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The logarithmically diverging temperature corrections to the spin-wave spectra of isotropic 2 0  
Heisenberg ferromagnets and antiferromagnets and the quantum correction to the Green's 
function of the isotropic 1D antiferromagnet are computed by means of a microscopic 
approach. In each case the series of principal logarithmically diverging diagrams is summed, 
and the region of applicability of the spin-wave description is found. It is shown that, on the 
scales where perturbation theory is valid, the 1D antiferromagnet is equivalent to the O(3) a 
model. The effect of the anisotropy, a magnetic field, and the exchange between the spin chains 
(or layers) on the critical properties of Heisenberg magnets is discussed. It is also shown that 
the temperature renormalization of the spectrum of a 3 0  antiferromagnet is - T  411n T  I. 

$1. INTRODUCTION 

Recently both experimenters and theorists have be- 
come very interested in the study of magnetic systems that, 
because of the strong exchange-interaction anisotropy, can 
with a high degree of accuracy be classified with the quasi- 
one-dimensional ( ID) and quasi-two-dimensional (20 )  
magnetic substances. This interest is due mainly to the fact 
that the role of the fluctuations is often much more impor- 
tant in the low-dimensional magnetic materials than in the 
corresponding three-dimensional (30 )  systems. Especially 
noticeable is the enhancement of the fluctuation effects when 
we go over to the low-dimensional analogs of three-dimen- 
sional spin systems with n-component vector order param- 
eters. The simplest examples here are the easy plane (n = 2) 
and isotropic (n = 3) ferromagnets and antiferromagnets. 

Let us recall some well known results pertaining to the 
behavior of systems with vector order parameters in low- 
dimensional spaces. 

1. At any finite temperature the long-range order in 2 0  
and 1D spaces is destroyed by thermal (classical) fluctu- 
ations (the Mermin-Wagner theorem1). 

2. In 1D space the long-range magnetic order is de- 
stroyed even at T  = 0 as a result of the quantum fluctuations, 
the zero point spin oscillations (if, of course, they o c c ~ r ) . ~ , ~  

3. The 20 magnetic materials with n = 2 and those with 
n = 3 possess essentially different low-temperature proper- 
ties in spite of the fact that long-range order cannot exist in 
2 0  space for any T  #O. For n = 2 there exists a critical tem- 
perature T, (the Berezinskii-Kosterlitz-Thouless transition 
t empera t~ re )~ ,~  below which the spin system behaves as if it 
has been frozen at the phase transition point, i.e., the correla- 
tion length at all temperatures below T, is equal to infinity, 
while the correlation functions of the order-parameter com- 
ponents decrease at large distances according to a power 
law: G(R) -R -v. The situation is different in the n = 3 
case: no phase transition occurs right down to T = 0, so that 
the system is in the paramagnetic phase at any finite tem- 
perature, and the correlation functions decrease exponen- 

tially (like e - R'E ) with distance. The assertion that no, 
phase transition occurs at T  #Oin isotropic 2 0  ferromagnets 
and antiferromagnets (systems with n = 3) follows from the 
results of the exact solution of the problem of the spectrum of 
the one-dimensional nonlinear O(3) a model of relativistic 
field This model is equivalent to the isotropic-2D- 
magnet models (see, for example, Ref. 8 ) . 

4. No phase transition occurs in 1D space right down to 
T  = 0 for any value of n. Differences in behavior of magnets 
with two- and three-component order parameters could be 
expected here at T = 0, since allowance for the quantum 
fluctuations in 1D space leads to the same logarithmically 
diverging corrections to the order parameter as allowance 
for the classical fluctuations in 2 0  space. But in the quantum 
case the question of the existence of such differences is for 
the present open. On the one hand, in the classical treatment 
the Lagrangian of the simplest 1D system with n = 3-the 
1D antiferromagnet-coincides with the Lagrangian for the 
1D O(3) a model. On the other hand, it is known from the 
exact solution9 that the structure of the correlation functions 
at large scales in a 1D antiferromagnet with spin S = 1/2 is 
the same as the structure of the corresponding functions in 
magnets with a two-component order parameter1': these 
functions decrease in a power-law fashion, i.e., the correla- 
tion length is infinite at T =  0. It has been rigorously 
proved9." that this is valid for all antiferromagnets with 
half-integral spin. I' 

It was for a long time believed that the divergence of the 
correlation length at T  = 0 was a general property of all ex- 
change magnetic materials. Recently, however, Haldane, on 
the basis of the analogy between the classical Lagrangians of 
an antiferromagnet and the a model, put forward the hy- 
pothesis that there is a qualitative difference between the 
structures of the ground states of 1D antiferromagnets with 
integral and half-integral spins.13 According to his hypothe- 
sis, for all half-integral values ofS the correlators decrease in 
a power-law fashion (more exactly, like l/R), while for inte- 
gral values of S a 1D antiferromagnet exhibits all the proper- 
ties of the O(3) a model, i.e., because of the strong quantum 
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fluctuations, the correlation length is finite, and the antifer- 
romagnet remains in the paramagnetic phase even at T = 0. 
In spite of the fact that Haldane's predictions called in ques- 
tion the results of a number of other  author^,'^'^' they stimu- 
lated a rapid growth of the number of papers on the numeri- 
cal modeling of the ground-state structure of 1D 
antiferromagnets. 11,16-18 The data obtained in the numerical 
experiments support the hypothesis that systems with 
S = 1/2 and 1 have different ground-state structures. 

In the present paper we study the fluctuation effects in 
low-dimensional magnetic materials within the framework 
of standard low-temperature perturbation theory. Specifi- 
cally, we compute the dominant fluctuation corrections to 
the Green's functions of low-dimensional isotropic ferro- 
magnets and antiferromagnets both at finite temperatures 
and at T = 0. This formulation of the problem presupposes 
two aims: first, the determination of the dominant tempera- 
ture corrections to the spin-wave spectra and, second, the 
verification through direct computations of Haldane's con- 
jecture that an isotropic 1D antiferromagnet can remain in 
the paramagnetic phase even at T = 0. The Green's function 
is a convenient characteristic for such a verification, since in 
systems without long-range order (which are studied be- 
low) the structure of the fluctuation corrections to it de- 
pends on the laws of decrease of the correlations. In the case 
of the power law of decrease the spin waves exist on all scales 
of distances, and therefore the fluctuation corrections to the 
Green's function are finite. On the other hand, if the correla- 
tion length is finite (the correlations fall off exponentially), 
then the fluctuation corrections increase with increasing 
wavelength, and, ultimately, at distances greater than the 
correlation length the perturbation theory becomes inappli- 
cable. 

The paper is organized as follows. In 92 we compute the 
dominant temperature corrections to the spin-wave spec- 
trum of a W ferromagnet with arbitrary spin in different 
temperature ranges. In 93 we compute the temperature cor- 
rections to the spectra of isotropic W a n d  3 0  antiferromag- 
nets with large spin. We also compute in this section the 
quantum corrections to the Green's function of the 1D anti- 
ferromagnet. Section 4 is devoted to a discussion of the re- 
sults obtained. There we also consider how a magnetic field, 
anisotropy, and the exchange between the spin chains affect 
the ground-state structure of quasi-one-dimensional antifer- 
romagnets with integral spin. Some of the results obtained 
have been published in a short comm~nica t ion .~~ 

42. THE TWO-DIMENSIONAL FERROMAGNET 

The Hamiltonian of an isotropic ferromagnet can be 
written as: 

Here J is the exchange integral between the nearest atoms 
located in the XY plane at a distance A from each other. The 
magnitude of the spin S is assumed to be arbitrary. Using the 
Dyson-Maleev transf~rmation,~~ we rewrite the Hamilto- 
nian ( 1 ) in terms of the Bose operators. Then going over to 
the Fourier transforms of the operators a+ and a, we obtain 

The subscripts 1, 2, 3, ... correspond to k,, k,, k,, ... . 
The interaction between the magnons is described by 

the amplitude 

Above we used the following notation: 

The dominant temperature renormalization of the spin- 
wave spectrum 

A e r  = AE!" + A E ~ '  , 
is given by the following diagrams: 

The hatched vertices are the total scattering amplitudes tak- 
en at resonance at T = 0. Their deviation from the bare ver- 
tices lies in their exchange renormalization, which occurs as 
a result of the finiteness of the magnitude of the spin S. For 
an arbitrary value of S this renormalization is by no means 
weak. Let us, in order to avoid any misunderstanding, em- 
phasize that all the purely quantum corrections are included 
in the renormalization of the vertices. Therefore, in the for- 
mula (5) the quantity AeL2' is determined by that part of the 
diagram which contains the product of two Bose functions 
[see Eq. (7)  below]. In analytic form, Eq. (5 ) can be written 
as: 

Here the r::: are the total vertices. Their determination re- 
quires summation over all the virtual two-particle processes, 
which at T = 0 amounts to summation of the series of ladder 
diagrams. The corresponding Dyson equations can be wri- 
ten down and solved in the usual manner. The answers in the 
present case are as follows. The total zero-angle scattering 
amplitude ri: has the form 

where, to within logarithmic terms, 

h=- (32nS2)-i[ln {max k, p )  I. (9) 

It is sufficient to know the amplitudes l?:: and r$ only in 
the leading, bilinear-in the wave vector-rder. In this 
approximation there is no difference beween the bare and 
total amplitudes: 
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Knowledge of the expressions for the total vertices en- 
ables us to compute with the aid of the formulas (6) and (7) 
the temperature corrections to the spin-wave spectrum. TO 
within logarithmic terms, we have 

I ln (k2J (0) SIT) I, kZ < T/l (0) S, 

o ( 0 ,  k2 > T/J(O)S. 
(12) 

It can be seen from these expressions that, for small 
wave vectors, the dominant temperature renormalization of 
the spin-wave spectrum is always proportional to T 2/1n k I ,  
but that the coefficient of proportionality depends on the 
relation between k and T/J(O)S: for k 'S T/J(O)S the 
dominant renormalization of the spectrum comes from 
A&:'), i.e., is determined by the quantum effects (the devi- 
ation of the total amplitude from the bare amplitude at 
T = 0), while fork ( T N ( 0 ) S  therenormaliationoftheen- 
ergy is largely due to k i 2 ' ,  i.e., is determined by the classical 
(temperature) fluctuations. In the latter case the correction 
to the spin-wave energy for exponentially small wave vectors 
is comparable in magnitude to the bare-energy value, thus 
making the temperature perturbation theory inapplicable. 
The determination of the characteristic scale at which this 
occurs requires the summation of the series of dominant 
logarithmically diverging diagrams. By separating out, as 
usual, in each diagram the cross section in which the integra- 
tion momentum is smallest, we can represent the sum of such 
diagrams in the form 

P 

The black squares are the total vertices with allowance for 
the temperature renormalization [below they are denoted by 
r::: ( T) ].The problem of finding these vertices amounts to 
that of summing the "parquet" diagrams (see Ref. 21),2' 
e.g.9 

)(=>.(+%iX+X. P 
'L P ' P ' C  

In each diagram we have separated out that two-particle 
cross section in which the integration momentum is small- 
est. The total vertex in the "parquet" approximation has 
been computed by many auth01-s.'~ We shall need r:,P(T) 
and rfPp ( T )  in the case when the three momenta q, 1, and p 
are of the same order of magnitude. Taking account of the 
fact that, to within logarithmic corrections, the dependence 

of the amplitude on the external momenta is determined by 
the limits of the integration over the internal momenta, and 
going over to logarithmic variables, we obtain (L = Iln ql ) 

where 
L 

~ ( T , L ) =  I +  2T Jdog2(T,n) ,  g(T,O)=L. (14a) 
n I  (0) S2 , 

The solution of Eq. ( 14a) is elementary: 

Knowledge of TZ( T) and r;, ( T) allows us to refine the 
formula ( 12) in the region k ( T/J(O)S: 

This formula was obtained earlier through a macroscopic 
treatment by Pokrovskii and Feigel'manZ4 and L e b e d e ~ . ~ ~  

It can be seen from Eqs. ( IS) and ( 16) that perturba- 
tion theory ceases to be applicable at scales 

RE-l/k,=exp[nl(O) S2/2T]. 

Accordingly, R,, the greatest distance over which spin 
waves still exist, is the correlation length in a 2 0  ferromag- 
net. Of course this assertion is, to a certain extent, based on 
the results of the exact a-model ~olu t ion ,~  since it is implied 
that the fluctuations do also grow outside the region con- 
trolled by the perturbation theory. 

Let us point out that the spin-wave energy correction 
is negative (cf. f3).  For the temperature fluctuations 

this is natural, since a decrease in the energy of a magnon 
with a definite k must be associated with an increase in the 
equilibrium number of quasiparticles with a given momen- 
tum, i.e., enhancement of the fluctuation effects. Let us also 
note that, although the spin-wave damping constantz4 

yr-ek (TIl(0)S2)2 
grows logarithmically with decreasing wave vector,25 it re- 
mains everywhere in the region of applicability of the pertur- 
bation theory smaller than the temperature renormalization 
of the spin-wave energy, since the latter contains an addi- 
tional logarithmic factor. The real and imaginary parts of 
the spin-wave energy are comparable at the scale R ZR,, 
when the temperature correction is practically equal to the 
bare value tzk ( I ztzk ) . At distances much greater than 
the correlation length the spectrum is purely diffusive (as in 
a normal paramagnet), E, -iDk (D is the diffusion coeffi- 
cient). 

Let us, in concluding this section, briefly discuss the 
question of the renormalization of the spectrum when 
allowance is made for the weak interplanar exchange. The 
corresponding correction to the Hamiltonian has the form 

l.A, 

Allowance for the exchange interaction along the third axis 
changes the temperature correction to the spectrum of the 
spin waves with k = (k,, k, ) in the region of the very low 
temperatures, where 6) T/J(O)Sand the quasi-two-dimen- 
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sional character of the system manifests itself weakly, and at 
extremely small wave-vector values: 6 )  k ', when the loga- 
rithmically increasing corrections become "frozen" (it is as- 
sumed that 6)exp[ - n-J(0)S2/2T]. The formulas for the 
spectrum renormalizations in these regions are: 

[ T / J ( O ) S > 6 > k " , e x p [ - n J ( O ) S v 2 T ] .  

For 6 (exp [ - n-J(0)S 2/2T] the inclusion of the exchange 
along the third axis does not lead to ferromagnetic ordering. 

$3. THE ANTIFERROMAGNET 

The Hamiltonian of an isotropic antiferromagnet has 
the form 

We shall investigate antiferromagnets with exchange inter- 
action between nearest neighbors only. 

The problem of constructing the Bose analog of the spin 
Hamiltonian ( 19) for an antiferromagnet has been solved by 
different As is well known, any method by 
which we can go over from the spin operators to bosons leads 
to a quadratic form in the Bose operators that contains non- 
diagonal terms, a fact which confirms the instability of the 
classical ground state, i.e., the existence of zero-point oscil- 
lations. In the general case of an arbitrary spin value the 
zero-point oscillations in an antiferromagnet do not possess 
a small parameter, and therefore the concept of a weak noni- 
deal low-density Bose gas of quasiparticles, in terms of 
which we can construct a perturbation theory, is not applica- 
ble here. Let us recall that, in an isotropic ferromagnet, in 
which macroscopic zero-point oscillations do not occur, the 
quasiparticle density is small because the temperature is 
small compared to the exchange integral. 

The satisfiability of the criterion for a slightly nonideal 
Bose-gas of quasiparticles in an antiferromagnet can be 
guaranteed only when S) 1; for then all the anharmonic 
terms will be small, of the same order as 1/S. Below we shall 
assume everywhere that the requirement that S) 1 is ful- 
filled, and shall limit ourselves to the first terms of the power 
series expansion in the reciprocal spin. 

In the Dyson-Maleev formalism, the transition from 
the spin operators to bosons in an antiferromagnet requires 
the introduction of Bose operators for each of the sublat- 
tices. The Bose analog to the spin Hamiltonian contains in 
this case terms that are quadratic and quartic in the Bose 
~perators."-'~ In constructing the perturbation theory, it is 
convenient to first diagonalize the quadratic form in the 
Bose-Hamiltonian with the aid of the generalized uv trans- 
formation, i.e., essentially, it is convenient to first take ac- 
count of the set of loop  diagram^.^' This procedure can be 
carried out in fairly standard fashion (see, for example, Refs. 
28, 30, and 3 1 ), and therefore we shall give at once the final 

result. In terms of the new operators the Bose-Hamiltonian 
can be written as 

Here c, and d, are the Bose operators and E~ is the "bare" 
spin-wave energy: 

As in the case of the easy-plane magnetic material, in which 
the order parameter has two components, the quasiparticle 
spectrum is linear at small wave-vector values, i.e., it con- 
tains a Goldstone mode at k = 0 (at small wave-vector val- 
ues ~ L ~ ) = : l k ( ( 2 / ~ ) " ~ ,  where Z is the number of nearest 
neighbors). An antiferromagnet for which the number of 
order-parameter components is equal to three is character- 
ized by the presence of two Goldstone modes. As we shall 
show below, it is precisely this circumstance that will be re- 
sponsible for the presence of fluctuation anomalies for anti- 
ferromagnets. 

The anharmonic terms entering into Xi,,, can be writ- 
ten in their explicit form as 

+ 2(c,+c,+d3+c,+d,+d1d,cs) c~!:,', + 4cl+d2+csd4cD!~:,). 

(22) 
We shall need the values of the coefficients @ii\, only for 
low energies of the interacting quasiparticles: 

In Eq. (23) 

4 
fa-b - 

z 
(24) 

Z being the number of nearest neighbors. 
In second order perturbation theory in terms of 1/S the 

self-energy part is determined by the following diagrams: 
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Here the continuous and dashed lines denote the bare mag- 
non Green's functions for the various sublattices. 

In analytic form the formula (25) can be written as: 

It is implied that the momentum conservation law is obeyed 
in each process. 

Let us note that, since Xi,,, contains terms with differ- 
ent numbers of boson creation and annihilation operators, in 
the construction of the perturbation theory, besides the nor- 
mal self-energy functions, the anomalous functions 
H' ' (k,w ) and 2-- (k,w ) will appear. Accordingly, the 
structure of the total (normal) Green's function will be the 
same as in the case of a Bose-gas of particles in the presence 
of a condensate: 

io+er-Z(-k, -a) 
G (k, o )  = 

(o-iZA) + (e-Z8) ' - Z++ (k, o )  2-- (k, o )  

1 -- 
a ' + ~ ~  ' 

where 

while Ek is the renormalized spin-wave energy. The quantity 
H++(k,w)Z--(k,w) is of higher order in 1/S (O( l /S4)) ,  
and therefore to the specified accuracy (O( 1/S ') ) the struc- 
ture of the Green's function does not change: 

[g(k,w 1 is the total Green's function to within O( 1/S 2, 1. 
Nevertheless, the presence of the anomalous self-energy 
parts is important for the interpretation of the results ob- 
tained for the 1D antiferromagnet at T = 0 (see below). 

Let us now consider separately the quantum and classi- 
cal corrections to the Green's function. Let us start with the 
temperature-dependent corrections. At T #O we shall be in- 
terested in the temperature renormalization of the spin-wave 
spectrum E~ + E ~  ( T). To calculate it the value of H(k,w ) 
must be taken at resonance (iw =ck ) . The most interesting 
temperature dependence of the spectrum is the one for W 
space. Calculations with Eq. (26) show that, here at small 
wave-vector values k ( T/J(O)S, the dominant contribution 
to the renormalization of the energy is made by the terms 
containing two Bose functions: 

A E ~  (T) =-'/2~r (2T/nJ(0)S2)2 InZ k. (30) 

Notice that the quadratic-in the logarithm-correction is 
entirely due to the partsf,-, and f :+, (a, b = k, p, q, l) ,  

which are proportional to the scalar products of the corre- 
sponding wave vectors [see Eq. (24) I .  

The presence of fluctuation corrections that increase 
logarithmically with decreasing wave vector value means 
that, as in a 2 0  ferromagnet, the spin-wave description is 
inapplicable at long wavelengths. The determination of the 
characteristic scale at which it becomes impossible to con- 
sider the 2 0  antiferromagnet as an ordered system requires 
finding the total temperature renormalizations of all the am- 
plitudes. Let us, as an example, consider the renormalization 
of the amplitude (Q'4'+ T) ) . In the "parquet" 
approximation the equation for W4'( T) can be diagramma- 
tically represented as: 

The black squares are the total vertices Wi) (T). In each 
diagram we have chosen the two-particle cross section in 
which the integration momentum is smallest. Similar equa- 
tions can be written for the other total vertices. 

Of importance to us will be the renormalization of that 
part of the expression for which is proportional to the 
scalar product of the vectors k and p, since it is this part that 
produces the quadratic-in the logarithm-correction to 
the spectrum in second order perturbation theory. 

As in $2, it is necessary to know the amplitude (T) 
in the case when the momenta q, 1, and p are of the same 
order of magnitude: 

This applies to the remaining amplitudes a"' ( T). Equation 
(3 1 ), written as an equation for g( T, L ) ,  coincides exactly 
with Eq. ( 14). Accordingly, the static renormalization of 
the vertex has, as in the case of a ferromagnet, the form 

It therefore follows that the spin-wave description in antifer- 
romagnets becomes inapplicable at the same scales 
R, - exp [rJ(O)S '/2T] at which the corresponding descrip- 
tion in ferromagnets becomes applicable. 

Let us note, however, that in the case of an antiferro- 
magnet we cannot refine Eq. (20) in the region [2T/  
r J ( 0 ) S  2]L - 1 by substituting into it the renormalized val- 
ues of the vertices (as was done in the case of the ferromag- 
net). This is due to the fact that in the present case the line 
renormalizations determined by the perturbation theory se- 
ries in the parameter {[2T/lzJ(0)S2]L)' also become im- 
portant as we approach the critical region. In a ferromagnet 
the analogous parameter, which is equal to [2T/  

658 Sov. Phys. JETP 64 (3), September 1986 Yu. A. Kosevich and A. V. Chubukov 658 



?rJ(O)S2I2L, is small on all the scales under consideration. 
Thus, the expressions obtained within the framework of per- 
turbation theory [including Eq. (33)] are applicable to an 
antiferromagnet under conditions that are more stringent 
than in the case of a ferromagnet: it is required that the quan- 
tity [2T/?rJ(O)S 2] L bemuchsmaller thanunity. Let us note 
further that, according to estimates, the damping constant 
for a spin wave with k4T/J(O)S is proportional to 
yk - E ~  T 2, and is small compared to the temperature cor- 
rection to the energy of the wave in the entire region of appli- 
cability of the perturbation theory. 

In the wave-vector region 1 ) k) T/J(O)Sit is impossi- 
ble to obtain the answer for the spectrum renormalization in 
its explicit form. Most probably the dominant contribution 
to in this region is made by the terms containing one 
Bose function [see Eq. (26) 1, i.e., as in a 2 0  ferromagnet, 
the spectrum renormalization will be determired largely by 
the quantum effects. According to the estimates, for 
l%k%T/J(O)S 

but the coefficient of proportionality may vanish. 
Let us now turn to the case of 3 0  space. It is well known 

that, to first order in 1/S, the temperature renormalization 
of the spin-wave energy in a 3 0  antiferromagnet [see Eq. 
(21) ] is the same as in the models with easy plane anisotro- 
py26,33: a E~ T 4. Corrections to this result can arise from 
both the quantum and temperature renormalizations of the 
two-particle zero-angle scattering amplitude [correspond- 
ing to them in Eq. (26) are the terms containing respectively 
one and two Bose functions]. Analysis of such corrections in 
3 0  ferromagnets, where AE, a E k  T " ~  in first order in 1/S, 
has been carried out by D y ~ o n . ~ ~  The result is well known: 
the temperature renormalization of the amplitude is not im- 
portant, and the quantum renormalization attaches to the 
semiclassical result only a factor Q(S) that is explicitly de- 
pendent on the magnitude of the spin. In 3 0  antiferromag- 
nets the situation is, as follows from Eq. (26), different: 
allowance for the quantum renormalization of the amplitude 
in first order in l/Scauses an additional factor to appear that 
is a logarithmic function of the wave vectors. Consequently, 
the formula for the correction to the spectrum has the form 

i.e., at small wavevectors a T 411n T I. Thecalculation 
shows that the corrections due to the temperature renormal- 
ization of the amplitude are proportional to T 4, and do not 
play a noticeable role. 

Let us emphasize that the presence of a renormalization 
that is a logarithmic function of the temperature is a direct 
consequence of the existence of two Goldstone modes in the 
elementary-excitation spectrum of an antiferromagnet. In 
magnetic materials with easy-plane anisotropy, such a re- 
normalization does not occur in zero magnetic field. Let us 
note, though, that the logarithmic-in the temperature- 

renormalization of the amplitude arises in easy-plane mag- 
netic materials in H #O fields as a result of the three-particle 
anharm~nicities.~~.~~*~~ This is a general property of all Bose 
liquids with a Goldstone ~pectrum.~' 

Expression (35 ) was derived under the assumption that 
S) 1. Higher powers of the logarithm do not arise in the 
subsequent orders in 1/S, since all the amplitudes in an anti- 
ferromagnet are of zero order in the energies. Furthermore, 
we can, on the basis of the analogy with the 2 0  ferromagnet, 
in which allowance for the quantum renormalization of the 
amplitude also leads to a logarithmic correction [see Eq. 
(9)  1, assume that in this case a complicated spin depend- 
ence in the coefficient attached to the logarithm does not 
also arise. We cannot, however, prove this rigorously. 

To conclude the discussion of the fluctuation effects at 
finite temperatures, let us note that, in 1D space, the tem- 
perature corrections to the spectrum increase in a power-law 
fashion as the wave vector decreases. In this case the spin- 
wave description is already inapplicable at scales propor- 
tional to the reciprocal temperature. 

Let us now consider the situation at T = 0, when the 
renormalizations are entirely due to the quantum effects. 

As was indicated in the Introduction, the quantum ef- 
fects in antiferromagnets are strongest in 1D space, where 
allowance for them leads to the destruction of the long-range 
order in the ground state. Calculations with expression (26) 
lead in this case to the following result: the renormalization 
of the spin-wave energy is finite,4' but there appears a loga- 
rithmically increasing correction to the bare Green's func- 
tion: 

where 

Let us now take account of the fact that, because of the pres- 
ence of the anomalous self-energy parts, the total Green's 
function is "phonon-like" [see the formula (27) 1. It is not 
difficult to verify that the logarithmic terms in the normal 
and anomalous self-energy parts are identical. Accordingly, 
the expression for the total Green's function with allowance 
for the quantum renormalization is 

G (k, o) -ZL/ (02+e,2), (38) 

where 

i.e., as in 2 0  space at T #O, the presence of two Goldstone 
branches in the spectrum leads to the appearance of fluctu- 
ation corrections that increase logarithmically with increas- 
ing scale. The summation of the principal logarithmically 
diverging diagrams is carried out in the same way as in the 
case of a 20 antiferromagnet. Of the "parquet" diagrams at 
T = 0 only those in which the arrows on the internal lines 
point in the same direction survive. Let us denote the result 
of the renormalization by @'" ( 1/29, and introduce, as be- 
fore,the function g,,,, ( l/S,L) : @"' ( 1/S) = @"'g,,,, ( 1/ 
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S,L) . In analytic form Eq. (3 1 ) , written as an equation for 
gquas ( l/S,L), looks like: 

whence 

In first order in 1/S, the logarithmic renormalization of the 
amplitude is found in Ref. 29 (the value of the coefficient is 
determined more accurately in Ref. 39). 

Knowledge of the renormalization of the amplitude al- 
lows us (as in the case of the 2 0  ferromagnet) to refine the 
expression ( 39 : 

This can be done, since allowance for the renormalization of 
the amplitude leads to greater corrections to Z, than 
allowance for the renormalizations of the virtual-magnon 
Green's functions. It can be seen from Eq. (42) that there 
also exists in the 1D antiferromagnet a characteristic scale 
R, -eVS beyond which the standard spin-wave description 
is inapplicable. 

It is convenient to represent Eqs. (41 ) and (42) as the 
results of the solution of the differential equations 

in which g, = (2/S)gqUas ( l/S,L) is the "effective recipro- 
cal spin" (coupling constant) go = 2/S. The first equation 
relates the renormalization of the Green's function to the 
coupling constant, while the second determines the renor- 
malization of the coupling constant itself. Both equations 
are approximate: we have discarded in them the terms of 
higher orders ing, , terms which from the beginning have an 
additional power of 1/S and therefore do not fall into the 
category of the principal logarithms, and have ignored the 
renormalization of the virtual-magnon Green's functions. 
The discarded terms are of the order of those considered at 
the same scales R, -erS where the effective reciprocal spin 
attains the value of unity. On large scales the formulas (43) 
need to be refined. It can be seen at the same time that, for 
R <R, , the equations forg, andZ, in the 1D case are exact- 
ly the same as the equations for the coupling constant 4TL / 
J (0 )S  and the effective mass in a 2 0  ferromagnet [see the 
formulas ( 15) and ( 16) 1. In fact the Matsubara frequency 
plays the role of asecond coordinate. Since the 2 0  ferromag- 
net is, in turn, equivalent to the O(3) a-model, for which the 
exact solution is known,6 these analogies allow us to expect 
that the fluctuation corrections in a 1D antiferromagnet will 
continue to grow outside the region where the perturbation 
theory is applicable, so that as a result the spectrum w(k) 
will contain a finite (though for S) 1 exponentially small) 
gap: 

Two circumstances are important for the interpretation of 

this formula. First, an elementary excitation in an antiferro- 
magnet at T = 0 has an infinite lifetime, since the decay of a 
magnon is forbidden by the conservation laws.27 For this 
reason the values of w (k)  essentially determine the energy 
levels of the system. Secondly, the excitation energy is mea- 
sured from the true ground state, which differs from the clas- 
sical ground state on account of the same quantum renor- 
malization. The finiteness ofw (0)  means in this case that the 
ground state is a singlet. Accordingly, the spin-spin correla- 
tion functions fall off exponentially at T = 0. 

$4. DlSCUSSlON OF THE RESULTS 

Let us enumerate the main results obtained in the pres- 
ent paper. 

1. We have found logarithmically increasing tempera- 
ture corrections to the spin-wave spectra of isotropic 2 0  fer- 
romagnets and antiferromagnets (Ae, a E, T '11n k I for fer- 
romagnets and AE, a E, T ln2 k for antiferromagnets), and 
have established the limits of applicability of the spin-wave 
description. It has been shown that, in an antiferromagnet, 
the logarithmic renormalizations are due to the presence in 
its spectrum of two linear Goldstone modes. 

2. We have found the dominant temperature renormal- 
ization of the spectrum of 3 0  antiferromagnets. 
A&, a ~ ~ T ~ 1 1 n  TI. 

3. It has been shown that the quantum corrections to 
the Green's function in a 1D antiferromagnet at T = 0 also 
increase logarithmically as the wave vector decreases 
(AG(k,w) a GS -211n k I ). The characteristic scale beyond 
which the perturbation theory is, in the general case, inappli- 
cable has been determined. 

The results pertaining to 2 0  space are quite natural, 
since it has been rigorously proved6s7 that isotropic 2 0  ferro- 
magnets and antiferromagnets remain in the paramagnetic 
phase right down to T = 0. Less obvious are the result per- 
taining to 1D space. Let us discuss them in greater detail. In 
the main, what we have been able to do is to confirm through 
direct calculations Haldane's hyp~thesis '~ concerning the 
existence in a 1D antiferromagnet with a large spin of a "nat- 
ural" scale of distances R,  -eVS at which the semiclassical 
spin-wave description becomes inapplicable. Further, Hal- 
dane formulated his hypothesis on the basis of the equiv- 
alence of the classical Lagrangians of the antiferromagnet 
and the O(3) a-model. As can be seen from the formula 
(43), this equivalence remains when allowance is made for 
the quantum fluctuations within the framework of perturba- 
tion theory. On the other hand, it has been rigorously 

that, for all half-integral spin values, the spectrum 
does not contain any gap. Thus, we have a contradiction 
between the predictions of perturbation theory and the rig- 
orous results. HaldaneI3 has suggested that the cases of half- 
integral S values are special, and that the perturbation the- 
ory predictions for integral S are correct. Standard 
perturbation theory does not allow us to prove this, just as it 
does not allow us to elucidate the cause of the specific behav- 
ior of 1D antiferromagnets with half-integral spins. 

The difference between the cases of integral and half- 
integral S values can be explained by assuming that, at the 
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FIG. 1.  Proposed dependence of the paramagnetic-antiferromagnetic 
phase transition temperature on the ratio of the intrachain (J) and inter- 
chain (J' )  exchange integrals. The spin S is integral. The spin space is 
magnetic-field and anisotropy free (i.e., H = 0 and a = 0). The vanishing 
of T, at afinitevalueoftheratio J'/J ( (J1/J),, -e- *' forS) 1) isdue to 
the quantum-fluctuation-governed anomalies. The decrease of T, in the 
region J'/J, 1 isa reflection ofthe quasi-two-dimensional character ofthe 
antiferromagnet in this limit. The phase diagram for the case of half- 
integral spin values is different in the region J'/J( I ,  since in this case (J1/ 
J),, = 0. 

macroscopic level, an antiferromagnet is described by the a 
model with an additional topological 8 term that, for half- 
integral S, assumes the value4' a. It is assumed4' that the 
properties of the a model with a 8 term differ, when 8 = n-, 
from the normal properties: in particular, a gap is not pro- 
duced. An approximate construction of a a model with a 8 
term that corresponds to an antiferromagnet is carried out in 
Ref. 42. In this model 8 is indeed equal to n- for half-integral 
S. 

The existence of an energy gap in the spectrum of iso- 
tropic ID antiferromagnets with integral S values is con- 
firmed also by the results of numerical experiments for sys- 
tems with S = 1 (Refs. 1 1, 16, and 18). Let us assume that 
there is indeed a gap in the isotropic case ( S  is integral), and 
let us investigate the situation in the presence of a magnetic 
field H,  anisotropy a ,  and exchange J' between the spin 
chains. Each of the additional terms in the Hamiltonian con- 
tributes to the weakening of the quantum fluctuations, since 
the system either becomes weakly three-dimensional 
(J1#O), or acquires the characteristics of an XY magnet 
(H #Oora#O,a>O) oranIsingmagnet (a#O,cr<O). If 
even one of the parameters H, a ,  and J' is comparable in 
magnitude to the intrachain exchange J ,  then the correlation 
length is certainly infinite, and the spectrum contains no 
gap.5' In this case there exists long-range ordqr in the ground 
state (when J'- J or a - J ,  a < 0), or the spin-spin correla- 
tion functions decrease in power-law fashion (when H- J o r  
a-J, a > 0). But the correlation length cannot go to infinity 
abruptly. Therefore, when any additional interaction is 
switched on, the transition from the "paramagnetic" phase 
into the state with infinite correlation length will occur only 
when this interaction becomes appreciable at characteristic 
scales of the order of effS (S is assumed to be large). Conse- 
quently, the critical parameter values (those at which the 
transition occurs) are finite, and are, in order of magnitude, 
equal to 

Essentially the situation here is the same as the situation 
that obtains in the anisotropic a except that the role 
of temperature is played by the quantity 2/S. 

It should be noted that, although the arguments ad- 
duced above seem to us to be fairly natural, they are not 
rigorous. Therefore, it is possible that switching on any of 
the interactions will cause long-range order to develop at 
once, but not as a result of a phase transition. This seems to 
us to be highly improbable. 

The finiteness of the critical value J' means that the 
"paramagnetic" ground state is realized not only in purely 
one-dimensional, but also in real three-dimensional Heisen- 
berg antiferromagnets with strong exchange-interaction an- 
isotropy in coordinate space. Figure 1 shows the phase dia- 
gram of antiferromagnets in the plane of the variables T /  
J (0  )S and J '/J. 

It is convenient to use for the experimental verification 
of the effects discussed here the fact that a magnetic field 
suppresses the critical fluctuations in low-dimensional anti- 
ferromagnets, since there appears a gap for one of the modes 
and the order parameter becomes a two-component one 
(this is pointed out in Ref. 45 too). 

In quasi-two-dimensional antiferromagnets (of the 
type K,NiF,) the transition temperature in zero field is, in 
order of magnitude, equal to TN - J / l n ( ~ / j )  (J ( j  is the 
exchange integral between the spins in neighboring planes: 
34 J) . On the other hand, in the quasi-two-dimensional XY 
model, the properties of which are acquired by the antiferro- 
magnet after the field has been switched on, the transition 
occurs at a temperature T -  J even in the 3 = 0 
Therefore, if in ordinary 3 0  systems the value of TN falls as 
the field intensity increases, in the present case, in fields that 
are weak compared to the exchange interaction, the NeCl 
temperature should increase with increasing field intensity. 
Estimates show that, for H(J(O)S, 

From the quasi-one-dimensional antiferromagnets 
with integral spin, let us choose the crystal CsNiCl, [ J1 /J  
lies in the range from 0.007 (Ref. 46) to 0.017 (Ref. 47) 1. 
This material possesses the lowest, though finite, 3D-transi- 
tion temperature [TN = 4.85 "K (Ref. 46)]. It seems to us 
that the anomalies produced by the quantum fluctuations 
can be indirectly observed in it through the dependences 
xI (H),  X I ,  (H),  and E ~ ( H )  (CsNiCl, is an easy-axis antifer- 
romagnet with anisotropy4' a/J(O) = 0.019). Indeed, in 
zero field, because of the smallness of the anisotropy and the 
weakness of the exchange interaction between the chains, 
the quantum effect should still manifest themselves quite 
distinctly, i.e., the values of both susceptibilities at H = 0 
should be greater than the classical values, but the E, value 
should, on account of the zero-point vibrations, be lower. 
The application of a magnetic field results in the supression 
of the quantum fluctuations, a fact which should be mani- 
fested in the field dependences of the susceptibilities and the 
uniform-precession frequency; the susceptibilities should 
tend to their classical values, while E ~ ( H )  should deivate 
from the linear dependence in the manner shown in Fig. 2. It 

661 Sov. Phys. JETP 64 (3), September 1986 Yu. A. Kosevich and A. V. Chubukov 661 



FIG. 2. Proposed magnetic-field 
dependence of the uniform preces- 
sion frequency E, in CsNiCl,. The 
dashed line is a plot of the classical 
dependence c O ( H )  (for the same 
spin-flip-transition field HI ). 

is, moreover, possible that the experimentally observed46 
growth of the function TN (H) in CsNiC1, and RbNiCl, is 
also explained by the suppression of the quantum fluctu- 
ations in a magnetic field, although here it is difficult to de- 
termine which fluctuations (the quantum or classical) are 
more imp~rtant .~ '  Let us further note that, recently, using 
the neutron-scattering method, Buyers et a1.47 found in the 
spectrum of CsNiCl, at temperatures higher than TN a gap, 
which was explained as owing its origin to the quantum fluc- 
tuations. This conclusion seems doubtful to us, since the ex- 
istence of a finite transition temperature indicates that the 
quantum fluctuations "do not suffice" for the production of 
a gap. 
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"Notice that, as follows from the exact solution, the same ground-state 
structure arises in the "polynomial" antiferromagnetic model with arbi- 
trary spin. The corresponding Hamiltonian is written in the form of a 
polynomial of degree 2S in S l S 1 + ,  with completely determined coeffi- 
c i e n t ~ . ' ~  

"We can, on the basis of the analogy with the u model, write down the 
result of the summation at once, since in the classical theory there corre- 
sponds to each vertex a temperature, and its renormalization in the u 
model is known.22 It, however, seems to us that it will be useful to derive 
the formula for the temperature renormalization of the vertex without 
recourse to the u model. 

"Alternatively, we can work with the normal and anomalous Green's 
functions (see, for example, Ref. 321, but in the present case the uv 
transformation is more convenient. 

4'The result we obtained earlier [formula ( 1 ) in Ref. 19 ] is incorrect. We 
apologize to readers. The error was caused by an incorrect extraction of 
the logarithmic terms from background of parasitic divergences, which 
arise in calculations based on the Holstein-Primakoff formalism.3x The 
computational method used in the present paper does not contain diver- 
gences. 

"Let us note that, for large positive values of the single-ion anisotropy 
constant (i.e., for a, J ) ,  the ground-state structures of Heisenberg mag- 
nets with integral and half-integral spins are also differ en^^' This effect 
is due to the spin-orbit interaction, and does not bear a direct relation to 
what is considered in the present paper. 

"The classical fluctuations may also be important for the determination of 
the field dependence of T,  in a quasi-one-dimensional antiferromagnet, 
since the 3 0  transition in the quasi-one dimensional XY model has a 
higher critical temperat~re.~' 
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