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Bounds on inflationary models are obtained from the possible spatial inhomogeneity of the 
initial scalar field. It follows from the exponential estimates for the probability of formation of 
"our" universe obtained in the framework of the chaotic inflationary scenario that the very 
idea of this scenario is unrealistic for the minimally required degree of inflation. 

1. In the recent papers Refs. 1 and 2 the bounds ob- 
tained on all inflationary models of the universe were stron- 
ger than in Ref. 3. These bounds are general in nature and do 
not depend on the details of the inflationary model. In the 
derivation of the bounds it was assumed that the scale factor 
is spatially homogeneous (the exponential expansion is spa- 
tially homogeneous). In particular, it follows from the re- 
sults of Ref. 1 that the chaotic inflationary scenario4.' with 
potential V(p) = (A /4)p 4andil 5 10-2isunrealistic, since 
the bounds obtained in Ref. 1 lead toll 5 lo-". It was shown 
independently in Ref. 6 that the chaotic model of Ref. 4 is 
unsatisfactory from the point of view of probability theory. 

Below, using the bounds of Refs. 1 and 2, we obtain 
additional bounds on all inflationary models. These bounds 
follow from consideration of the admissible spatial inhomo- 
geneity of the scale factor (i.e., of the spatial inhomogeneity 
of the exponential expansion). We also give exponential esti- 
mates for the probability of formation in the chaotic infla- 
tionary model of Ref. 4 of a universe with "our" homogen- 
eous properties. These estimates lead to the conclusion that 
the very idea of the chaotic scenario is unrealistic for the 
minimally necessary degree of inflation. In this connection 
we note that, as is asserted in Ref. 5, the realization of the 
new in the framework of relic inflation in super- 
gravity is possible only in the chaotic scenario of Ref. 4. But 
in Ref. 5 it is also asserted that quantum creation of the 
universe9 can be realized in the chaotic scenario of Ref. 4. 

2.2' As follows from Ref. 1, for all inflationary models a 
necessary condition on the admissible inhomogeneity of the 
initial scalar field p ( x )  must be satisfied: 

From Ref. 1 there follow an estimate for the duration At of 
the time of exponential expansion, 

and also the ordinary formula for the Hubble constant: 

In all inflationary models (see, for example, Ref. 4),  the 
scalar field varies little during the time interval At of the 
inflation. Therefore, in what follows, we shall assume that 
p(x,t) zp(x,O) =p (x ) .  We note immediately that the Hub- 
ble constant H(3)  is in fact spatially inhomogeneous be- 

cause of its dependence on the scalar field e, (x)  and, through 
this, on the possible inhomogeneity of this field p (x ) .  Simi- 
lar considerations lead to a possible spatial inhomogeneity of 
the duration of the time interval At(2) of exponential expan- 
sion. 

Suppose (to simplify the expressions but without loss of 
generality of the results) that V(p) is polynomial: 

V(cp) =ancpn. 

Then from (2)  and (3)  we obtain 

We denote p, = p ( x  = 0),  where x = 0 is the central point 
of the spatial region measuring I z 2 H  - ' that as a result of 
the exponential expansion is transformed into the visible 
universe with scale =: cm. AS follows from (2a) and 
(3a), the scale factor R is determined by (see, for example, 
Ref. 10) 

From the estimates of the scale of the observed universe 
( z 102%m) it follows necessarily that 

R(x=O) =exp (4ncpoz/nmPz) = e s p ( 6 4 N Z ) .  ( 6 )  

On the basis of ( 6 )  we obtain 

qcp,= ( 16nln) '"mPN. 

We now estimate (rather crudely but with sufficient 
accuracy for the following conclusions) the inhomogeneity 
of the initial scalar field p (x)  in the spatial region measuring 
I z 2 H  -' that is transformed by the exponential expansion 
into the observed universe. We have 

On the basis of ( 1 ) and (3)  we obtain 

From (9)  we obtain on the basis of (7)  
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Since in accordance with ( 5 ) the scale factor R depends ex- 
plicitly on p (x ) ,  we obtain on the basis of ( l o )  an estimate 
(also very rough) of the spatial inhomogeneity of the scale 
factor: 

H ( x = O t l )  = enp (4x + ) 
n'np 

Despite the crudity of the estimates ( 10) and (1 1 ), we have 
obtained an exponential amplification in the scale factor of 
the inhomogeneities of the scalar field p (x ) .  On the basis of 
(3a) and ( lo),  we obtain the corresponding spatial inhomo- 
geneity of the Hubble constant H: 

On the basis of ( 1 1 ), we obtain 

Since SR / R  must be small, it follows that3' 

Similarly, 

6 H  H  ( x = O k l )  - H ( x = O )  I% 1 
-= 

11 H (x=O) "+B($) ma (15) 
Thus, on the basis of initial inhomogeneity of the initial 

scalar field p ( x )  we have obtained spatial inhomogeneity 
(spatial inhomogeneity of the scale factor R and of the Hub- 
ble constant H). The spatial inhomogeneity corresponding 
to the spatial inhomogeneity of the scale factor and the Hub- 
ble constant corresponds, of course, to a definite choice of 
the coordinate system, namely, it is chosen such that for 
p (x)  = const the metric for any x is, as follows from Ref. 12, 
given by (for the notation, see Ref. 12) 

Now suppose N = 1, i.e., a region measuring l z 2 H  - ' is 
transformed by the exponential expansion into the observed 
universe of scale z lo2' cm. In this case, the expression (7) 
becomes 

and the expressions ( 14) and ( 15 ) become, respectively, 

and 

It follows from the latest experimental dataI3 that the 
allowed spatial inhomogeneity of "our" universe is of the 
order z On the basis of ( 14a) and ( 15a) this makes it 

possible to obtain an estimate for the allowed inhomogeneity 
of the initial scalar field q, ( x )  in a region measuring 1 z 2H - ' 
that is exponentially inflated to the scale of the observed 
universe: 

Thus, we have obtained the following bounds for the 
permitted spatial inhomogeneity of the initial scalar field 
~ ( x ) :  

For the potential V(p) = Rq, 4/4 (as in the model of Ref. 4), 
taking into account the bounds of Ref. 1, we obtain from 
(18) 

For the potential V(p) = 4 m2q, (Ref. taking into ac- 
count the bound m ,< 10-5m, (Ref. 1 ), we obtain from ( 18 
the same (in order of magnitude) inequality as ( 19). 

But if we consider the case N )  1, which corresponds in 
accordance with (7)  to a large value of the initial scalar field 
p, (as in Ref. 9),  then in accordance with ( 14) and ( 15) the 
spatial inhomogeneity cannot be related to the spatial in- 
homogeneity of the observed universe, l 3  since a region mea- 
suring I z 2 H  - ' is transformed by exponential inflation into 
a universe with scale much greater than the observed 
( z lo2' cm) universe. In this case a region corresponding to 
a scale much less than l z 2 H  - ' is inflated to the size of the 
observed universe. And then instead of ( 17) we obtain much 
weaker bounds, even as weak asp=: 1. However, it seems to 
us that consideration of the case N )  1 is "unphysical," since 
the predictions ( 14) and ( 15) that then follow for the in- 
homogeneity of a universe having a scale much greater than 
that of the observed universe ( =: 102%m) cannot even in 
principle be verified by observations. 

The bounds ( 18) and ( 19) obtained above on the per- 
mitted inhomogeneity of the initial scalar field p(x) appear 
unrealistic. It is much more important that these bounds are 
obtained in addition to the bounds of Refs. 1 and 2. The 
bounds of Refs. 1 and 2 are bounds on the parameters (A,m ) 
of the physical inflation model. In contrast, the new bounds 
( 18) and ( 19) are bounds on the initial conditions [on the 
allowed inhomogeneity of the initial scalar field p ( x )  1. 
These new bounds, which follow from the allowed spatial 
inhomogeneity of the observed universe, do not in general 
have any physical grounds and appear as in no way justified 
aposteriori bounds sufficient for the validity of the inflation- 
ary model of the occurrence of "our" universe. Of course, if 
we knew the theory of the universe in the preinflationary 
epoch (something that may be possible in the framework of a 
future quantum theory of gravity), one could take the initial 
data of the inflationary epoch to be results of the theory of 
the preinflationary universe. But even in this case we should 
have simply transformed the bounds ( 18) and ( 19) into cor- 
responding bounds on the initial data of the preinilationary 
epoch. There exists just a single radical way of solving this 
problem of the initial conditions [if we do not take into ac- 
count the hypothetical possibilities of a "universe without 
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boundary" (Hawking), for which there are no initial condi- 
tion problems at all], which is that allowed inflation obtains 
for almost all initial conditions (cf. the situation in the well- 
known ergodic theorem). This idea was in indeed the basis of 
the chaotic inflationary ~cenar io ,~  in which the initial scalar 
fields p (x)  were assumed to be deterministic realizations of 
random fields. However, it was shown in Ref. 6 that the 
literally understood chaotic scenario of Ref. 4, in which it 
was explicitly assumed (see the equations and text in Ref. 4b 
on p. 178) that the scalar field p ( x )  is spatially homogen- 
eous in regions measuring 1 ~ 2 H  - I ,  is incorrect from the 
point of view of probability theory. This result followed from 
the mathematical fact that for almost all natural continuous 
random fields the probability for the existence of differentia- 
ble realizations with a finite region of constancy is strictly 
equal to zero [the realizations-the scalar fields p(x)--of 
the random field must be differentiable, since the necessary 
condition ( 1 ) already presupposes differentiability of 
p (x ) ] .  This mathematical fact is valid even for arbitrary 
geometry of the space on which the initial scalar field p is 
defined. The unrealistic nature of the chaotic scenario of 
Ref. 4 is seen even more convincingly on the basis of the 
exponential estimates given below for the probability of the 
permitted inhomogeneity of the realizations of the random 
fields. These estimates are based on new results of the theory 
of random fields that were obtained by B. S. Tsirel'son 
(April 1985) and were induced by the problems of this work. 
Below, we formulate only the consequences of these general 
resultsI5 that are needed for the following exposition. 

Theorem. let l ( x ) ,  x d  3, be a random Gaussian homo- 
geneous [homogeneity (spatial) of the random field follows 
from the corresponding invariance (with respect to a shift of 
the spatial coordinates) of the general theory of relativity] 
field with differentiable realizations p (x)  and f(A ), where 
Ad? is the spectral density of this field. Suppose that for all 
k > 0 there is defined a function m (k)  (Z is an integral lat- 
tice in R 3):  

Then for a l l x d  3, whereS is a sphere ofradius I=: 2H - ', the 
following exponential estimate holds: 

P { x E S ~ ,  I E (x) -90 I < A )  

A 
< inf exp {- $+ r t 1 3 ~  [-I) . 

k > 0 .  rn(k)>O m'" (k) 

where p, = const (x)  was defined earlier, and A is a certain 
constant A = const (x) . 

Using this theorem, one can in turn prove5' the follow- 
ing: 

Corollary. Let l ( x ) ,  p,, and A be as in the theorem. Let 
a>Oand Q>Obesuch that 

f(h)=a/lh15+" IBE>O for /XI>(;) (22) 

(the condition (22) guarantees differentiability of the scalar 
fields p(x)-the realizations of the homogeneous random 
Gaussian field l ( x ) ) .  For A>O, we define the quantity q: 

Using the definition of the spectral density f ( A )  in terms of 
the Fourier transform of the correlation function of the ran- 
dom field {(x), we can readily show that g( 23 ) has the di- 
mensions of a length. We now suppose that Qq97r. Then for 
all x d  we have the following exponential estimate: 

The estimates (21) and (24) give estimates of the probabil- 
ity of realizations with given inhomogeneity A in the sphere 
S3 of the Gaussian random field. These estimates depend 
explicitly on a functional of the spectral density of the Gaus- 
sian field and thus are not universal. In this connection, we 
emphasize that the homogeneous Gaussian random fields 
with differentiable realizations constitute a very small subset 
of all inhomogeneous random fields. At the same time, we 
emphasize that the Gaussian random fields are, naturally, 
associated with quantum scalar fields. For non-Gaussian 
random fields in the general situation there are no hopes at 
all of obtaining any good estimates of the type (21) and 
(24). 

It follows from (24) that for A = 0 the corresponding 
probability of realizations that are constant (homogeneous) 
in the sphere S is strictly equal to zero. In Ref. 6, this trivial 
mathematical fact was proved not only for Gaussian but for 
almost all natural random fields. The estimates (21) and 
(25) are, of course, of greatest interest for A#O. For suffi- 
ciently small A, the estimates (21) and (24) are sufficiently 
accurate. We now recall the estimates obtained earlier for 
the permitted inhomogeneity of the initial scalar fields, 
namely, (10) and ( 17). Then 

As follows from (22), a is proportional to the variance z. 
In the chaotic ~cenar io ,~  it is assumed that p,/( z) ' I 2  z 1. 
Then from (24), on the basis of (25), taking into account 
that I - 2H - ', we obtain 

The estimate (26) corresponds to N = 1, a case that, natu- 
rally, is distinguished. For N 9  1 [see however the discussion 
following Eq. ( 19)] the corresponding estimate of the type 
(26) may be much less restrictive. It follows from (26) that 
the probability of formation of "our" universe with permit- 
ted spatial inhomogeneity is fantastically small 
(exp( - in the framework of the chaotic scenario of 
Ref. 4. And from the estimates (21 ) and (24), which are 
sufficiently accurate for small A, it follows that the probabil- 
ity of formation of "not our" universes with impermissible 
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spatial inhomogeneity is much greater (fantastically 
greater) than the probability of formation of "our" universe. 
As we know from quantum theory, especially after Bell's 
well-known inequalities16 (see also Refs. 17-19), "God 
plays dice," but we cannot expect him to do so with such 
fantastic accuracy. 

In a separate paper we shall use Tsirel'son's results to 
estimate fluctuations of quantum (and not classical) scalar 
fields. 

I am greatly indebted to B. S. Tsirel'son for discussing 
the problem of estimating the probability of spatially inho- 
mogeneous realizations of random fields and for obtaining 
the corresponding exponential estimates needed for this 
work. I am grateful to A. A. Starobinskii for helpful discus- 
sions and comments. 

"The main content of this paper was presented at the USSR Academy of 
Sciences Nuclear Physics Section Conference on Nuclear Interactions at 
the Institute of Theoretical and Experimental Physics in November 
1985, Moscow. 

"The estimates of Sec. 2 were presented in a paper at the USSR Academy 
of Sciences Nuclear Physics Section Conference on Strong, Weak, and 
Gravitational Interactions at the P. N. Lebedev Physics Institute in 
April 1985, Moscow. 

"A formula analogous to ( 14) was obtained independently in Ref. 11. 
4)The most complete investigation of the classical dynamics of this model 

was made in Ref. 14. 
5'The mathematical proof of the Corollary, which we omit, is based on one 

purely geometrical lemma of B. S. Tsirel'son. 
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