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We investigate the role of interelectron Coulomb interactions in the tunneling production of 
soliton-antisoliton charge carriers by a constant electric field from the condensate of a charge 
density wave. We show that due to the pronounced anisotropy of the permittivity in fields with 
E ,  < E  < E,* ( E ,  is a one-dimensional threshold field), there is a spatial region {, of coherent 
production in which the Coulomb field is one-dimensional and gives a production threshold 
E,. This mechanism accounts for the experimental threshold dependence of the nonlinear 
conductivity on the field. In fields E) E *,, the problem becomes three-dimensional. The size of 
(, is governed by the competition between transverse dispersion and Coulomb interaction. 

The unusual electrodynamic properties of quasi-one- 
dimensional conductors in the dielectric phase have long 
been of scientific interest. Compounds which make a low- 
temperature transition to a Peierls dielectric (PD) state 
have been studied in particular detail. A PD is characterized 
by a complex order parameter Aexp(ip), with the modulus 
A determining the gap in the one-particle excitation spec- 
trum, and the phase describing the dynamics of a charge 
density wave (CDW). Widely used PD such as TaS,, 
KO., MOO,, NbSe,, and a number of others comprise a set of 
one-dimensional conducting chains with an anisotropic elec- 
tron spectrum t,, )t,, where t,,,, are electron integrals for a 
transition between adjacent nodes of the chains in the direc- 
tion of one-dimensionality (along the chains) and across the 
chains (for example, see the review in Ref. 1 ) . 

The smallness of the transverse characteristics of a PD 
compared with the longitudinal characteristics have long 
made it possible to restrict the theoretical description of the 
longitudinal response of a CDW to a purely one-dimensional 
approximation.~oughly speaking, the role of the transverse 
dynamics is then reduced to maintaining long-range order in 
the system. More recently, however, it has been shown that 
interchain interaction due to the three-dimensionality of the 
crystal electron and phonon spectra profoundly influence 
the dynamics and thermodynamics of a PD (see the reviews 
in Refs. 2 and 3 ). In Ref. 4 and other works of these same 
authors, a three-dimensional representation is also em- 
ployed in the description of CDW electrodynamics. 

Nevertheless, the three-dimensionality of the problem 
does not simply reduce to consideration of the transverse 
spectral dispersion. In a system with charge-carrying excita- 
tions, it is important to determine the electric field in a self- 
consistent manner. In a PD, if there exist free electron 
(holes) with high mobility and sufficient density p, the elec- 
tric field will be determined by the requirement of local elec- 
trical neutrality4 Sp = 0, as in the theory of metals. Free 
quasiparticles then screen CDW excitation charges. For lo- 
cal electrical neutrality to hold, the mean free path (or the 
localization length) I for free carriers must be much greater 

than the Debye screening length, 1)r,. In real Peierls die- 
lectrics this condition can often be violated; there is no De- 
bye screening, and the field E is found by solving the Poisson 
equation, or what is the same, by obtaining a solution which 
takes electron Coulomb interactions explicitly into account. 

Taking the Coulomb field into account in CDW electro- 
dynamics when there is no Debye screening is found to be of 
fundamental importance in studies of the nature of the 
threshold electric field in nonlinear CDW conductivity 
along the chaim5 It is known from experiments1 that the PD 
conductivity is of the form 

- - 

where go is the ohmic conductivity due to free carriers, the 
second term in ( 1 ) is due to CDW conductivity, E is a con- 
stant and uniform external field, and the field E,  is a univer- 
sal characteristic of the sample. The conductivity a, depends 
on the temperature through the Mott relationI4 

0,-exp [- (TOIT) " I ,  

so it can be shown that at low temperatures, the free carriers 
are'strongly localized, and do not provide Debye screening. 
With this assumption, a mechanism has been proposed5 for 
the conductivity ( 11, based on the idea of a CDW soliton 
tunneling conductivity. As is well known,' nonlinear cur- 
rent-carrying excitations, solitons (s) and antisolitons (S) of 
phasep, exist in a commensurate CDW. In the absence of an 
external electric field E  at low temperatures, these are bound 
in a homogeneous CDW condensate into sS pairs. Through 
tunneling, the electric field can produce solitons and antiso- 
litons by dissociating the pairs. If we assume, as in Ref. 5, 
that SF pair production occurs coherently, along the chains, 
i.e., sS walls are produced with macroscopic size {, )a, (a, 
is the distance between chains), then the Coulomb field of 
the pairs within a cluster will be one-dimensional, and will 
give a production threshold E T .  The value of E ,  found in 
this manner describes the experimental data surprisingly 
well, at least at low temperatures. Furthermore, the evidence 
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of both indirect experiments' and direct observation of sig- 
nificant broadening of the x ray peak for the transverse com- 
ponent q, of the wave vector in fields E > E ,  [Ref. 61 con- 
firms the cluster nature of E,. It has been shown 
experimentally6 that for E > E,, there is a transverse macro- 
scopic length - lo2 A which can be identified with 6,. 

Nevertheless, the approach taken in Ref. 5 is unsatisfac- 
tory from a theoretical standpoint, since the hypothesized 
transverse coherence of the soliton walls has not been sub- 
stantiated. In the present paper, we attempt to put the clus- 
ter model on a firm foundation. The macroscopic transverse 
dimension ll arises as a result of competition between the 
dispersion of the PD spectrum and interelectron Coulomb 
interaction. It turns out that for SF pair production by an 
external field, there is always a region of one-dimensional 
Coulomb interaction 6, when E > E,. We have also found 
the dependence of6, on the field and the system parameters. 

The physical reason for cluster production is apparent. 
Transverse dispersion basically tends to establish states with 
q, = const, while to minimize the Coulomb energy, it is ad- 
vantageous to alternate changes in chains; the result is a <, 
region. 

Although the present work has been carried out in or- 
der to clarify the experimental function ( 1 ), an important 
element has been left out, namely the presence of impurities, 
which are well known798 to destroy CDW coherence. We 
shall assume that l1 is less than the correlation length of the 
impurity potential. 

STATEMENT OF THE PROBLEM: CDW LAGRANGIAN IN THE 
PRESENCE OF COULOMB INTERACTION 

The starting point for the microscopic theory is the 
Hamiltonian of a quasi-one-dimensional PD, written in the 
nodal approximation: 

+ e2 - ee. 
;e (r) div u (r') - 

? ~ , j , n ' , i  , s  
1 r-r' 1 

n , j , n ' , j ' , ,  
( r-P' I 

div u (r) div u (r') + e*' -- H H  (2)  I r-r' 1 
n , i , n . , j '  

Here the first four terms are essentially the usual Froh- 
lich Hamiltonian H,, and the last three are combined into 
H,, and correspond to the Coulomb interaction between 
electrons alone, between electrons and ions, and between 
ions alone. 

Our notation is as follows: K is the elasticity matrix of 
the lattice, Mi is an ion mass, u, is the displacement of a 
lattice site, r = (nu, ja, ), n is a site index along the chain, j is 
the chain index, a is the interatomic distance along the chain, 
a, is the distance between chains, t,,, + , is the electron jump 
integral between neighboring sites along the chain, t, is the 

electron jump integral between chains, c, is the electron op- 
erator, e is the charge on the electron, e* is the ion charge, A, 
= c, + c, is the electron density operator, and s is the spin 

index. 
In the Peierls phase, the lattice displacement is 

u (r) =uo (r) cos [Qr+q (r) 1 x, (3 1 

where Q is the CDW ~ e c t o r , ~  

Taking the standard approach,' we expand the integral 
of longitudinal electron jumps t,,, + , in a power series in the 
displacements 

and we represent the electron operators c,, in the form 
c,,=2-" {W. (Q,, r) exp {ik,na)+ V ,  (Q,, r) exp {- ik ,an)) ,  

(5)  
where Wand V are smooth functions with a scale length 
k,-I. Substituting ( 3 ) ,  (4),  and (5) into (2) and averaging 
over rapid oscillations with the period of the lattice, we ob- 
tain the Hamiltonian for a continuum PD model in which 
the only parameter variations are those which are large rela- 
tive to a. 

With IQ, I 4 V, , we have the Hamiltonian density (the 
details of the derivation of the one-dimensional part can be 
found in Ref. 5 )  

+ a2n, idr '  ( ~ , u z ' F ~ )  r(!Ps02'4's)d I r-r' 1 
Here 

fiva=t0, A=2tluo/a, g-2=Klla sin"kFa)/16ti2, 

oQ2=K,,12Mi, Y =( ) , B , = V S i o 2 .  

ai are the Pauli spin matrices, p- ( A / E , ) " ' - ~ ~  1, 
M = r/k,a is the commensurability index of the PD ( M  is 
an integer, with M > 2 ) ,  fiv,t,a,/a, 7 = Kl/KII is the 
phonon anisotropy constant, 

and n, is the density of the chains. 
The one-dimensional part of 7, i.e., Eq. (6)  with 

7 = U, = 0, is naturally the same, in the absence of the Cou- 
lomb term, as the usual form for the one-dimensional contin- 
uum m ~ d e l . ~ . ~  

Note that of the three "bare" Coulomb terms in (2) ,  
only the electron-electron interaction enters into the contin- 
uum Hamiltonian. It is in fact easy to show that for the 
Peierls displacement ( 3 ) , 
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div u ( r )  div u (r ' )  _ A2, e" I r-r' 1 ~ E F  
I ,  

i.e., these terms simply give rise to a renormalization of the 
electron lattice coupling constant g ,  which is perfectly natu- 
ral for a description within the context of the Frohlich mod- 
el. 

In what follows, it will be most convenient to make use 
not of the Hamiltonian h,  but of the corresponding Lagran- 
gian 

9 = h i T , 0 2 ( d , - i e E z / h )  Y , - h ,  (9 )  

where E is a constant and uniform external electric field. 
Starting now with the microscopic Lagrangian (9 ) ,  we 

derive an effective PD Lagrangian which contains only the 
order parameter A and q, as components. As is well known 
(see Ref. 5, for example), the effective Lagrangian may be 
expressed in terms of the PD partition function, expressed as 
the functional 

where T = - it is imaginary time ( O ( T < ~ ) ,  and is the 
reciprocal of the temperature. 

For fermion fields and q, the functional integral in 
the form (6 )  cannot be calculated, so we make use of the 
following convenient representation for the Coulomb term9: 

exp{ - e2n; J dr dr' d ~  
( T o ~ Y ) ~ ( Y G ~ Y ) ~ *  

I r-r' 1 

Equation ( 1 1 ) uses the relation 

1 
A. - = - 4n6 (r-r')  , (12) 

Ir-r I 
where A, is the Laplacian operator. 

After substitution of ( 1 1 ) into ( l o ) ,  the fermion func- 
tional is calculated easily, since it becomes Gaussian, and we 
have 

Z = D A D ~ ~ D ~  e s p  ( j dr d ~ p , . , )  

X exp ( j dr d r  gel) . 
where 

In doing the fermion integration, it is convenient to 
make the following change of variables in the functional in- 
tegral, separating out the so-called homogeneous chiral 
anomaly'."': 

T -, e x ,  ( i  y) exp ( i  3 d~cp ' )  3, (16) 
& 

T - + F e s p  ( i F ) e x p  (- i $ S d r c p t ) .  

As is well the Jacobian associated with the trans- 
formation ( 16) is 

I = exp - nf dr dcp -[(p2+vF2 ( c p ' )  2 ]  ( J 4qv ,  

Thus, we must calculate the following fermion determinant: 

.. 
= exp Sp In L, (18) 

h 

where L is the operator in square brackets, 

and Tr  denotes summation over the matrix indices. 
As usual," in imaginary time we make the substitutions 

E - iH and x -+ ix. Wg also perform a canonical transforma- 
tion on the operator L: 

following which it turns out to be convenient to calculate the 
quantity 

where 

and 
eHr e ~ ' . t  ~ . = - ~ ~ a : - ~ , 2 h 2 (  a ,  - - - 

A i - )  A 

while 

h2uLZ 
Ei=2A2p  exp (io3Mcp) - - (VIip)  

4 
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A A 

The operator was split i n t s  and Kl for the same reasons as 
in Ref. 5. The operator KO accounts for the purely "one- 
dimensional" contribution to the electron energy, and de- 
pends solely on the modulus A of the order paramete2 The 
entire phasesepend~nce of the energy is contained in K,. In 
calculating KO and K,, we have made use of the condition 
Asfiv, V,, according to which the energy associated with A 
at T = 0 is independent of the transverse coordinates. Strict- 
ly speaking, the latter condition only holds when x'/ 
x<l0-' (lo = fiuF/Ao is the longitudinal coherence length 
of the PD, and A, is the field-free value of A at T = 0).  

Following the development in Ref. 5, we represent the 
partition function Z in the form 

By making use of the PD adiabaticity parameter2 
gwQ ( f i ~ , ) - " ~  4 A, we can, in Eq. (251, firstly neglect the 
time derivative in the chiral anomaly compared with the 
term A2+ 2/g2wp2, and secondly, calculate the inner integral 
over DA by the method of steepest de~cent.~." We obtain 

where = 4e2nJ f0/3A0 is the permittivity of the frame- 
work. The term containing E, was derived for T = 0 assum- 
ing thatxJ/x4f0- '  and ( H  1, (x'( <Ec, whereB, -Ai/efiuiu, 
is the field which destroys the Peierls phase." The latter 
approximation is physically self-evident, as otherwise the 
PD does not exist. Further calculations verify the smallness 
of the longitudinal gradients o ix .  A 

In calculating Sp In( 1 + KO- 'K,), we make use of the 
Green's function method for a PD in a constant electric field 
developed in Ref. 12: 

Sp l n ( l + ~ ~ - ' ~ , )  xSp ~ o - ' ~ , - - q / 2 S p  ~ , - ' ~ , l ? , - ' K ,  (27) 

and ( r ~ l  KO-' lr '~'>= - ' ( - e f  ) ' j dp exp lip (x-x') 1 
2n 

A,,  = (2n + 1 +v )eB ,  v = + 1 ,  f i = u F = l ,  
B-= H + ix', and D,, is a parabolic cylinder function. 

Omitting the calculations for (27) using (28), we im- 
mediately give the result for the effective PD Lagrangian 
( lo) ,  which has already been given in terms of real time: 

where A = 2g2/Rfiv, is a dimensionless coupling constant, 
A = A,, and 

~ ~ 2 = v L 2 + 4 q A Z a , 2 / h ~ 2 ,  &,-&A ( U F / V I )  - '<&A. 

Equation (29) exhibits a general property of theories involv- 
ing a multifermion vacuum which interacts with external 
fields, that integration over the fermions always leads to re- 
normalization of the energy of the external field. The compo- 
nents of the permittivity2 automatically appear in the pres- 
ent instance. 

Following this remark, it is clear how to generalize the 
purely Peierls problem to a more realistic case, where there 
are free charge carriers along with the Peierls subsystem of 
dielectric electrons. As noted in the Introduction, in a PD, 
for a variety of reasons, there are always free carriers, as for 
example due to impurities in the low-temperature phase of 
TaS, (Ref. 14). The mobility of these carriers is greatly di- 
minished by localization effects, but in return they produce 
theenormous permittivity ell  - 106-8$~A.  After integrating 
over all fermion states, and not just over Peierls states, we 
can replace E, by in (29). The condition for non-interac- 
tion of the localized and Peierls fermion subsystems is 
A,fi/ri, where 7, is the characteristic time for an elastic 
collision with an impurity. 

Integrating over x and making use of the equation 

= - 4 n ~ , ~ ' ~ e , 8  (r-r') , (30) 

we finally obtain 

el,E2 n, A2$ h2vp2 fi2?jL2 peff=-+- ---- 
8n nAvF { hod 4 ( T I ) ~  - T ( v ~ d 2  

2A2p 
-eEhvpcp + - 

4 
cos l p )  

ez -- n,.~,-'c,~-" j dr' ~'(2, r,) q' (XI,  r,') 
2n 
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Taking advantage of the fact that the kernel of the integral 
depends on the difference I r - r' 1, we rewrite (3 1 ) in a more 
meaningful form: 

(32) 
where 

When Alp = 0, the Lagrangian (32) is exactly the same as 
the CDW Lagrangian derived in Ref. 5 using the approxima- 
tion of the coherent response of a conglomeration of trans- 
versely oriented one-dimensional filaments. 

ANALYSIS OF THE PHASE EQUATIONS OF MOTION: 
COHERENCE CRITERION 

We can get somewhat of an idea of the role of the Cou- 
lomb interaction in phase dynamics by considering the sim- 
plest case, that of small phase oscillations. If we assume in 
the equation of motion for the Lagrangian (32) that q, -exp 
(ikx + iq, r, - iot), we obtain 

It can be seen that the Coulomb term competes with the 
transverse dispersion, resulting in an effective increase in the 
transverse stiffness of the system. In fact, with the notation 
q1 = (ell /E, ) 'I2cj,, we obtain 

k' 811 
O~=CO,,~+CO; + c ~ ~ ~ ~ + c ~ ~  - gL2 (34a) 

k2+9L 8, 

or, with = k ( ~ \ ,  /E ,  ) 'I2, 

I ~ E ,  ( c ,  '/ell ', the zeroth approximation to Eq. (34) is q, 
= 0 (cj, = O), and we have a small-oscillation dispersion 

law with plasma activation a, (Ref. 4). From our elemen- 
tary analysis, we see that for propagation ofcharge perturba- 
tions in a CDW, there is a region 6, -Lx )'I2 (Lx is 
the characteristic longitudinal size of a perturbation) within 
which the phases are correlated across the chains. 

The linear treatment does not deal with the basic prob- 

lem of the structure of the transverse coherence region when 
soliton-antisoliton pairs are produced by an external field 
from the CDW condensate. Let us look at the solution of this 
problem, first recalling where the concept of solitons as cur- 
rent carriers arises. 

Consider the ground state of the Lagrangian (32). If we 
assume that q, = const in the ground state, the potential en- 
ergy density is 

V ( 9 )  =No{0,2  (@+E/h3tEt) 2-20:M-2 cos M q ) .  (35) 

With w, (wdM, which guarantees the maximum value of 
in fields E < E, = 4?ren,/MelI, the minimum of V(p)  

occurs at q, = 0; for E, < E < 2E,, the minimum occurs at 
q, = - 2?r/M, for 2E, < E i 3E, it occurs at q, = - 4?r/M, 
etc. As the external field varies in an unbounded sample, a 
new vacuum is locally generated from the old through the 
formation of nucleation centers satisfying the boundary 
conditions p(lr l<r , )=-2?r/M, q,(lrl>r,)=O 
(E, < E < 2E,). When PE,, a good approximation for 
the nucleation center of such a local transition is given by a 
pair of solutions of the sine-Gordon equation [the one-di- 
mensional Lagrangian (32) for o, = 01, namely a soliton 
plus antisoliton moving in opposite directions. At T = 0, SF 
pair production proceeds via tunneling along trajectories in 
imaginary time: 

Herex, is the coordinate of the center of the soliton (antiso- 
liton), d = cl, /o, is the soliton width, with dgx,. The soli- 
ton energy is Us = 4N@,cll /M ' = ~A,u'~'/?~M/Z '12$-w,. 
The soliton is negatively charged, q, : < 0, and the antisoliton 
is positively charged, q, f > 0, so the system transition to a 
new vacuum state is accompanied by the flow of dissipative 
current. 

In the one-dimensional case, where p( r ,  ) = const, the 
calculation of the tunneling probability along the instanton 
trajectory (36) with x, = x,(r) leads to a nonlinear term in 
the conductivity ( 1 ) (Ref. 5). Then E, plays the role of a 
one-dimensional Coulomb field of the soliton barrier. Two 
questions arise in general: is the ground state homogeneous, 
and if so, over what region does the solito,n profile (36) re- 
duce to the one-dimensional case? Our analysis of the linear 
mode produces an affirmative answer to the first question, 
with no instabilities. All of the considerations pertaining to 
sS nucleation center production remain valid, and we must 
investigate the equations of motion on the instanton trajec- 
tory (36). 

Let us look at an example from Ref. 13, which allows us 
to reduce the Lagrangian (32) to one which depends solely 
on the field x,(r,r,). The full CDW Lagrangian is of the 
form 
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' I ,  
l=-2~. [I + -$] +Ze*xo (E-E,) 

CII 

where 

It is not hard to see, using the representation ( 3  1 ), for exam- 
ple, that since 6p,/axo is a sharply peaked function of width 
-d ,  the main contribution to the double integral over x,xl 
comes from the values of the integrand with Ix - x'l - Zr,. 
The contribution from Ix - x'l -d  is a factor d / x o 4  1 
smaller. 

If A,x, = 0, the Lagrangian (38 is a standard one-di- 
mensional quantum mechanical Lagrangian for a relativistic 
particle in the field E - E,, and with it, we find the size of 
the field-induced nucleation center from the condition 
xo = 0 on the surface of the bulk sample ( x ,  = x"') : 

We assume that in the general case there is also a region -6, 
in which Alxo = 0, i.e., for Ir; I 4 6 , ,  x, = x'", and the La- 
grangian is I-dimensional, while for Ir: I )C,, the one-dimen- 
sional Coulomb field disappears. Having estimated 6, using 
this condition, we obtain 

which is fully consistent with the results of the linear analy- 
sis. The previously undefined linear size L, has acquired the 
concrete form L, -x'O). Equation ( 4 0 )  still fails to address 
the question of the structure of g, ,  but it confirms that the 
existence of does not contradict the assumption ( 3 6 ) .  

We now find an explicit expression for 6, by analyzing 
the stability of the one-dimensional solution for x, against 
transverse (bending) oscillations. We assume that xO(r,rl ) 
= x O ( r )  + 6xO(r,  rl ) and write out the equation of motion 

on the surface of the sample for x, = x"', bearing in mind 
that 

&iso-exp (iq,r,--iQz) . 
We obtain 

It can be seen that the region Ir, I S c , ,  i.e., Iq, I 2 Iq,,, I, ex- 
ists only when E > E , ,  and conversely, when 
19, I -. oo , Q2 < 0 .  The size of 6, is determined by the condi- 
tion for stability, f12 = 0, i.e., 

l=goEL exp (-2x(01 (e,l~,~)"lf,). ( 4 2 )  

Equation ( 4 2 )  is the required condition for determining the 

size of the transverse phase-coherence region under condi- 
tions of soliton-antisoliton nucleation center production. 

According to the inequality ( 4 0 ) ,  

For the actual parameters of TaS,, for example, 6, 2 1O2a1. 
Since 6, depends on the electric field, condition ( 4 3 )  

limits the range of variation of E: 

As we have seen in the analysis of the linear mode, we have 
for the ratio 1 ' 2 ~ F / ~ l  5 1 ,  SO coherent production of 
SF barriers, and therefore the threshold field-dependence of 
the conductivity, are only observed in a narrow range about 
E l ,  which corresponds to the experimental situation. 

As noted in the Introduction, the quantity 6, can be 
fairly large. If the transverse dimensions of the sample satis- 
fy L ,  S CE,, the current will be coherent everywhere. If the 
opposite is true, the field-dependence of the tunneling expo- 
nent will be governed by respective contributions from co- 
herent and non-coherent portions of the sample. For very 
thick samples, it is possible for the dependence ( 1 )  to be 
replaced by a different formula lacking a threshold. An exact 
solution of the boundary problem, which is not yet possible, 
would provide an answer to this question. Nevertheless, the 
assumption of random independent SF pair production along 
the chains can obviously be immediately rejected. If we actu- 
ally take x,(r,r, ) to be a random function with 

where the angular brackets denote cross-sectional averag- 
ing, 

(...)=j dr ,..., ( 4 6 )  

the term in the full Lagrangian (37) associated with the ex- 
ternal field simply vanishes, E (x, )  = 0.  But this is exactly 
the term responsible for tunneling. Physically, this means 
that opposite charges are randomly produced within the sys- 
tem, i.e., there is no mean build-up of charge in the sum. 

In this paper, we have shown that a quasi-one-dimen- 
sional CDW situated in a constant external electric field par- 
allel to the chains is unstable to the production of soliton- 
antisoliton pairs, which screen the field. Broadly speaking, 
this instability is of a threshold variety, which is exhibited in 
samples with small transverse dimensions as a threshold de- 
pendence of the nonlinear conductivity on the field. 

The structure ofsF nucleation center production is such 
that there is always a region of macroscopic dimension 6, 
much smaller than the transverse size of a pair, in which the 
Coulomb field of the soliton and antisoliton is effectively 
uniform. The size of this region is dictated by competition 
between dispersion and the Coulomb interaction. In reality, 
the magnitude of 5, can be limited either by the size of the 
sample or structural defects within it. To all appearances, 
this is in fact the experimental situation, since the field-de- 
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pendence of u ( E )  is given by Eq. ( 1 ) , and in general E, also 
depends on ( E  - E , ) ,  albeit weakly, since the magnitude of 
6, formally diverges as the field approaches the threshold 
E-E, ,  but it always remains much smaller than the longi- 
tudinal size of an SF pair. Outside the confines of l,, the 
Coulomb field of the SF pairs is three-dimensional. The con- 
tribution of the coherent region to the tunneling conductiv- 
ity is determined by the thickness of the sample. In thin sam- 
ples with L, - f , ,  we should see a conductivity threshold, 
while for L, , f ,  , such a threshold may be lacking. Never- 
theless, the threshold field E ,  always exists. The properties 
found by solving the one-dimensional problem5 are pre- 
served in the quasi-one-dimensional case, and are consistent 
with what is observed experimentally. 

The authors thank S. A. Brazovskii for discussions 
which served as the stimulus for the present work. 
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