have at the boundary r = R. 

It follows from (5.1) that, in the case of the axially 
symmetric (J,M = 0) phases, the OP itself vanishes at the 
nuclear boundary: 

B,, (R)  =O ( 5 .2 )  

as is the case for the OP of singlet s pairing. This circum- 
stance is due to the fact that, in the vicinity of the surface, the 
spontaneous axis P of quantization of the angular momen- 
tum of the Cooper pairs can be oriented only along n. On the 
other hand, as can be seen from Table I, the OP correspond- 
ing to the phases with M = 0 contains only the vector 2. A 
different situation obtains for the (J,M #O) phases. In this 
case the tensor Bij  contains the vectors perpendicular to 2, 
and therefore, when L((n, 

In other words, the anisotropic phases survive at the surface. 
As noted in Ref. 14 for the analogous situation in superfluid 
3He, the realization and coexistence of different phases in the 
interior and at the surface are possible. The existence of a 
surface superfluid phase with M # O  will change the value of 
the surface energy of the nucleus (as compared to the value 
obtained in the standard liquid-drop model), and this can, in 
particular, affect the equilibrium shape of the nucleus. 
Moreover, since in the case (5.3) a tangential vector field 
V, B fj"' (V is a vector introduced in Table I )  occurs at the 
surface, there arises the question of the singularities of this 
field, singularities which, according to the well-known Poin- 
car6 theorem, must certainly exist. Either the theorem nulli- 
fies B fy, or the OP of the superfluid surface phase should be 
inhomogeneous. In the latter case the possible linear scales 
of such an inhomogeneity are not quite apparent, since the 
dimension of the nucleus is smaller than the expected corre- 
lation length determined by the pairing. If, however, we sup- 
pose that the indicated topological singularities exist, then 
their motion on the surface should lead to the appearance of 
a new branch of surface excitations. 

CONCLUSION 

On the basis of the foregoing, we arrive at the conclu- 
sion that the most spectacular observable consequences of 
the existence in nuclear matter of the proposed triplet 
superfluidity are the existence of nonintercombining collec- 
tive-excitation branches and the' existence of a double-gap 
quasiparticle-excitation spectrum with successive radiative 
M 1 transitions between the levels. If the above-presented 
interpretation of the experimental data on the rotational 
spectra bears any relation to reality, then the double-gap 
quasiparticle-excitation multiplets should be sought in the 
region of energies at which the rotationally stable bands ap- 
pear (see Sec. 4). 

Let us note that quite recently Rekstad and his co- 
worke r~ '~  found indications of the existence of quite widely 
separated groups of nonintercombining nuclear energy lev- 
els (the physical nature of which has as yet not been elucidat- 
ed). 

In the paper we have not considered the space quantiza- 
tion, stemming from the finite nuclear size, of the quasiparti- 
cle motion. The above-enumerated principal results do not 
depend on the specific primordial-level diagram that arises 
as a result of this quantization. At the same time, in our 
opinion, a microscopic analysis of the possibility of the oc- 
currence of the various types of pairing in nuclei requires a 
self-consistent treatment of the effective mean field and the 
collective (in particular, the superfluid) modes (the fixed 
potential-well model as the basis for the quantization of the 
particle motion, with the subsequent solution of the problem 
of the type of pairing, seems quite unconvincing today). 

The authors are grateful to G. E. Volovik for the useful 
information. 

''The possibility of triplet pairing in neutron stars has been investigated 
(see Ref. 1 and the references cited therein; let us note that the possibility 
of superfluidity in neutron star matter was first pointed out in the papers 
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cited in Ref. 2). Apropos of these papers, see the remark made in Sec. 3 of 
the present paper. 

,'Here and below we mean by spin-orbit coupling both the spin-orbit 
interaction proper and the tensor forces. 

"Natually, besides the triplet phases, we must also consider singlet pairing 
(S = 0),  which entered into nuclear theory long ago.4 

4'The possibility of ambiguity of the gap in the quasiparticle excitation 
spectrum of superfluid 'He is noted in Ref. 7 (without specifying the 
phase and elucidating the nature of the term splitting). The formula 
obtained in this paper for the gap contains the matrix ( 1.2) in its general 
form (including singlet and triplet parts). 

"Notice that, for the lowest-energy excitations, k ,  = k ,  = k, and 
k, = - k,. Since E,, ( k , p )  = E,, ( - k , p ) ,  the two levels with 
,u, = - p, will be degenerate, and there should be three levels instead of 
four. 
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