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Relativistic electromagnetic gas dynamics provides the best mathematical formalism for the 
solution of a large class of physical problems involving the description of objects that contain 
large ensembles of particles interacting with strong gravitational and electromagnetic fields. 
Usually, the equations of gas dynamics are derived from kinetics, and are restricted to special 
problems. In the present paper we consider the derivation of a general system of equations of 
relativistic electromagnetic gas dynamics in the framework of the general and special theories 
of relativity. Like classical gas dynamics, the equations of relativistic electromagnetic gas 
dynamics contain transport coefficients, which are assumed to be known functions of the 
thermodynamic variables. Dissipative processes and processes associated with interaction of 
gases are described by appropriate energy-momentum tensors. The Lagrangian and 
Hamiltonian forms of the equations of dissipationless relativistic electromagnetic gas dynamics 
are obtained, and a system of equations for symmetric steady flows is derived. 

INTRODUCTION 

For the solution of a large class of physical problems 
involving the description of objects that contain large en- 
sembles of particles interacting with strong gravitational 
and electromagnetic fields, relativistic electromagnetic gas 
dynamics provides the best mathematical formalism. Cur- 
rently topical are above all the equations of two-fluid relativ- 
istic electromagnetic gas dynamics, which describe the dy- 
namics of a plasma and relativistic beams of charged 
particles in the framework of the special theory of relativity. 
The formalism of relativistic electromagnetic gas dynamics 
in the general theory of relativity' is of independent interest 
for the investigation of electromagnetic processes in com- 
pact astrophysical objects, in particular, for pulsar physics. 

The equations of relativistic electromagnetic gas dy- 
namics are usually derived from kinetic equations (see, for 
example, Refs. 2-4), but in the general case such an ap- 
proach is rather complicated and leads to perspicuous re- 
sults only for special problems and when a number of simpli- 
fying assumptions is made. At the same time, the required 
phenomenological equations are essentially contained in the 
equations of Einstein's general relativity,' which establish a 
general connection between the metric tensor and the matter 
energy-momentum tensor, and in the energy-momentum 
conservation equations that follow from them. The explicit 
expressions for the covariant energy-momentum tensors of 
the matter and the electromagnetic field introduced in Ref. 1 
lead to a system of gas-dynamic equations for ideal noninter- 
acting gases. The presence of equilibrium radiation, and also 
the influence of dissipative processes and processes associat- 
ed with the interaction of gases and radiative energy losses in 
elastic particle collisions can be taken into account by add- 
ing to the right-hand side of the equations of general relativi- 
ty the energy-momentum tensors that describe these pro- 
cesses. The superposition principle employed here is due to 

the fact that any energy contributes to the space-time curva- 
ture, and this curvature is manifested as a gravitational field. 

Thus, to obtain the complete system of equations of rel- 
ativistic electromagnetic gas dynamics it is sufficient for all 
the processes that are to be taken into account to be repre- 
sented by symmetric covariant energy-momentum tensors. 
One then obtains simultaneously both the equations of mo- 
tion of the gas (momentum conservation) as well as the 
equations for the heat release (energy conservation). To 
write down the complete system of gas-dynamic equations in 
the framework of the special theory of relativity it is obvious- 
ly sufficient to know the expression for the 4-vector diver- 
gence of the total energy-momentum tensor. 

The system of equations of phenomenological gas dy- 
namics obtained in this manner is a direct generalization of 
classical gas dynamics and, like it, contains transport coeffi- 
cients that are assumed to be known functions of the thermo- 
dynamic variables. Similarly, the closed system of equations 
of relativistic electromagnetic gas dynamics is a generaliza- 
tion of classical magnetohydrodynamics to the two-fluid 
(electrons and ions) relativistic case. It should be noted that 
a consistent relativistic description of plasma dynamics is 
possible only in two-fluid relativistic electromagnetic gas 
dynamics. 

In the present paper, we consider the dissipative tensors 
of the viscosity, thermal conductivity, radiative thermal 
conductivity, electrical conductivity, and heat transfer 
between the ion and electron gases. The description of the 
last two processes of interaction of the gases by the introduc- 
tion of the corresponding energy-momentum tensors is giv- 
en for the first time. The radiative energy losses in inelastic 
collisions can, like the release of energy due to a change of 
the rest mass, be taken into account by introducing as a 
source a given scalar radiation power in the equation of rest 
mass conservation, whereas to take into account radiation in 
elastic collisions it is necessary to add to the energy-momen- 
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tum conservation law the covariant 4-vector of the force that 
then arises. 

In Sec. 1, we consider the gas-dynamic equations that 
follow from general relativity. We derive the total energy- 
momentum tensor of matter in conjunction with equilibrium 
isotropic radiation and the thermodynamic functions it con- 
tains for ideal and degenerate gases. 

In Sec. 2, we consider the gas-dynamic equations for a 
neutral gas. We derive the mass-entropy conservation equa- 
tion, which decomposes, for known power of the energy re- 
lease due to change in the rest mass, into two equations, these 
generalizing the conservation laws for the matter and en- 
tropy in Newtonian gas dynamics. We obtain generally co- 
variant expressions for the tensors of the viscosity, thermal 
conductivity, and radiative thermal conductivity. The equa- 
tions of dissipationless gas dynamics are given in Lagrangian 
and Hamiltonian forms for an arbitrary metric. 

In Sec. 3, we consider symmetric steady flows in the 
dissipationless gas dynamics of a neutral gas. In  this case, the 
system of gas-dynamic equations in a given gravitational 
field reduces to a single equation for the flow function Y, this 
equation containing three arbitrary functions of Y: the en- 
tropy, the energy, and a generalized momentum along a cy- 
clic coordinate. 

In Sec. 4, we consider the equations of two-fluid relativ- 
istic electromagnetic gas dynamics that describe the motion 
of electron and ion gases in the framework of general relativ- 
ity. To obtain a complete system, we must augment these 
equations by Einstein's equations for the gravitational field 
and the general relativistic generalizations of Maxwell's 
equations for the electromagnetic field. The influence of the 
finite electrical conductivity and heat transfer between the 
two components of the charged gases is taken into account 
by the introduction of the 4-vectors of the divergences of the 
corresponding energy-momentum tensors. As in Sec. 2, the 
equations of dissipationless relativistic electromagnetic gas 
dynamics can also be represented in Lagrangian and Hamil- 
tonian forms. 

In Sec. 5, we consider generally relativistic symmetric 
flows in dissipationless two-fluid relativistic electromagnet- 
ic gas dynamics. 

Section 6 is devoted to a more detailed exposition of 
two-fluid relativistic electromagnetic gas dynamics in the 
framework of the special theory of relativity. 

In the Appendix we consider a steady cylindrical flow 
of plasma, taking into account ohmic resistivity and brems- 
strahlung. This problem generalizes the Pease-Braginskii 
problem5s6 to the case of two-fluid relativistic electromag- 
netic gas dynamics. 

1. THE EQUATIONS OF THE GENERAL THEORY OF 
RELATIVITY 

The equations of relativistic gas dynamics in an arbi- 
trary metric defined by 2 = (ct,  xu), ds2 = g,dxidxk are 
contained in Einstein's equations1: 

Rik-'128LRRLr=~!P ik, 

a f - k , -  ( g )  - 1  - ( g )  - -- T -0. 
axk 2 ax' 

A 

Here, R : is the curvature tensor, and T: is the total energy- 
momentum tensor, since any energy contributes to the 
space-time curvature, which itself is manifested as a gravita- 
tional field. The second equation in ( 1) is a consequence of 
the first and expresses the energy-momentum conservation 
law. To describe processes in the framew~rk of relativistic 
electromagnetic gas dynamics, the tensor T: is represented 
as a sum: 

where T: is the material energy-momentum tensor of the 
matter in conjunction with isotropic radiation, .F: is the 
energy-momentum tensor of the electromagnetic field, and 
by 1: we have denoted the sum of the energy-momentum 
tensors that describe the various dissipative processes. 

The gas-dynamic matter energy-momentum tensor has 
the form'.' 

where ui = dxi/ds, andp andp are the rest mass density and 
pressure in the comoving frame. The enthalpy W and en- 
tropy S per unit rest mass are determined by 

where Tis the temperature and 8 is the internal energy per 
unit rest mass of the matter; Ti, is a symmetric tensor con- 
structed from the metric tensor g,, the 4-vector ui, and the 
scalar functions p W and p. 

For an ideal gas of particles with effective rest mass m 
that is in equilibrium with isotropic radiation (a  photon 
gas), the thermodynamic functions in Ti, can be expressed 
by the formulas 

p=nT+'/,aT", p l = n T / ( y - I )  i -aT4  (a=n2k' /15c3A3), 

(5 
where n =p/m is the concentration in the rest frame, and y 
is the specific-heat ratio. In accordance with (5 )  the materi- 
al tensor Ti,, defined in ( 3 ) ,  is the sum of the tensors of the 
matter and the equilibrium radiation. 

For a degenerate Fermi gas with n T/p 4 1, we have in 
accordance with Ref, 8 
p=hx3, p=hc2f (x ) ,  p8=hc2{x3 [ ( 1 + ~ ~ ) ' ~ - l ]  -f ( x ) ) ,  

w = c 2  ( i + ~ ~ ) ' ~ ,  (6) 

where 

8f ( x )  =3 Arsh x-x(  l f  x2) ' " ( 3 - 2 z 2 ) ,  h-rn4c3/3n2fi3, 

where mcx =p, is the limiting Fermi momentum. The re- 
sulting equation of statep = p ( p )  is a subsidiary condition in 
the system of gas-dynamic equations contained in ( 1 ) . 

2. GAS DYNAMICS OF A NEUTRAL GAS 

In the absence of elzctric charges and currents, the ener- 
gy-momentum tensor T: is determined by (2), in which 
7: = O.̂ By means of identity transformations the expres- 
sion for TI;, can be reduced to the form 
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where 

d 
-= 

d 
ui - a 

(pu" ;p ( - g )  -# - ( - g )  %puke 
ds axi ' axk 

Multiplying (7) by ui, summing over i, and taking into ac- 
count ui ui = 1, we obtain 

It is easy to show that the expression in the round brackets is 
zero, and, therefore, in accordance with the second equation 
of ( 1 ), we obtain the mass-entropy conservation law: 

This equation was obtained in the framework of special rela- 
tivity without allowance for dissipative terms in Ref. 9. 

Since the physical meaning of the expression c(puk );, , 
which represents the change in the rest mass, is clear, Eq. 
(9) expresses the general law of conservation of thermal en- 
ergy with allowance for the transformation into heat of the 
energy released in nuclear or chemical reactions. For known 
energy productionpe(n,T) in a cubic centimeter per second 
Eq. (9) decomposes into two equationslO: 

which generalize, respectively, the laws of matter and en- 
tropy conservation in Newtonian gas dynamics. It is also 
obviously necessary to include i n p ~  the changes in the ener- 
gy in arbitrary inelastic collisions of the particles. With 
allowance for (7)  and ( lo) ,  the energy-momentum conser- 
vation equation takes the form 

Equations ( 10) and ( 11 ) in conjunction with Eqs. ( 1 ), 
which determine the gravitational field gik , form the com- 
plete system of equations of the relativistic gas dynamics of a 
neutral gas in the general theory of relativity. The energy 
conservation law, which is expressed by the time component 
of Eq. ( 11 ), is a consequence of the remaining equations of 
the system ( lo)-( 11 ). Use of the identity 

Z L ~ U ~ , R = ~ U ~ / ~ S - ' / ~ U ~ U ~ ~ ~ ~ ~ / ( ~ X ~  

makes it possible to represent Eq. ( 1 1 ) in the form7 

which expresses the change in the Cvelocity ui and does not 
contain the termpe. 

It is interesting to note that for a degenerate gas (6) and 
in the absence of dissipative processes the mass-entropy con- 
servation equation yields the equation 

from which it follows that when energy release is due to the 
"burning" of rest mass, dm/ds < 0, the particle number n 
increases, this process being saturated in the ultrarelativistic 
limit, whenp W-.4p. 

To take into account the dissipative processes in Eqs. 
(1 ), (lo), and (1 l ) ,  it is necessary to substitute theenergy- 
momentum tensors that describe the corresponding pro- 
cesses. We give explicit expressions for the energy-momen- 
tum tensors for the thermal conductivity, radiative thermal 
conductivity, and viscosity. 

The thermal conductivity tensor obtained in Refs. 11 
and 12 in the framework of the special theory of relativity, 
which can be represented in the form 

where x is the coefficient of thermal conductivity, has the 
form of a covariant symmetric Ctensor and, therefore, is an 
energy-momentum tensor in general relativity. At the same 
time, uiuk tik = 0 as".1Z in the special theory of relativity. 

For the radiative thermal conductivity in the frame- 
work of the special theory the tensor has the form13 

where v is the absorption coefficient and 
uiukTik=- (4aT4/3vp) (du'/ax'+3dT/Tds). 

The generalization to general relativity is achieved by re- 
placing the ordinary derivatives by the covariant derivatives. 
Using then the formula 

to transform the obtained expression, we find the covariant 
tensor 

which satisfies the condition 

uiukTih=- (4aT4/3vp) (u,r'+3dT/Tds). 

In accordance with Refs. 7, 11, and 12, the viscosity 
tensor can be represented in the framework of the special 
theory in the form 

where q and gare the coefficients of shear and bulk viscosity. 
The generalization to general relativity is done in the same 
way as in ( 15) and for ui uk tik = 0 gives 
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In dissipationless gas dynamics the equations of motion 
can be represented in the Lagrangian form 

which can be readily-verified by direct substitution in Eq. 
( 1 1 ), setting PE = 0, t fi = 0. 

Introducing the 4-vector of the generalized momentum 
9,  = ( -A?/c,  .Ye) = -mWu, /c ,  where 9, = a L /  
axa ,  2F = xnaL /axa - L, we obtain in accordance with 
( 10) and ( 1 1 ) the complete system of equations in Hamilto- 
nian form: 

of the single argument Y. In accordance with the definition 
(191, 

K , ~ = ~ ~ F ~ I ~ X ~ = Y ~ '  ( Y )  a\y/axi ,  

Kz3=a93/axZ=93'( Y ) a Y / a x 2  
(24) 

and Eqs. (20) reduce to the single equation 

K , 2 / ( - g ) " : n - ~ 3 9 3 ' ( Y )  =-u0%'(Y)+mTS' ( Y ) ,  (25) 

which contains three arbitrary functions of Y. 
We transform Eq. (25) further in such a way that it 

contains the contravariant component K I' and the covariant 
component u,. Following Ref. 14, we introduce the three- 
dimensional tensor gal, and three-dimensional vector g" : 

It follows from this that in the presence of symmetry ( a /  
ax3 = 0)  and for steady flows ( d  /at = 0 )  not only the en- 
tropy S but also 9 ,  and %', respectively, are integrals of the 
motion (functions frozen into the matter). 

Introduction of the antisymmetric tensor 

and use of the equation x a d 9 a / d x P  = 0, which follows 
from (18), make it possible to represent the equations of 
motion in the form 

In the case of isentropic processes, S = const, it follows 
from ( 18)-(20) that 

This equation generalizes the equation, well known in classi- 
cal hydrodynamics, which expresses the freezing of the 
streamlines of the vector curl v. In the special case of sym- 
metric flow, d /ax3 = 0, and if only the one component K , ,  is 
nonzero, we obtain one further conservation law: 

3. SYMMETRIC STEADY FLOWS 

In the case when there is no dependence on one of the 
spatial coordinates, a /ax3 = 0, and on the time, 6' /at = 0, 
the existence of the integrals S, 9, and A? makes it possible 
to simplify appreciably the system of equations of dissipa- 
tionless gas dynamics. In this case, using the continuity 
equation ( 18), we introduce the flow function Y: 

which is also an integral of the motion: d\V/dt = 0. Accord- 
ingly, the integrals S, 9, and A? will be arbitrary functions 

where q is the determinant of quo. The components K l 2  and 
u, can be represented in the form 

Substitution of these expressions in Eq. (25) gives ( h  = goo) 
- 
U 

Ri2/q,,nh'" - - ~ 9 3 ' ( ~ ) + u 0 % '  ( Y ) - ~ T S ' ( Y ) = O .  (28) 
933 

Calculating l 2  and adding to (28) the conservation 
equations for the angular momentum and the energy (which 
generalizes the Bernoulli equation), we obtain the system of 
equations for dissipationless steady symmetric flows: 

mi8/q33nh'"-(Z3/q33)93'(Y )+u0%"(Y )-mTS'(Ur) =0, 

m W u 3 = - Y 3 ( Y ) ,  m W u 0 = % ( Y ) .  (29) 

Here, < is expressed by a differential operator: 

L=-q,3 div( WVYlq33nh")  + ( WU3/q33)e3 rot e3+e3 rot TVu,g, 

(29a) 
in which e, are the coordinate vectors of a curvilinear coor- 
dinate system in which dl = q,dxa dx" ,a = e, a". The 
components u,, and un are related by 

The contravariant components u" are expressed in terms of 
the gas-dynamic velocities va = xu by the formulas 
ua = va/un, U 0  = ~ ( ~ ~ ~ x ~ x ~  ) 

Equations (29) and (29a) simplify appreciably in the 
case of an orthogonal metric with go, = 0; then uo = huO, 
and the first equation in (29) for the flow function Y takes 
the form 

m - 931(*y)+uc1~1(~~r)-ml,Sf(1Y)=0. div - - -- 
nh'" g,,nh"' g3, 

(30) 

4. ELECTROMAGNETIC GAS DYNAMICS 

Whereas the motion of a neutral gas can usually be de- 
scribed effectively in the framework of single-fluid gas dy- 
namics, the adequate macroscopic description of the motion 
of charged gases in an electromagnetic field requires use of 
two-fluid gas dynamics. 
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The electrodynamic equations are generalized in gen- 
eral relativity' by introducing the 4-vectors j' = (p,, ja ), 
A' = (p,  A" ) and the antisymmetric electromagnetic field 
tensor e.k : 

where p and A" are the scalar and vector potentials, p, and 
j" are the charge and electric current densities, and there is 
summation over the species of gases, the individual particles 
of which have charges e ,  . The electromagnetic field is de- 
scribed by the Maxwell equations 

the first of which is a consequence of (3 1). As can be seen 
from (3  1) and (32), the electromagnetic field is determined 
by the total current in the same way as the gravitational field 
in ( 1 ) is determined by the sum of all energies. The conserva- 
tion law 

for the total charge is a consequence of the second equation 
of (32). 

The electromagnetic field energy-momentum tensor 
and its covariant derivative are, respectively, 

The energy-momentum conservation law ( 1) requires 
$e vanishing of the covariant derivative of the total tensor 
T f .  For example, for a mixture of neutral and positively and 
negatively charged dissipationless noninteracting gases we 
obtain with allowance for ( 34) 

where jk, = c e ,  n  * u z  are the 4-currents of the positive 
and negative charges. To obtain the equations of motion of 
each individual gas species, we must obviously require ful- 
fillment of the partial equations 

Adding to Eqs. ( 10) and (1 1)  the electromagnetic 
forces 7:, and bearing in mind that, the tensor F;, being 
antisymmetric, the electromagnetic field does not contribute 
to the mass-entropy conservation law (9) ,  since; u i 7 t k  
= 0, we arrive at the system of equations of electromagnetic 
gas dynamics for each gas species separately: 

d a p  ps 1 , , agki 
p - Wu, = -- + - Wui + - p W u  u -- + enukF,-f ,. 

d s  ax' c3 2 d x' 

Here, the 4-vector t i  = 1 tk describes the total effect of the 
dissipative processes on the given gas. In general relativity, 
the system (37) must be augmented by Eqs. ( 1 ), which de- 
termine the gravitational field g,, , and Eqs. (32), which de- 
termine the electromagnetic field Fik . 

The equations of motion can also be represented in the 
form (12) 

In the second equation of (37), the right-hand side can be 
interpreted as the release of heat in each gas due to the 
change in the rest mass and the effect of the dissipative 
forces. If the rest mass does not change, p~ = 0, then the 
continuity equations in (37) express also charge conserva- 
tion in each gas, and, accordingly, the conservation equation 
(33 ) for the total charge is a consequence of (37). In the case 
when the rest mass does change, we obtain from (33) and 
(37) for two charged gases the relation 

From this in particular there follows the natural result that 
when charged particles of equal masses and opposite charges 
are annihilated the same amount of energy is released in both 
gases. 

The influence of the finite electrical conductivity o of 
the plasma due to the friction of the electrons on the ions is 
described by the conductivity tensor t f ,  whose covariant de- 
rivative ti  = t ik has the form'' 

The expression (39) has covariant form, and in the nonrela- 
tivistic limit and for n + e +  = - n-e- it leads to the well- 
known expressions for the forces that act on gases of positi- 
vely and negatively charged particles and for the heat 
released in them.16 The expression for the friction force on 
the right-hand side of Eq. ( 38), 

does not depend on the masses of the ions and electrons and 
is symmetric with respect to transposition of the indices f . 

The amount of heat released in the ion and electron 
gases (in 1 cm3/ sec) due to Joule heating is determined in 
accordance with (37) and (39) by the formulas 

The total heat release, Q = Q+ + Q-, does not depend on 
the masses m * . 

In the special case m + = m - ,  n + = n - ,  
e+  = - e -  = e, the Cvector t, can be expressed in terms of 
j, : 

In the framework of special relativity, the 4-vectorj, can be 
represented as the derivative of a mixed tensor, j, = II$, 
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where the symmetric tensor IIik can be expressed in terms of 
the potentials of the electromagnetic field: 

Writing II, in covariant form, we obtain 

a gin 
X A'+gA1 - - . ax' g 

Accordingly, the covariant tensor of the electrical conduc- 
tivity can be represented in the case (42) in the form 

A second effect associated with the finite conductivity is 
the heat transfer between the two components of the plasma; 
this leads to an equalization of their temperatures T ,  . The 
corresponding heat transfer process can be described by the 
covariant derivative 

32e+e-n+n- T+-T- t i  = F ui. 
nco m++m- (45) 

In accordance with (37), the heat releases in the ion and 
electron gases are determined by the expressions 

which are identical to the nonrelativistic expressions given 
in Ref. 17. The expression for a at nonrelativistic tempera- 
tures has the form" 

where L is the Coulomb logarithm. For the generalization to 
the case of relativistic temperatures, see Ref. 18. 

The ratio of the transfer heat release Q, to the Joule heat 
Q 1 9  

does not depend on a and is determined by the difference 
between the temperatures and the relative velocity of the 
charged gases. 

The energy and momentum losses due to radiation in 
elastic collisions of the particles can, like the heat transfer, be 
taken into account by introducing the 4-vector ti = Gu,/c, 
where G, is the power of the emission from 1 cm3 of each 
gas. For example, in the case of untrapped bremsstrahlung at 
nonrelativistic temperatures 

m ,  8nn+n-e" 
G* = (49) 

where e+ = - e- = e, and ti is Planck's constant. 
The generalized Maxwell equations can be represented 

in vector form'4 by using the metric (26). Following Ref. 14, 
we introduce the 3-vectors E and D and the 3-tensors BaB 
and Hap : 

Ea=Eoa, B ~ B = K ~ ,  Da=-h%FOa Ha6,h1hFaP. 

The vectors E, D, B, H, and g are related by the equations 

Maxwell's equations (32) take the form 

div B=O, div D=4nh">pe, (51) 

I d -- 1 d q'"B=-rot E, --- 4n q'"D = rot H - - h"j. 
cq'" at cq"' at C 

Here 

and the vector operators div a and curl a are determined in 
curvilinear coordinates by 

where q = - g/h is the determinant of the third tensor qaB. 
From ( 5  1) we obtain a conservation equation for the total 
charge in vector form equivalent to ( 33 ) : 

c-'q-'"3 [ ( qh )  ''*pel /dt+div h'"j=O. 

The equations of motion of dissipationless two-fluid 
electromagnetic gas dynamics can also be represented in La- 
grangian and Hamiltonian forms: 

i 

9 d mT dS  ---+-- a s  vR  =- 
dt dxk UO axk' 8 9 a  , (53) 

where the 4-vector 9, of the generalized momentum and 
the Hamiltonian 2Y are 

Equations (52) and (53) are double sets of equations for the 
positively and negatively charged gases, and accordingly the 
indices + are understood for all quantities. For dissipation- 
less flows, the continuity equations and entropy conserva- 
tion equation ( 18 1 must also be satisfied for both gases sepa- 
rately. When a /ax3 = 0 and ~3 /at  = 0, there are two pairs of 
frozen functions S, , 9 and 2Y , for each case. Further, 
since the definition of the antisymmetric tensor K, in ( 19) 
and the form of the individual equations (52) and (53) are 
the same as for the single-fluid equations ( 17) and ( 18) and 
do not depend on the explicit expressions for Y k ,  it follows 
that for both gases Eqs. (20) are still valid and with them the 
equations (21 ) and (22) that follow from them for 
S = const, where 9, are now determined by the expressions 
(54), which contain the electromagnetic potentials A, .  

5. SYMMETRIC STEADY FLOWS IN TWO-FLUID 
ELECTROMAGNETIC GAS DYNAMICS 

In the presence of symmetry, a /dx3 = 8 /at = 0, the 3- 
vectors B, h i j, h 4 u, and i = curl WuOv, whose divergences 
vanish, can be represented by the formulas 
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where in accordance with (50) and (5  1 ) 

and y5 = x3 is the flow function of the magnetic field B. The 
bar above a symbol denotes the covariant components of the 
3-vectors in the curvilinear coordinate system, 
dl = qaSdxadfl, these being related to the components of 
the Cvectors in the metric gik by 5, = - a, g, - a,. 

The system of equations that describe two-fluid sym- 
metric flows in an electromagnetic field can be derived in the 
same way as the single-fluid case (29) and represented in the 
form 

mi3+eE3 ii,  -- 9 , ' ( Y )  + u 0 8 '  ( Y )  =ml'S' (Y), 
q33nhlh 433 

Here, the first, fifth, and sixth equations are complexes of 
two equations for positively and negatively charged particles 
with masses m * and charges e * . The first three equations 
form a system of differential equations for the functions Y + , 
$, and q, in whi~h-~ ,?~ ,  and jQ are expressed by the differen- 
tial operators 

i3=-qss d i v z y  E 3 e 3  rot e,+e3 rot Wu.g, 
q3,nhr'' r133 

h" Hs 
k'"j3=-q33 div - (V1,-g3Vcp) + - e,  rot e3,  

' ~ 3 ~  '233 (57a) 
Vcp h'"g3 H3 

h"'jO=-q3. div + - (Vlp-g3Vcp) + - [ 6 e 3 ~ } ,  
g33 '233 

and the components u, and u0 are related by (29b). 
The expressions (57a) simplify appreciably for an or- 

thogonal metric g,, when gO" = 0. In this case 
gap = -g ,S ,uo=h~O,Za = - a , ,&=  -H3 

so that T3,j3, and jQ are represented by differential operators 
of second order acting, respectively, on the functions Y, $, 
and q 

6. TWO-FLUID ELECTROMAGNETIC GAS DYNAMICS IN 
SPECIAL RELATIVITY 

In the framework of the special theory of relativity, the 
system of equations of two-fluid gas dynamics (for ion and 
electron gases) contains Maxwell's equations and the con- 
servation equations for the rest mass, entropy, and momen- 
tum of each gas: 

div E=Qnp,, div B=O, (58) 

1 a E  4n 1 a B  --=rotB--j, A rot E ,  
c d t  c c at 

(59) 

pv pe pl' d S  pe a P + &  v-=-- = -  -- 
C' ' W - C U T , ,  (60) at  r r I' dt C! 

Here, ; = t tk is the bdivergence of the total dissipative ten- 
sor, 

TI=cZ+8+ plp,  T d S = d W - d p l p ,  

Equations (58)-(61) constitute a complete system of equa- 
tions of two-fluid relativistic electromagnetic gas dynamics 
provided (60) and (61 ) are the double set of equations for 
the ion and electron gases. 

Maxwell's equations (58 ) and ( 59) contain the conser- 
vation laws for the total charge and energy of the electro- 
magnetic field: 

1 d ap'+ div j=o, -- 4n 
(E2+B2)  + div [EB] =- - jE. at  2c at c (62) 

From Eqs. (61 ) there follow the energy conservation laws 

for each gas species. Summing (63) over the gas species and 
taking into account the mass-entropy conservation law (60) 
and the conservation law for the energy of the electromag- 
netic field (62), we obtain the conservation law of the total 
energy in the form 

The equation of motion (61), represented in the form 
( 12), gives 

When allowance is made for the electrical conductivity 
(39) and the energy loss due to radiation (G, e r g . ~ m - ~  
-set- ' ), the relativistic electromagnetic gas-dynamic equa- 
tions (60) and (61) can be written in the form 

where we have assumed e+ = - e- = e, 
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and r' is an invariant quantity that depends only on the 
relative velocity v' of the electron and ion gases, 
a = (m+ - m - )/(m + + m - ). The right-hand side of the 
second equation of (66) determines the heat release in 1 
cm3/sec in each gas. In accordance with (41 ), the Joule heat 
release in the ion and electron gases is given by 

The total Joule heat Q = Q + + Q - does not depend on the 
masses of the ions and the electrons and in the nonrelativistic 
limit tends for n+ = n- to the well-known'9 expression 
Q = j2/a. 

Substituting Eq. (67) in the form ( 6 5 ) ,  we obtain 

In the case n + = n -, the condition of compensation of 
the friction force between the ion and electron gases by the 
acceleration in the electric field E leads, as follows from both 
Eqs. (69), to the relativistic generalization of Ohm's law: 

If n + # n -, then the presence of an electric field gives rise to 
acceleration of the plasma if the conductivity a is finite. 
Since this effect also exists in the nonrelativistic limit, we 
consider the simplest nonrelativistic case of homogeneous 
streams of charged particles with e+ = - e- = e in a con- 
stant homogeneous electric field E. Then for v: /c2< 1 and 
at nonrelativistic temperatures Eqs. (69) can be written in 
the form 

The solution of these equations 

shows that in the limit t -  co the relative velocity tends to a 
finite limit e(p+ +p- ) (Y+  - Y - )  = (m+ + m-)aE 
(analog of Ohm's law), though the mean velocity increases 
unboundedly if (n + - n - )E #O. 

The equations of dissipationless relativistic electromag- 
netic gas dynamics can be conveniently represented in an 
arbitrary curvilinear spatial coordinate system, d l 2  
= q,dxa dx8, in the Lagrangian form (52) : 

m r  I 
~ ( x ~ , v ~ ) = - - ~ - e  (p--"A), 

c2 C 
(71) 

and also in the form of the Hamilton equations (53): 

8% 
-=-- 

as 8%' +mTr- va=--  
dt  a t u  axa' as, ' 

The electromagnetic field and the generalized momen- 
tum can be expressed in terms of the scalar and vector poten- 
tials in accordance with ( 54) as 

+ 
Use of the vector K = curl 9 makes it possible to ex- 

press the equations of motion in the form 

In particular, for isentropic processes S = const it fol- 
lows from this that 

This equation is identical to the equation for curl v in classi- 
cal hydrodynamics and for the magnetic field B in single- 
fluid magnetohydrodynamics and is their generalization for 
two-fluid relativistic electromagnetic gas dynamics. When 
allowance is made for the continuity equation, (73) can be 
represented in the form 

and this can be interpreted as the equation of the freezing of 
the field lines of the vectors K * into the corresponding gases 
of the charged particles. The nonrelativistic analog of (74) 
was obtained in particular in Ref. 20. 

For symmetric steady flows (a /ax3 = 0, /at = O ) ,  the 
first and second contravariant components of the vectors 

can be expressed in terms of the derivatives of the corre- 
sponding flow functions $N = $, cB3/4?r, Y, Wv3/r, 9, by 

q'haN'=d$N/ax2, q " a ~ ~ Z = - d $ ~ / d ~ l ,  
where q is the determinant of qaB . Using further the freezing 
into their flows of the entropies S, (Y, ), the covariant 
component of the generalized momentum P $ (Y , ), and 
the energy Z,  (Y, ), we obtain the following system of 
equations of two-fluid relativistic electromagnetic gas dy- 
namics for symmetric steady flows in the framework of the 
special theory of relativity: 

Here, all the quantities without indices except j,, B,, $, p, 
and c are understood to have the indices f , i.e., to relate to 
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the ion or electron gases. The covariant components i, and j, 
are expressed by the differential operators 

is  
- E -  

W V Y  W v ,  [e,e3] 
div-+-div-, 

qsSnc2 I' 43s q33 

Thus, the first two equations of (75) represent four differen- 
tial equations containing six arbitrary functions of the flows 
S, , P  and X, . Equations analogous to (75 ) for nonre- 
lativistic two-fluid gas dynamics were derived in Ref. 21. 

APPENDIX: STEADY CYLINDRICAL FLOW 

In the framework of two-fluid relativistic electromag- 
netic gas dynamics, the steady cylindrical flow of a plasma, 
with allowance for ohmic resistivity and bremsstrahlung, 
can be described in accordance with (66) and (67) by the 
system of equations (see also Ref. 22) 

1 d -- r B = -  4 ( n --- n-V- ) 
r dr  r- ' 

Here, the charges of the ions and electrons are assumed 
to be the same: e  + = * e, 

where Q and G are the powers of the Joule heat release and 
the energy loss due to radiation as determined in (68) and 
(49). 

From the system (A . l )  we obtain a balance equation 
for the radial forces, 

which shows that B - E 5 is a relativistic invariant. The 
quantity B * - E is also invariant since in accordance with 
(A. 1 ) the component E, is invariant. From (A2) under the 
condition p , ( R  ) = 0 we obtain 

where the angular brackets denote averaging over the vol- 
ume, and J and q are the total current and charge per unit 
length of the cylinder. 

In the case v + = const, n , = n - = n we have 

JZ-c2q2=2eW2c2(1/rf-I), N=nR2(n),  I"= (1-vf2/c2)"'. 
(A.4) 

Setting T+ = T-  = T = const and substituting u = 3T3I2 / 
4 ( 2 7 ~ , u ) ' / ~ e ~ ~ , ' ~  we obtain from the energy balance equa- 
tions G * = Q, for the ions and electrons (forp = nT) 

where J, ,  is the Pease-Braginskii  current.'^^ In the consid- 
ered case with n + = n -, T+ = T-  = const, v + = const we 

have q = eN[  1 - ( 1 + J2 /e2N 'c2 )  1 / 2 ] ,  and it follows from 
(A.5) that a steady state is possible for a current 

If J, ,  42eNc, the equilibrium current J z J , ,  does not de- 
pend on N as in the single-fluid nonrelativistic case consid- 
ered in Refs. 5 and 6. It should however be noted that the 
Pease-Braginskii equilibrium is realized only for very strin- 
gent restrictions on the geometry and the distribution of the 
parameters within the flow. 
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