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A study is made of amorphous magnets having a strong random anisotropy. On the 
assumption of a long-range interaction it is shown that the correlations in such a system at 
high temperatures are ferromagnetic in nature, and the maximum correlation length is large 
compared to the range of the interaction. The phase transition to the disordered phase turns 
out to be equivalent to the phase transition in an Ising spin glass. The ordinary and nonlinear 
susceptibilities are calculated for different temperature regions above the transition point. 

1. INTRODUCTION 

Concentrated amorphous magnetic alloys based on rare 
earth metals are disordered systems for which a configura- 
tional disorder substantially alters the form of the magnetic 
state. In some cases this is due to an exchange interaction 
which can be of either sign, as in classical spin glasses. In 
another class of systems, which we shall consider here, the 
exchange interaction is ferromagnetic in nature and the con- 
figurational disorder enters through the creation of a single- 
ion anisotropy with randomly directed axes. The simplest 
Hamiltonian for such a system is that proposed by Harris, 
Plischke, and Zuckermann': 

Here S, is the Heisenberg spin at site i, J,, > 0 are the ex- 
change integrals, g, is a random unit vector (director) indi- 
cating the direction of the anisotropy (of magnitude D)  at 
site i, and h = g p , X  is the reduced magnetic field. 

As we know,2 the ferromagnetic state of such a system is 
disrupted (for h = 0)  even ifD < J. In this case a frozen state 
should arise3-' at low temperatures, with a spin correlation 
length L-(J/D12 and a magnetic susceptibility 
,y - (J/D14.  experiment^^.^ on the system Dy, Gdl - ,Ni, 
for which D varies with x ,  have confirmed these predictions. 
The critical behavior of such a system [for the case of planar 
(XY) spins] was investigated theoretically in Ref. 4, and it 
was predicted that the susceptibility should have a peak at 
T=:T,. 

A number of experiments have not been done on the 
amorphous systems DyNi (Refs. 6 and 7), DyCu (Refs. 8 
and 9) ,  TbCoGa (Ref. lo),  and DyFeB (Ref. 1 1 ) , which are 
characterized by a large value of the random anisotropy: 
D k J (or even D)  J). It has been s h o ~ n ~ . ~ . "  that in this 
case the susceptibility increases on decreasing temperature 
in the paramagnetic phase and then goes to saturation at 
TZ T,. At low temperatures the magnetic structure has an 
appreciable short-range order, with a correlation length 
L - 15 A (Ref. 9), substantially larger than the average dis- 
tance between spins. Measurements of the behavior of the 
magnetic moment in an external field as a function of tem- 
perature7.'0 have revealed the existence of a characteristic 

line on the h, Tplane beyond which the irreversible magnetic 
response typical of spin glasses appears. The T(h)  curves 
obtained in Refs. 7 and 10 are very similar to the de Al- 
meida-Thouless (AT) line T(0) - T(h ) = const h 2'3 pre- 
dictedL2 for an Ising spin glass. 

Amorphous magnets with D) J thus combine proper- 
ties of the Heisenberg ferromagnet and Ising spin glass. In 
this paper we show that this behavior can be explained with 
the aid of the Hamiltonian ( 1 ) for D$ J if one assumes a 
rather slowly decaying exchange interaction J ( r )  . Assuming 
that the interaction range x - '  is much larger than the dis- 
tance a between neighboring spins, we show that the suscep- 
tibility grows appreciably in the paramagnetic region, 

x ( T c ) - ( x a ) - ' ~ ( 2 T e ) ,  

and that the maximum spin correlation length is substantial- 
ly larger than the range of the interaction: L - x -  ' (ax) -3. 
We then find the slow variables which describe the thermo- 
dynamics of the system near the phase transition (for this we 
must use the 1/N expansion, where N is the number of spin 
components). It turns out that the effective Hamiltonian for 
these variables is the same as for an Ising spin glass with a 
long-range interaction.13 We thereby explain the oberva- 
tion7 of the AT line noted above and predict the asymptotic 
form of the static and dynamic anomalies at T-+ T,. 

We note that the idea that Ising spin glasses and tnag- 
nets with random anisotropy belong to the same universality 
class (in the sense of phase transition theory) has also been 
stated previously: in Ref. 14, on the basis of a 6-E expansion 
for the case of weak anisotropy, and in Ref. 15, on the basis of 
a numerical simulation of a two-dimensional system (where 
a phase transition was seen at T = 0).  In the present paper 
this statement is first proved directly for a three-dimensional 
system with strong anisotropy. 

2. FERROMAGNETIC CORRELATION REGION 

Under the condition D )  J it can be assumed that each 
spin is directed along its own easy axis: Si = ail&, where ai 
= + 1. Therefore, we obtain from ( 1.1 ) the Hamiltonian 

for the Ising variables a, in the form 
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The random vectors gi are assumed uncorrelated: 

m = 1 / 3 6 a ~ 6 i j  (2.2) 

(the superior bar denotes a configurational average). The 
interaction range x- '  is defined through the relation 

x-2 = 1 Jr21 (r) d3r, lo =J J(r) d3r. 
6 Ja 

(2.3) 

In what follows we set J, = 1 and assume that cxP3) 1 (cis 
the volume density of spins). As usual in problems with 
long-range interactions, it is convenient to change from the 
discrete variables oi to a continuous field S ( r  ) [S(r i  ) is the 
molecular field acting at site i] : 

In deriving the last relation in (2.4) we have used (2.3) and 
neglected the higher derivatives of the field S ( r ) ,  as we may 
do for cxP3 1. We expand the argument of the exponential 
function in (2.4) in a power series in S up to the S4 term (we 
assume an N-component spin and h = 0) : 

Here r = 1 - c/NT, and the expression multiplying S,SB in 
the third term averages to zero. For T = c/N ( r  = 0) the 
average value of the coefficient of S2 vanishes. We shall 
study the system in the vicinity of the presumed phase transi- 
tion, 17-1 1, Here we will be interested in the large-scale 
fluctuations of the field S ( r ) ,  and we can therefore neglect 
the fluctuations of the coefficient of S4 in (2.5) and treat the 
coefficient of S,SB as a Gaussian random field VM (r). Then 
the Hamiltonian becomes 

whereg = N /c ( N  + 2) and we have made the change of no- 
tation S- T ' I 2S .  The correlator of the field VaB ( r )  is 

g vap (r) v v b  (r') = - 6 (r-r') (6ae6~bf 6a~6~*+6ab6@~)- (2.7) 
4 

The "bare" correlator, corresponding to (2.6), of the 
field S, ( r )  has the usual form for an isotropic ferromagnet. 
In the Fourier representation we have 

There are two kinds of corrections to (2.8 ) : from the interac- 
tion term and the random potential. We can easily satisfy 
ourselves that these corrections are of the same order of mag- 
nitude and are small if 

In the actual situation for amorphous magnets we have 
N = 3 and ~ = : 0 . 5 a - ~  (a  is the characteristic distance 
between atoms in the alloy), so that rc =: ( ~ a ) ~ / 2 5 ;  the re- 
gion of isotropic ferromagnetic correlations exists for 
x-' 2 a .  We note that r ,  =: at an interaction range of 
only x-' = 1 .5~ .  In the region r s r ,  the correlation length 
r, and susceptibility x are given by 

We show below that these quantities do not grow for r 5 r,, 
so that the maximum value of the correlation length is 

We shall show that an external magnetic field h will 
alter the pure Lorentzian shape of the correlator (2.8). We 
add to (2.6) a term - hS, ( r )  and write the field S, ( r )  in the 
form S,(r) =ma,, + 3 a ( r ) ,  where (S,(r)) =O.  For 
r 2 7, the third term in (2.6) can be treated as a small pertur- 
bation, so that m is given by the usual equation 

Assuming 3, ( r )  to be small, we obtain from (2.6) 

The last term in (2.13) means that a random external field 
has arisen, acting on the variables 3,. As we know, this will 
give rise to a squared Lorentzian term in the correlator: 

(So (p)Sp (-p) > = G l  (p) (6aa-61a61e) +GI, (PI 6ia61al 

where 

The additional terms are not small in strong fields 
which satisfy h 2 h, (TI = (?/g) ' I 2 .  Expressions (2.14) 
and (2.15) for the total correlators determine the form of the 
structure factors for scattering; the irreducible correlators 
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FIG. 1. 

which determine the values of the differential susceptibilities 
are given by the first terms in (2.14) and (2.15). We note 
that the squared Lorentzian term is observed more easily in 
G, ( p), since r1 z T l 1  /3 in the high-field region. 

From a theoretical standpoint it is interesting to consid- 
er condition (2.9) at large N and x-'. We see tht T, (1 for 
N(Z, where Z = 47~cx-~/3 is the effective number of 
neighbors. In the opposite limit N b Z  there is no ferromag- 
netic correlation region, and our model is completely equiv- 
alent to an Ising spin glass. 

Indeed, if we consider the high-temperature expansion 
for the initial Hamiltonian (2.1 ), taking into account only 
those diagrams in which every bond jv = J ( r v  ) gi.& appears 
twice (as for spin glasses; see Fig. la) ,  we get a singularity of 
the high-temperature series at z Jo (Z /N)  'I2. Now let us 
estimate the contribution of diagrams for which there are 
correlations between different ju (Fig. lb).  The contribu- 
tion of each triangle goes as - T -3jg&>ki - Ji T -3N -2 

and the number of such triangles as Z 2, so that their total 
contribution goes as - ( JdT)3  (Z /N)2 - (Z /N) 'I2 and is 
small for Z(N. Analogously, the contribution from any m- 
gons is of order (Z /N) '" - 2"2 ( 1. Thus the leading contri- 
bution to the high-temperature series is from the same dia- 
grams as for the Ising spin glass. We note that the decrease of 
the correlation length with increasing N has been detected 
previously l5 in a numerical simulation of a two-dimensional 
system. 

3. SLOW VARIABLES IN THE CRITICAL REGION 

1. In the last section we showed that appreciable correc- 
tions to the behavior of an isotropic ferromagnet should arise 
for T 5 rc - ( x ~ ) ~ / 2 5 .  The problem of summing the dia- 
grams in this region is equivalent to the problem considered 
in Ref. 16 for a model with a weak random anisotropy. In 
Ref. 16 it was shown (by means of a 4-E expansion) that the 
renormalization group equations have no fixed points corre- 
sponding to a phase transition to a ferromagnetic phase. 
Here we consider the region r 5 T, in a three-dimensional 
system with the aid of a 1/N expansion and show that the 
critical behavior of the system for N) 1 is the same as in an 
Ising spin glass with a long-range interaction. l 3  Here the role 
of the individual spins in the spin glass is played by ferro- 
magnetically correlated regions having a dimension of the 
order of L = r,,, [see (2.1 1 ) 1. We shall start from the 
Hamiltonian (2.6) but with the constant g and the coeffi- 
cient in correlator (2.7) redefined in such a way as to have a 
well-defined limit for N- oo : 

Vaa ( r )  VTa ( r ' )  =aN-l6 (r-r') (6,~6~a+6a~606+6aa60r) 

g=P/N, a = 9 / 2 0 c ~ l ,  P=9/5~%4. (3.1) 

These are the usual dependences on N chosen in the study of 
the spherical model with a weak random anisotropy, l7  where 

Tc is assumed independent ofN, whereas for the initial Ham- 
iltonian (2.1) [and, accordingly, for (2.6)] we would have 
Tc -N - '. The numerical coefficients in (3.1 ) are chosen so 
that (3.1) goesover to (2.7) for N = 3. ForN = co theprob- 
lem can be solved exactly17; the phase transition is due to a 
macroscopic occupation of the mode \u:' ( r )  correspon9ng 
to the maximum eigenvalue of the operator Ma@ 
= (V2/x2)S, - VaS (r) .  Before constructing the 1/N 

%pangon with the eigenfunctions \Vt ( r )  of the operator 
Map (Ma@ \Vi = EA \Vt ); as the basis, let us first examine the 
properties of these functions. 

For N = oo all the eigenfunctions Yt  ( r )  are deloca- 
lized, and the density of states p (E l  has a precise edge Ec , 
near whichp(E) - (Ec - E )  'I2 (Ref. 17). For finite N the 
edge of the spectrum is smeared, and localized states appear. 
This effect is conveniently studied by the technique that was 
used in Ref. 13 to analyze the spectrum of the matrix Jv for a 
long-range interaction. In this technique the average 
Green's function 

is written in the form of a functional integral 

Here (and below) lengths are measured in units of a ,  and 
QaB ( r )  is an r-dependent tensor in replica space, with the 
number of replica indices m assumed equal to zero in the 
final calculations. Evaluating (3.3) by the method of steep- 
est descent for N) 1, we obtain the density of (delocalized) 
states p (E) in the form 

x3 
P ( E )  =-n-I Im RE ( 0 )  = - (El-E) '", E,=-a2xs/ ( 8n )2  

4n2 
(3.4) 

Estimating the fluctuations of Q, ( r )  near the saddle point, 
we find (in analogy with Ref. 13) that formula (3.4) is valid 
for 

In the region E ) E ~  the states are localized, their density be- 
ing determined by nontrivial saddle points in the integral 
(3.3). In analogy with Ref. 13 we find 

~ ( 8 ) - e x p [ - A ( E / ~ , ) " ] ,  A-I .  (3.6) 

The localization length of these states is 

In the energy region E -E, there is a localization threshold E, 

which separates the delocalized states lyt ( r )  (for E < E, ) 
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from the localized states. For energies near the threshold 
( E  - E, &E, we use the scaling hypothesis of localization 
theory, according to which 

The value of I ,  is determined by joining this expression with 
(3.7) at E-E,. The exponent v is evidently close to unity; for 
simplicity we shall henceforth assume v = 1 (see Ref. 13 for 
details). We will also have need of a correlation function of 
the form 

K E ( r )  =N- lYaE ( r )  YGE(r+r ' )  =- ( n p  ( E )  )-' Im R E ( r ) .  

(3.9) 
Evaluating KE (r)  for - E%E, by the method of steepest 
descent [using (3.3) and (3.9)], we get 

For &(x6 Eq. (3.10) reduces to 

K E  ( r )  = ( 4 n )  -le-r'L; (3.11) 

as this expression is independent of E, we expect that (3.11 ) 
will remain valid for I E  I -E,. 

2. We write the vector field S, ( r )  as the spectral decom- 
position: 

As we have mentioned, for N = CQ the phase transition is 
due" to the onset of a macroscopic average of the amplitude 
a,, corresponding to the maximum eigenvalue E,, = E,. 
We shall show that for a large but finite N the critical behav- 
ior is governed by a macroscopic number of amplitudes' 
(modes) a, with energies EA in the interval 1 = IEA 
- El I ME,. These amplitudes are the correct slow variables 

of our problem. Let us write (3.12) in the form 

where the summation in the first term is over states with En 

> - E, (corresponding to the slow variables), and that in 
the second term goes over the rest of the spectrum: - E~ 

> E,; the parameter E, is chosen in the interval E,(E, 9x6. 
We must now take the thermodynamic average over 

amplitudes 6, and obtain an effective Hamiltonian for the 
slow variables a,. For this it is convenient to write the parti- 
tion function of the field S, ( r )  with the Hamiltonian (2.6), 
(3.1) in the form 

1 
Z = J D S ,  (.) Dm (r) erp {- 1 dir [ - sa ( r s a r - @ ~ , )  SO 2 

We now substitute (3.13) into (3.12) and integrate over 6, 
to get 

The wavy line over the trace symbol Sp means that the sum- 
mation over the spectrum is restricted to the interval - E, 

> E,. The condition N ,  1 allows us to evaluate the integral 
over @( r )  by the method of steepest descent; this same con- 
dition allowed us to neglect the cross terms ~ ' ~ ' 3  in deriving 
(3.15 ). For sufficiently large T ( a  criterion is given below) 
we have for the saddle-point configuration @,(r)z@, 
= const. The equation for @, is of the form 

Here V is the volume of the system, and 

[see (3.2) and (3.4) 1. In the region under consideration the 
last term in (3.16) is small, and the integral is determined by 
the spectral region in which p ( E )  is given by (3.4). The 
integral over E formally diverges for I E I -, CQ , and it must be 
regularized by subtracting the same integral with T + @, 
= 0, leading to a T-independent shift a,. Actually, this same 

shift was made back in the calculation of E, in (3.4). We are 
interested below in the quantity w = T + @, - E, (which 
has the meaning of a renormalized temperature), in which 
these shifts cancel. As a result, we obtain for w the following 
equation [assuming that 0 % ~ ~  and neglecting the last term 
in (3.15)] 

which has the solution 

For ;i< ( 0 /8rl2x6 we have w = (4r/0)' P/x6. The main 
contribution to the integral (3.15) is from the region 
- E = E, - E-w, and so the approximations we have 
made are valid for w SE,. As a result, the applicability condi- 
tion of solution (3.18) is 

Substituting @(r)  = @,into (3.15), we obtain the quadratic 
part H, [S z'] of the effective Hamiltonian H [S A''] in the 
form 
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In region (3.19) there are exponentially small [see (3.6) ] 
eigenmodes a, with E, > a .  For these modes the states with 
a, = 0 are unstable [see (3.20)]; to find the correct states 
we must evaluate the Gaussian integral over p ( r )  = @(r)  
- Qo with the term p ( r )  (S'0'(r))2 in the argument of the 

exponential function in (3.15) treated as a perturbation. We 
obtain the following contribution to H [S r'] : 

where D, the correlation function of the field p ( r ) ,  is given 
by theequation [see (3.15) and (3.1611 

N 
D-' (r, r') = - ti ( 1 

r-r') + - Sp G2 (r, r') . (3.22) 
28 2 

Let us examine the second term in (3.22) as a function of 
r - r' and r. In region (3.19) the r dependence is weak, and 
in (3.22) we can go over to the Fourier components D(q).  
Using (3.10) and (3.1 1 ), we can show that the characteris- 
tic scale of the function D(r )  is smaller than L -x -~ ,  while 
(S'O'(r))' varies over lengths of the order of I(w) )L [see 
(3.7)]. Here we assume that &,(w(x6. Therefore, in 
(3.21 ) we can make the replacement D(r,rl) + D(g 
= O)S(r - r'), where 

: S -  N xsm'l~ 
D-I (q = 0) r=., - Sp Ga (r, r') d3r',-- -- (3.23) 

2 8n ' 

Collecting (3.20), (3.22), and (3.23), we obtain the effec- 
tive Hamiltonian of the field S'O'(r) in the form 

Let us now consider the consequences of the instability of the 
states with a, = 0 for E, > w. For W ) E ~  (i.e., ? % T ~ ) ,  such 
states are few in number, and we can therefore neglect the 
overlap of different Y," ; then (3.24) reduces to 

where 

Minimizing (3.25) with respect to a, ,  we get [see (3.7) ] 

We note that expression (3.27) holds for E - w-w)E~,  
where the fluctuation contribution to (a ,  2, can be neglect- 
ed. 

3. With decreasing temperature, ? and o decrease, and 

the number of modes with (a ,  ) # O  ("condensed modes") 
increases. For ?-rO the average number of such modes 
Y," ( r )  in a volume 1 3 ( ~ A  ) is of order 1, and we must take 
into account the interaction of different modes, i.e., the 
terms with Ai  $4 in (3.24). We note that on scales larger 
than L, Y," ( r )  is a random N-component vector with zero 
mean [see (3.10) 1, and the main contribution to the interac- 
tion is therefore from the terms in (3.24) with A ,  = A, and 
A3 = A4: 

The remaining "matrix elements" in (3.24) are much 
smaller than I i:, by a factor of order N - '. This means that 
in the leading approximation the interaction of the con- 
densed modes can be taken into account in a Hartree-type 
approximation, which reduces to a renormalization of w.  We 
note that such a renormalization occurs automatically if the 
last term in (3.16) is taken into account in the calculation of 
w. Instead of (3.18) we then get 

where 

Now we must replace (Sho'(r))2 in Hi,, with S(SF' ( r ) ) 2  
= (S:'(r) )' - g [cf. (3.21)]: 

and determine w from (3.29), with q calculated using 
(3.27). Equation (3.27) retains its form. Strictly speaking, 
Eqs. (3.29) and (3.30) no longer apply when r-T,, since 
condition (3.19) is violated, and the method of steepest des- 
cent cannot be used to calculate the functional integral over 
@ ( r )  in (3.15). However, on qualitative considerations we 
can understand what happens in this temperature region and 
progress to the most interesting region, - TBT,. 

It is extremely important that the leading (in magni- 
tude) mode-interaction terms which we have taken into ac- 
count depend only on the absolute values /aA 1 and do not 
determine the signs c, = a,/ la,  I .  Therefore, these terms 
cannot lead to a real phase transition; those terms in Hi,, 
that do depend on the signs are small at (?(-ro. Thus, for 
111 - T ~  there is no phase transition but rather a smooth 
growth of the spin correlations. 

We now recall" what happens for N =  CO, i.e., 
r0 = wO = 0. In this case Eq. (3.29) holds everywhere, and 
for ?. < 0 we get 

i.e., there occurs a macroscopic condensation into the mode 
with the maximum eigenvalue E, = E , .  
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Returning to the case of finite N, let us seek a solution 
analogous to (3.31) for q in the region - ?.%r0, i.e., let us 
assume that 

q-lil>.s0. (3.32) 

We note that relation (3.32) does not imply a phase transi- 
tion, since q #0  does not require (a, ) # 0. We shall show 
that (3.32) holds only for w - E, <a,,. We write the self- 
consistency equation with allowance for (3.26) and (3.28): 

We have replacedp (E)  by p0-x'~:/2 [see (3.4) 1, since 
the density of states has no singularities near the localization 
threshold. The integral (3.33) is of the order of r0 for w -6,) 
and increases as w +E, : 

where C,  - 1, [(w - E, )/E(), and the exponent Y is known to 
be larger than 2/3; we shall henceforth set v = 1 (see Ref. 13 
for details). Taking (3.32) into account, we get 

b-.collrl. (3.35) 

Thus, with decreasing temperature the condensation of lo- 
calized modes occurs closer and closer (in "energy") to the 
localization threshold. The signs a, of the amplitudes a, 
fluctuate strongly at the absolute values la, 1 determined by 
equation (3.27). Thus for - ?>r,, a superparamagnetic pic- 
ture appears: there are many independent collective degrees 
of freedom u, = f 1, and the change of each sign u, leads 
to a rearrangement of the spin configuration in a large vol- 
ume -1 ; .  We emphasize that this picture differs from an 
ordinary superparamagnet in that in our case there are no 
rigid, spatially separate clusters (see Ref. 13 for details). 

In deriving (3.34) and (3.35) we used expression 
(3.27), which we obtained by minimizing HA" from (3.25). 
Actually, the expression for the "interaction vertex" (i.e., 
for the coefficient of a, 'I,) given in (3.25) does not apply 
when [OZE,, but it can be shown that the corrections reduce 
to a factor of order unity, which is unimportant for our anal- 
ysis. 

4. When the temperature and the value of [ decrease 
[see (3.35) ] the sign-dependent pltrt of the mode interaction 
grows. The binary interaction of the signs u, = a, /la, I is 
given by the second term in (3.30) and is of the form 
( w - ~ o )  

(3.36) 

Here 

We recall that the absolute values la, I are determined by the 
sign-independent terms of the interaction. From the second 
statement in (3.36), which defines the quantities I,, , we see 
that I,,, takes both signs and has a zero mean. Moreover, the 
presence of the random function Sq(r)  in the integral implies 
that I,, is not correlated for different pairs (A,p). Interac- 
tion (3.36) is thus of the same form as for an Ising spin glass. 
The effective value of this interaction is determined by the 
parameter I, = 2 'I' (I,,,') 'I2, where 2 is the effective 
number of interacting "neighbors," i.e., the number of states 
with energies in the interval (E, - E, ) / E ~ - [  and in a vol- 
ume of the order of 1 3 (  c). It is easy to see that 2-[ -'. In 
estimating I,,' we should take into account that the wave 
functions YI; ( r )  and Y," ( r )  are correlated within a length 
L - x - ~  and are not correlated over larger scales [see 
(3.10) 1; the scale of the fluctuations [ (Sq(r)  )'I ""oes as 
- T ~  for all T, since the states with (e,  - E, )/E()-<, which 
give the leading contribution to q, overlap one another 
strongly, and their contribution to Sq(r)  is of order 
q Z  -I1 ' -  - T ( ~  Finally, for the "glass" interaction pa- 
rameter I, we have 

- 1 
I,=Z"' (I,,:) ''I ~3 - b-"'- / TI / x 6 .  (3.37) 

N 
For - ?-X')T,) the interaction of the "spins" u, becomes 
strong, and one is dealing with the problem of a phase transi- 
tion in a spin glass. Here the effective number of neighbors is 
2 -6 -' - N ~ / '  ) 1, SO that we may apply the results of Ref. 
13 for an Ising glass with a long interaction range. A freezing 
phase transition will occur at - r = T,.- 7,. 

4. PHYSICAL QUANTITIES IN THE CRITICAL REGION 

In Sec. 2 we calculated the magnetic susceptibility and 
structure factor in the ferromagnetic correlation region. Let 
us do the analogous calculations for the superparamagnetic 
region - T,. < r 5 r,, using the representation of eigenmodes 
a,. For the average spin correlator we have 

In the region ?)T ,  the sum over the spectrum is predomi- 
nantly from delocalized states with - E, SE,, for which 
(a,)' = (w + I E ,  ) ) - I .  Using (3.4) for the density of states 
and (3.10) for the correlator of the wave functions, we ob- 
tain 

m 

wherew is given in (3.18). For the homogeneous susceptibil- 
ity x and correlation length r, we have 
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For 7% r, expression (4.3) goes over to the paramagnetic 
formula (2. lo),  and for T 5: 7, it goes to a constant. Behavior 
of just this kind was observed in a recent experiment." 

In the temperature region ? <O, rf 5 I? (  ) r0 the sum 
over the spectrum in (4.1 ) also contains a contribution from 
the condensed states, for which the wave-function correlator 
is of the form (3.11 ). As a result, for the structure factor 
S (p )  we have 

S (p) = I G ( r )  d3r e i p r  = I +  I TI  
p2/x2+x-'  ( D ~ / X ~ + X - - ~ )  

(4.4) 

It is also of interest to calculate the nonlinear suscepti- 
bility i = - d 'x/dh 2, which increases anomalou~ly'~ at 
the phase transition in a spin glass. Above the freezing point 
it can be written in the form 

For 7 % ~ "  the leading contribution to (4.5) is from the re- 
gion of delocalized states with - E-w.  In analogy with 
(4.3) we have 

N x 3  for S W x B ,  ' - ( i + ~ ' x ~ i o 4 n ~ ) ' " - @ x ~ / 8 n  for to-=CT<x8. 

(4.6) 

For ? < 0, T~ ,  g I ? /  5: 7,. the main contribution to is from 
condensed states with (E - E, ) /~,-g. A calculation analo- 
gous to (3.33) gives 

Formula (4.7) is valid in a region not too close to the phase 
transition, viz., for (? - rf) k x", where the interaction of 
the signs u, can be neglected [see (3.37) 1. Closer to Tf the 
nonlinear susceptibility behaves the same as in an Ising spin 
glass. I' 

5. CONCLUSION 

We have considered a three-dimensional amorphous 
magnet with a strong random anisotropy on the assumption 
of a long interaction range l / x ) ~ - " ~ .  At a temperature 
close to TI = (c/3) J J ( r ) d  3r is the density of magnetic 
ions) there is a transition to a disordered phase. This phase is 
macroscopically similar to a spin glass but has a relatively 
large spin correlation length, so that it could naturally be 
called a correlated spin glass. We have shown that at tem- 
peratures T = ( T  - TI) /TI  $0.01 (c-lx3)' the random an- 
isotropy is unimportant, and the correlations in the system 
are the same as in a pure ferromagnet. Here the maximum 
ferromagnetic correlation length is found to be L - 10 c/x4, 
i.e., much larger than the range of the interaction. At dis- 
tances smaller than L the system thus behaves the same as a 
ferromagnet. For T 5 0.01 (x3/c)' we used the 1/N expan- 

sion to separate out the slow degrees of freedom responsible 
for the critical behavior of the system. The effective Hamil- 
tonian for these variables turned out to be the same as for an 
Ising spin glass.13 It was thereby demonstrated that these 
two problems belong to the same universality class from the 
standpoint of the theory of phase transitions. We are hopeful 
that this conclusion wil remain valid at N = 3. The equiv- 
alence of the two Hamiltonians can explain the experimen- 
tally observed7*" AT line, which is characteristic of Ising 
spin glasses. In addition, amorphous magnets with a strong 
anisotropy are described by the same hierarchical picture 
that was studied in Ref. 13. At T = Ty = T, ( 1 - rf ), where 
rf -0.01 (c-'x312, a freezing phase transition occurs, char- 
acterized by the appearance of correlations of arbitrarily 
large spatial dimensions. 

We have found the temperature dependence of the mag- 
netic susceptibility x above the freezing point Tf [see (4.3) ]. 
In the ferromagnetic correlation region T, 0.1 (c- 'x" we 
found x - r- I, while at lower temperatures x approaches a 
constant. This behavior of the susceptibility has been ob- 
served experimentally." The nonlinear susceptibility i 
= - d 2 ~ / d h  begins to grow strongly in the region where 

x approaches a constant [see (4.6) and (4.7)]. We also 
found the form of the structure factor S(p)  in different tem- 
perature regions above Tf. For r$-0.01 (c-'x3)' and in zero 
external field, S(p)  has a Lorentzian shape with a correla- 
tion length r,  -r-"'. The application of an external field 
will lead to a decrease in rc and to the appearance of an 
additional term having the form of a squared Lorentzian 
[see (2.14) and (2.15)]. For r < 0 ,  [ T I  5:rf the additional 
term in S(p)  should be observed even without an external 
field [see (4.411. We emphasize that this additional term 
arises in the region above the freezing point (in our notation 
T = Tf corresponds to r = - rf) and is due to the purely 
exponential behavior of the correlator of the eigenfunctions 
Yt ( r )  with "energies" EA near theedgeof the spectrum [see 
(3.10) 1. We assume that as the temperature is decreased 
further in the region T <  Tf the relative contribution of the 
squared Lorentzian should increase smoothly. 

We have thus shown that the assumption of a relatively 
long interaction range in amorphous rare earth magnets 
with strong random anisotropy permits explanation of both 
the ferromagnetic and "glass-like" properties of these sys- 
tems. In fact, it is sufficient to have an interaction range x-I - 1.5 lattice constants, which is quite realistic. It was recent- 
ly pointed out" that one can obtain a qualitative explanation 
of these properties in a model with a nearest-neighbor inter- 
action if it is assumed that the random anisotropy axes are 
correlated over a large length L equal to the low-tempera- 
ture spin correlation length (recall that we assumed these 
axes to be completely uncorrelated). Setting aside the ques- 
tion of whether such correlations are possible, we note that 
in this case the temperature dependence of the susceptibility 
and correlation length in the paramagnetic region should be 
of the scaling type with the exponents of the "pure" Ising 
model, while the nonlinear susceptibility should not exhibit 
any critical anomalies. 

We wish to thank L. B. Ioffe for helpful discussions. 
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