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Using the BCS model, we have investigated superlattices consisting of superconducting and 
normal metals in alternating layers whose thicknesses are small compared to the 
superconducting correlation length. It is assumed that the one-electron properties of these 
layers are identical, and that the layers differ only in the parameter which describes the 
effective electron-electron attraction. We have computed the phase transition temperature and 
single-electron density of states. In a purely coherent system, the superconductivity of a 
superlattice must be gapless; we have evaluated the density of states in the gap and the low- 
temperature specific heat. 

As a result of progress in the technology of vacuum 
deposition it is already possible to fabricate nearly perfect 
superlattices consisting of alternating layers of similar ele- 
ments.'-' Much interest attaches to semiconducting super- 
lattices, which are now being studied intensively both theo- 
retically and experimentally (see Ref. l ) ,  Superconducting 
~u~erlattices'*~ were obtained somewhat later; in the prep- 
aration of these systems, layer thicknesses are maintained to 
atomic-layer precision, while the coherence length of the 
structure across the layers can be tens of periods. At present, 
the superconducting superlattices which have been studied 
experimentally in some detail consist of Nb/Cu and Pb/Cu 
(Nb and Cu are the superconductors). Layer thickness in 
such systems is varied over a wide range, roughly from 10 A 
to several thousand b;.4-6 Systems have now been created 
consisting of alternating layers of the superconducting and 
magnetic metals V and Ni (where Ni is an itinerant ferro- 
magnet),5 and also of superconducting metals of different 
kinds, i.e., Nb/Zr.' 

It is clear that if the layer thickness d in the superlattice 
exceeds the coherence length ,$ of the superconductor, then 
the superconducting characteristics of the individual layers 
are little changed. In fact, in superlattices of the typeS/Nor 
S/S ' we are dealing with two weakly-interacting systems S 
and N, or S and S',  respectively. The influence of a normal 
metal on superconductivity, i.e., the "proximity effect", has 
been discussed for these systems by DeGennes and 
G~yon, ' .~  and by Werthamer"; their approach gives a good 
description of the experimental data for long-period super- 
lattices. " A theoretical description of the properties of these 
systems was given using the Landau-Ginzburg functional in 
Ref. 12 and in a recent review (Ref. 13 ), where a thorough 
analysis of later experimental data can also be found. 

Qualitatively new superconducting characteristics ap- 
pear ford <<, i.e., the case ofshort-period S /Nsuperlattices, 
where we can speak only of the superconducting system as a 
whole rather than of its individual layers. In the simplest 
model-free motion of electrons across the layers-the criti- 
cal temperature of the system is determined by an average of 
the Cooper pairing constant (A ) over the layers, 14.15 By now 
a certain amount of experimental information about the 
properties of such systems has been accumulated, and it can 

be assumed that the number of novel short-period supercon- 
ducting superlattices will grow rapidly. 

As regards theoretical descriptions of superconducting 
superlattices, up until now only isolated inhomogeneities 
consisting of material whosc Cooper pairing constant is larg- 
er than that of the volume have been studied,'"lR along with 
periodic sequences of thin layers of such material in a super- 
conducting h ~ s t . ' ~ . ' ~  

In this paper we will investigate a superlattice model 
with S and N layers which are thin compared to the super- 
conducting correlation length but thick relative to the inter- 
atomic spacing. We will assume that the single-electron 
properties of the S and N layers are identical, i.e., that the 
layers S and N differ only in the Cooper pairing constant A, 
which is zero in the N layer. In this situation the Landau- 
Ginzburg theory is inapplicable; however, we can use the 
quasiclassical description. Using this simple model we will 
find how the critical temperature depends on the layer thick- 
ness d for the impure- and pure-superconductor cases. We 
will show that the electronic spectrum for a pure system 
becomes gapless, and find its density of states and specific 
heat. 

Let us note at once, however, that the model we are 
investigating is only a first step in the study of short-period 
superconducting superlattices. In particular, it does not take 
into account the possibility that new electronic states may 
appear, i.e., bands with their own densities of states; nor does 
it deal with reflection of electrons from the boundaries 
between thesand N layers, which can affect the formation of 
the superconducting state, or the change of the system's 
phonon spectrum which may either weaken or enhance its 
superconducting properties. This latter effect is doubtless 
important in, e.g., the superlattice Au/Ge, in which super- 
conductivity has recently been observed with T, = 1.5 K for 
layer thicknesses of Au equal to 10 A and of Ge equal to 13 A 
(Ref. 21), although neither of the original elements Au or 
Ge is a superconductor. 

To describe the electronic motion, we will use the model 
of isotropic diffusive motion and introduce a phenomenolo- 
gical parameter, the mean free path of an electron. Actually, 
the motion of an electron is clearly anisotropic, and to lowest 
order we can introduce the longitudinal (along the layer) 
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and transverse mean free paths I ,, and I,, respectively. Infor- 
mation about these parameters can be obtained from data on 
the system resistance along and through the layers. For ex- 
ample, it is well known that in the superlattice Nb/Cu the 
productpd (p is the resistivity) increases at a roughly linear 
rate as d is increased ford > 1000 b; and d < 10 b;, remaining 
constant on the interval from 10 b; to 100 b; (Ref. 4). This 
data indicates that the effective mean free path of an electron 
is on the order of d for 10 A < d < 100 b; and is independent 
of d ford > 1000 b;, where it is on the order of 100 b;, and for 
d < 10 b;, where it is on the order of 10 b;. Unfortunately, 
information about the anisotropy inp  is lacking in Ref. 4. 

2. SUPERLATTICE CRITICAL TEMPERATURE 

As already noted, we will be discussing a model of su- 
perconducting superlattices in which the normal (N) and 
superconducting (S) layers differ only in the value of the 
dimensionless Cooper pairing constant : A (x)  = 0 in the N 
layer and A (x)  = A in the S layer, where the x-axis is direct- 
ed perpendicular to the layers. The period d = d, + d, ,  
where d, is the superconducting layer thickness and d, is the 
normal layer thickness, is smaller than the superconducting 
correlation length 6, but much larger than the interatomic 
spacing. This latter circumstance allows us to use the quasi- 
classical approximation to describe the system, i.e., the Ei- 
lenberger equations22 for the Green's functions g(r,v) and 
f(r,v). These functions depend on the coordinate r, the fre- 
quency w = (2n + l)rr/T, and also on the direction of the 
vector v, where Ivl = v,. In our case, the function g and f 
depend on the single coordinate x, and the Eilenberger equa- 
tions take the form 

where 7 = l/vF is the mean free path of the electrons, 
v, = vFcos9 and 0 is the angle between the x-axis and the 
direction v,, i.e., f(x,v) = f(x,9); the integral over d n  is an 
integration over the direction of the velocity at the Fermi 
surface. In the absence of a magnetic field, the quantity A (x)  
can be chosen to be real without loss of generality; then the 
self-consistency equation for A(x) completes the system 
(1): 

where the summation over w, as usual, is cut off at w = 6.1,. 
We note that the function A (x)  for the superlattice, which is 
proportional to A (x) ,  is a rapidly-varying discontinuous 
function (it varies from zero in the N-region to 
A (x) =:A = constant in the S-region), while the functions f 
and g are continuous. 

In deriving the superconducting transition temperature 
T, , if we assume that A + 0 we can set g = sign w in ( 1 ), and 
the equation for f then takes the form 

Expanding the periodic functions A(x) and f(x)  (of 
period d )  in a Fourier series, we find from ( 3 ) that the mth 
harmonic fm is 

- - 
fm = 

o+ ( 1 / 2 2 )  sign o-l-iv.k,/2 ' 

Averaging (4)  over the angle 9, we obtain an expression for 
f, ; substituting it into the self-consistency equation, we re- 
write (2) in the form 

where Am is a harmonic of the function A (x): A, = Ad,/d, 
while for m#O we have A m  =iA[exp(-ikmd,) - 1]/ 
2rrm. 

To lowest order in the layer thickness, as is clear from 
(5),  the critical temperature is determined by the average 
Cooper pairing constant A, = Ad, /d (Refs. 14, 15 ) : 

To first order in d, corrections to this result are determined 
by the parameter dw, /vF in a pure system and d 'a, v,l in 
an impure system. 

Solving (5)  in the limit dw, /v, 4 1, we arrive at the 
following dependence of the critical temperature on layer 
thickness (for simplicity we will assume from here on that 
d, =d ,  = d / 2 ) :  

where the function f is determined by the expression 
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Here, f(z) +0.42 for z-0 and f(z) -0.122 for z- co . We 
note that the question of whether or not the BCS model can 
be used when the Cooper pairing constant A (x)  varies withx 
over distances smaller than uF/wD is not fully resolved and 
requires additional analysis. 

In the case dm, /uF % 1 (but dT, /up 4 1 ) , the function 
f (x)  also varies weakly over the superlattice, and Equation 
(5)  can then be solved to logarithmic accuracy. To calculate 
Tc, we can replace the second sum over w in (5)  by an inte- 
gration (this is correct when the parameter dT,/u, = d / 
6 < 1 ). In a pure superconductor Equation (5)  can be cast in 
the form: 

To first order, Am equals the first term on the right side of 
(9).  Substituting it into the equation for A,, we find that the 
critical temperature of the superlattice is determined by an 
effective Cooper pairing constant 

A,= =ha [l+hn ln ( w D ~ / ~ F )  1. (10) 

Unfortunately, this result is correct - only to logarithmic ac- 
curacy,and tothisaccuracy T, - TcoDd /vF - T k d  /uF. An 
analogous investigation shows that in the impure-supercon- 
ductor limit I$d 

At this time, experimental data on the dependence of Tc 
for superlattices on the period of the latter d = 2d, = 2d, is 
available only for the structure N ~ / C U . ~  As d decreases from 
5000 .& to 5 A, the magnitude of Tc decreases from 9 K to 
about 2.5 K. The initial portion of the falloff of Tc (for 
d > 300 .&) is well described by the theory in Ref. 10, taking 
into account the proximity effect. The further decrease of Tc 
for d < 300 .& is more rapid due to averaging of A. However, 
the decrease in Tc ford < 300 .&happens more slowly than is 
predicted by a model of freely-moving electrons in the super- 
lattice. In this model, A,, decreases by a factor of 2 as we 
pass from d%c0 tod<co, and Tc ( d < o  =: T f  ( d  = co )/wD. 
In the Nb/Cu system, this relation is not obeyed, which can 
be related to reflection of electrons off the boundaries 
between Nand S layers, which reduces the effective averag- 
ing of A. In addition, one cannot exclude an enhancement 
mechanism for the superconductive pairing due to modifica- 
tion of the phonon spectrum in the short-period superlat- 
tices. 

3. QUASIPARTICLE DENSITY OF STATES IN A 
SUPERLATTICE: ANALYSIS WITHIN THE FRAMEWORK OF 
THE EILENBERGER EQUATIONS 

In a superlattice consisting of normal and supercon- 
ducting layers, in the limit d 45 the superconductivity has a 

homogeneous character, since the functions f and g to a first 
approximation do not depend on the coordinate x. This im- 
plies that, e.g., the density of superconducting electrons is 
practically uniform, and the superlattice exhibits exactly the 
same Meissner effect as the usual bulk superconductor. 
However, in contrast to a normal superconductor, the quasi- 
particle spectrum in a pure-superconductor superlattice can 
be gapless. This is related to the fact that Cooper pairs mov- 
ing along the layers in the N regions in fact do not participate 
in superconductive pairing (this pairing is mediated only by 
those pairs which cross theS layers in their motion). We will 
calculate this effect first in the framework of the Eilenberger 
equations. Let us assume that the system is pure (1 - co ), 
since it is clear that gapless superconductivity can occur only 
in this case. 

For d<vF/Tc, the gap parameter A(x) varies only 
slightly within an S layer, and we can use for A(x) the 
piecewise-constant function A(x) = A = const. in theS lay- 
er, and A (x)  = 0 in the N layer. 

The Eilenberger equations for a pure superconductor 
can be solved exactly in this case. Let us solve the system ( 1 ) 
for T = co separately for the Sand  N layers, and impose on 
the solutions the requirement of periodicity. For theS layer, 
system ( 1 ) takes the form 

of+' /2v , f '=Ag,  of+-'12v,f+'=Ag, (11) 

gZ+f f+= l ,  

where f andgare functions of the argumentsx, u ando, while 
f '  denotes differentiation with respect to x. From ( 1 1 ) we 
obtain a third-order equation for the function g: 

g"' - 4 ( o Z + A 2 )  
g' = 0. 

u,2 

Solutions to Equation ( 12) have the form: 

where k = 2(w2 + A*) 112/ux, while the constants C,, C, and 
C, are determined from the conditions of continuity and pe- 
riodicity of the functionsg(x) and f(x) .  Using the matching 
conditions, we finally obtain for the S region (0  < x  < d, ) 

The rather complicated form of the Green's function is 
related to the special role of trajectories with angles 8 =: ~ / 2 :  
for these trajectories, electrons undergo long-period oscilla- 
tions in the pairing potential, and effective averaging of 
A(x) does not occur. As for the Green's functions outside 
this narrow band, they coincide to lowest order with the 
Green's functions for a normal superconductor; however, 
the role of the superconducting parameter is played not by A, 
but by its average value A = Ad, /d. The equation for deter- 
mining A coincides to first approximation in d /{ with the 
usual self-consistency equation for a homogeneous super- 
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conductor, with an average pairing constant A =Ad,/d. 
Therefore, to first order in d /{ the relation between the gap 
E, and T, will be the same as that for homogeneous samples 
predicted by the BCS model. 

Knowledge of the Green's functions allows us to deter- 
mine the electronic density ofstates ofthe system by analytic 
continuation of these functions (w - - iE + 8 ) .  In this sec- 
tion we will investigate the density of states in the immediate 
vicinity of the Fermi energy EF for E &  A, where E is mea- 
sured from E,. For w &A, expression ( 14) for g(w,O,x) is 
notably simplified 

After averaging the Green's function g over a period, we 
obtain for the density of states N(E)  

n 

1 
N ( E ) = - - N ( O ) R ~ J ~ O ~ ~ ~ B < ~ ( ~ - - ~ E + S , O ) ) ,  2 (16) 

U 

where N(0) is the density of states at the Fermi level in the 
normal state. As follows from the expression of the averaged 
function g(w,O) 

after analytic continuation, the only contribution to the den- 
sity of states will be given by the poles of the function th wd / 
2u,. As a result, we are led to the following representation 
for the density of states 

where the summation is taken over all poles of the function 
(Eq. F) .  

An important peculiarity of superconducting superlat- 
tices, as is clear from Equation ( 18), is the absence of a gap 
in the spectrum of electronic excitations. This gapless char- 
acter of the superconductivity is related to the presence of 
electron trajectories with 8-r/2, for which Cooper pairing 
is absent. 

The summation over the poles in (18) in essence im- 
plies the presence of discrete electronic levels. However, the 
periodic character of the pairing potential A (x )  allows one 
to suppose that bands, not levels, must appear in the spec- 
trum. This is in fact the case (see Section 4), and here we are 
up against the special properties of the quasiclassical ap- 
proximation based on the Eilenberger approximation. The 
Green's function g(v,r) used in the Eilenberger equations is 
related to the exact Green's function G(r,rl), which depends 
on two coordinates for an inhomogeneous system, through 
the transformation 

where { = u, (p - p, ) . This transformation is not invertible 
(i.e., we cannot reconstruct the exact Green's function from 
the function g ) .  The integration in (19) over the relative 
coordinatep leads to a loss of information in the function g 

concerning the band motion of electrons.This latter circum- 
stance also explains why the Eilenberger equations do not 
give rise to a band-like character in the quasiparticle spec- 
trum. A more direct procedure, which allows one to obtain a 
band picture of the quasiparticle spectrum, can be based on 
the quasiclassical Bogolyubov equations (see the next sec- 
tion). However, the bands which arise turn out to be expon- 
entially narrow, and so the expression obtained in the pres- 
ent section for the density of states ( 18) is still correct. 

4. THE BOGOLYUBOV EQUATIONS IN THE 
QUASICLASSICAL APPROXIMATION 

The exact Bogolyubov equations which describe a su- 
perconductor with a stepwise parameter A(x) (i.e., in es- 
sence a superlattice) were investigated in Ref. 23, where the 
conclusion was reached that there are states within the ener- 
gy gap. However, it was not possible to obtain an expression 
for the quasiparticle density of states or to delineate the na- 
ture of the energy spectrum in Ref. 23, because of the ex- 
treme complexity and awkwardness of an investigation 
based on the full Bogolyubov equations. 

In this section we will consider a quasiclassical variant 
of the Bogolyubov equations, which essentially simplifies 
the investigation, gives full information on the energy spec- 
trum and allows us to find the superlattice density of states. 
Use of this quasiclassical approximation is correct under the 
condition that the superlattice period is large compared to 
the interatomic spacing 

The Bogolyubov equations for the functions u( r )  and 
u(r) have the form (see, e.g., Ref. 24): 

Eu.(r) -.A (r) uv(r) =Evuv(r), 

where = p2/2m - p and E, is the quasiparticle energy. 
In the quasiclassical approximation we can assume that 

the functions u ( r )  and u(r) are modulated free-electron 
functions at the Fermi level, i.e., u ( r )  -exp(ip,r)l(r) and 
v(r)-exp(ip,r)fi(r), where the functions ii and fi vary 
slowly on an interatomic scale. This separation of rapidly- 
and slowly-varying parts, and the neglect of second deriva- 
tives of the functions H and iS, allows us to write (20) as 

iv,Zr-A (x) Z (I) =EZ(x) . 

Here, as before, u, = u, cose; it must be noted that the divi- 
sion into "rapidly-varying" and "slowly-varying" functions 
is correct only for mu, & d  -', i.e., the present quasiclassical 
approximation is correct only for angles cosO$.a/d. 

Using the stepwise approximation for A(x) (which is 
correct for d & u,/w, ) and solving (2  1 ) separately for the S 
and Nregions, we obtain from the requirement of continuity 
of H andi7, and the Bloch condition of periodicity, the follow- 
ing dispersion relation for the spectrum: 
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( E ) ( A 2 - F )  ' la E: 
cos qd = cos ---- ch-- ds - 

u, (AZ-E~)  '12 

where q is the wave vector along the x-axis (0  < q < 23r/d). 
For v, /d) A -E, i.e., for cos6Sd /f where f = uF/A, we 
obtain from (22) : 

From (23) it follows that for angles not close to r/2, there is 
a gap in the excitation spectrum E, = Ad,/d, which coin- 
cides with the average value of A (x)  . However, a special role 
is played by the directions cos6 < d /f. In this case, 

cos qd='12 exp (Ad,lv,) cos (Ed,/v,) (24) 

and the spectrum consists of a set of mini-bands with expon- 
entially narrow widths: 

u, 2uz En ( q )  = n  ( n f  'I,) - - - exp (-Ad,lv,) cos qd (25 ) 
dn d, 

(n = 0 ,  f I,...); these mini-bands lie within the forbidden 
gap E, . We recall that an approach based on the Eilenberger 
equations leads for cosO<d /f to a discrete picture of the 
spectrum, and does not lead to a band picture. However, 
because of the exponentially small width of the bands, in 
order to calculate the energy of states we can assume the 
levels are discrete, and the density of states for E<E, is 

ca 

v cos 0 x 56 [E-n (n+1/2)--] ( m u  cos a) d (mu cos 0 )  dq 
dn 

which coincides (for d, = d, = d /2) with the result ( 18). 
In a normal superconductor the density of states equals 

zero within the gap I E I < E, = A, and diverges as an inverse 
(square root as IE (-A $- 0, i.e., N(E) = N(0) 
E ~ ( E ? -  E ; ) - ' / ~ .  

As follows from (23), the density of states of a super- 
conducting superlattice also behaves in an analogous fashion 
as E- Ad, /d + 0; now, however, the quantity Ad, /d = E, 
plays the role of a gap in the superlattice. When the energy 
lies within the gap E, , a contribution to the density of states 
appears only for angles cos6 5 d /f and the density of states 
for the superlattice will be nonzero even for IE I < E, . So, for 
IE I -0 it is determined by the formula ( 18). 

For \ E  I - E, - 0 ,  the relation (22) for angles cos6 < d  / 
f is transformed to the form (d, = d, = d /2) 

En = ITV, (n + 1/2)/d for n $1. Substituting this expression 
for En into (26), we obtain 

N (E+E.-0) --N (0) ( d ~ l u , )  Xn-'. 
n 

Our approximation is correct for n ) 1, but qualitatively 
it is true also for n - 1. Thus, to order of magnitude the den- 
sity of states for E-E, - Ocomes to N(0)dA/vF -N(O)d / 
f . 
The schematic form of the density of states in a superlattice 
is shown in the figure. 

The presence of gapless superconductivity in a superlat- 
tice (in the pure-superconductor limit) must make itself 
known in tunneling measurements, as well as in the nature of 
the temperature dependence of the specific heat. Whereas in 
an ordinary superconductor the presence of a forbidden gap 
leads to an exponentially small electronic heat for low tem- 
peratures T< A, in a superlattice the presence of levels with- 
in the gap leads to a square-law dependence of the specific 
heat on temperature: 

C = 4 2- J Ec-"'N ( E )  dE 
dT 0 

At this time, no evidence of the presence of states in the 
gap in the superlattice Nb/Cu has been detected in the data 
on tunneling  measurement^.^.' This could be related to the 
fact that the mean free path in this superlattice is apparently 
of the same order of magnitude as the layer thickness (see 
the estimates at the end of the Introduction). In such a case, 
levels within the gap must be absent-indeed, the trajector- 
ies required for their presence are absent, i.e., those with 
cosi3 < d /f, for which an electron traverses a path of order f 
through the N layers; impurity scattering for l<f  must also 
disrupt this regime. We note also the extremely small density 
of states within the gap for superlattices, which makes the 
experimental observation of this effect difficult. 

5. A DESCRIPTION OF IMPURE SUPERCONDUCTING 
SUPERLATTICES BASED ON THE USADELL EQUATIONS 

In this section we will investigate the properties of su- 
perconducting superlattices at low temperatures T< T, in 
the impure-superconductor limit 196. As was shown by 
U~adell,*~ the Eilenberger equations become considerably 
simpler in this case. It is necessary to note that in our situa- 
tion, i.e., in the presence of a system with a periodic potential 
A(x) with period d<f ,  application of the Usadell equations 
requires in addition the fulfillment of the more stringent 
condition I <d. This condition for the correctness of the Usa- 
dell equations is very general; the physical content of this 
requirement consists of an averaging of the system proper- 
ties over the impurities within a period of the external field 

3" d A  Ed Ed (in our case, its role is played by the potential A (x )  ). 
e x p ( - ~ - - ) ~ o ~ q d = c o ~ - - 3 - " ' ~ i n - .  V, vx (27) The Usadell equations are written in terms of F ( r )  and 

G(r), i.e., angular averages of the functions f(v,r) and 
Neglecting the width of the mini-bands, we obtain from (27) g(v,r) respectively. In the superlattice these functions de- 
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FIG. 1 .  Schematic form of the density of states in a superconducting su- 
perlattice. 

pend only on the single caordinate x, and the equations take 
the form 

oF+D(FGN-GFN) =A (x) G, 

F2+G2=1, 

where D = v, 1/3 is the diffusion coefficient; we can take the 
function in (29) to be real. Thanks to the condition (29b), 
we can substitute F = sin e,(x), G = cos p (x ) ,  where the 
function p ( x )  satisfies the equation 

o sin g-DgN=A (x) cos cp. (30) 

In the case of a small-period superlattice, the function p ( x )  
is slowly varying, and we can express it in the form 
e, = p, + e,, (x)  where e,, &p0. Substituting this expression 
fore, into (30) and expanding in p , ,  we obtain 

o A (x) A (x) cos TO-o sin 90- 
q ~ - p i  [Dcos % + - D singo]+ D - 0. 

(31) 

The functions p (x)  and A (x)  are periodic with period 
d. Representing them in the form of Fourier series (for 
which p, corresponds to the fundamental), we find 

A. cos po-o sin go - sin po Zcp.~-,=O, (32) 

Using also an expansion of the self-consistency equation 
(29c) in a Fourier series, we are led to the following self- 
consistency equation for E = d *wD /D < 1 : 

Thus, the zero-order equation in E coincides with the 
usual self-consistency equation where A, and A, play the 
roles of A and A-i.e., the average values of the correspond- 
ing quantities. To first order in E,  according to (33), the 
effective interaction parameter is renormalized; the same re- 

normalization also figures into expression (7 )  for the super- 
lattice Tc . In the cased 2 ~ D  /D) 1 the gap A,, along with T, , 
is determined by an effective constant (see Section 2).  

The Green's function for the superlattice 
Go = cos e,,-w(w2 + to first order in E coincides 
with the Green's function for a homogeneous superconduc- 
tor. As a result, the density of states is the same as for a 
normal superconductor with a gap E, = A,. Thus, the BCS 
relation between Eg and Tc is preserved even in an impure 
system. 

6. CONCLUSION 

Let us now summarize the basic results of our investiga- 
tion for the model of free electron motion through the super- 
latticeS/N (where the layerssand N have identical proper- 
ties except for the constant A ) .  

1. The superconductivity has a homogeneous character, 
i.e., the Green's functions G and F a r e  almost constant for 
d4{. As a result, the magnetic properties of superconduct- 
ing superlattices possess no distinctive features of their own. 
In this connection, let us emphasize the difference between 
the situation we have investigated and the case of an inhomo- 
geneous superconductor, which was investigated theoreti- 
cally in detail in Ref. 26. In the latter case, the superconduc- 
tivity is localized in regions which are randomly distributed 
throughout the sample, and its characteristics can be de- 
scribed by means or percolation theory." 

2. The critical temperature Tc is determined by an effec- 
tive constant A,,. The relation between the gap Eg in the 
tunneling density of states (Eg corresponds to the maximum 
value of this density of states) and T, is the same as in homo- 
geneous superconductors within the BCS model. 

3. In a pure system there exist states within the gap; 
their density is determined by Eq. ( 18) and the correspond- 
ing contribution to the specific heat (quadratic in the tem- 
perature) is given by Eq. (28). The gapless character of su- 
perconductivity in pure superlattices distinguishes them 
from ordinary homogeneous superconductors. 

Experimental data for Eg and Tc for the superlattices 
Nb/Cu are found to agree with the conclusions of paragraph 
2; however, the value of T, for small layer thicknesses d is 
higher than that predicted by the model we have investigat- 
ed. This disagreement can be related to the crudeness of our 
model of free electron motion, in which reflection of elec- 
trons from the boundaries of thesand N layers is neglected. 
A more realistic model of electronic motion in the superlat- 
tice must take into account the reflection of an electron from 
these boundaries together with scattering of electrons by im- 
purities. The gapless character of the spectrum in a pure 
superlattice requires a thorough investigation, since limita- 
tions on the purity of the sample are rather stringent; over a 
length { there must be neither impurities nor variations in 
the layer thickness. 

The authors are grateful to the participants in the se- 
minar of D. A. Kirizhnits on superconductivity and espe- 
cially to E. G. Maksimov for discussions of the results of the 
paper and for valuable comments. 
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