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We have calculated the electrical conductivity of thin semiconductor films with complex 
degenerate valence bands (p-type Ge) under the assumption of specular scattering of holes 
from the surface, when the film thickness is comparable to the mean free path of the holes. We 
have shown that the process of conversion of light holes into heavy holes (and the reverse) 
upon collision with the surface causes the electrical conductivity of the film to depend on its 
thickness, despite the fact that the scattering is specular. This effect is interpreted to be a 
consequence of the appearance of an effective force of friction between the light and heavy 
components of the hole gas due to the conversion of holes at the surface. In a time-varying 
electric field the processes of hole conversion at the surface lead to additional absorption of 
field energy. We show that the real part of the film electrical conductivity can have a finite 
value, even if no holes are scattered in the interior of the film. 

1. INTRODUCTION 

It is well-known that the electrical conductivity of thin 
films is smaller than that of bulk samples, since the current 
carriers, in addition to bulk scattering, also undergo scatter- 
ing by the surface.' In the case investigated by Fuchs' 
(which assumed one kind of carrier-electrons-and a sca- 
lar relaxation time in the volume), effects due to the finite 
size were present only to the extent that the surface scatter- 
ing of electrons was diffusive. For specular scattering, in 
which case the component of electron momentum parallel to 
the surface of the film is conserved along with the energy, the 
electrical conductivity of the film did not depend on its 
thickness. 

In this paper we will calculate the electrical conductiv- 
ity of thin semiconductor films with complex valence bands 
(p-type Ge) under specular-scattering conditions of the cur- 
rent carriers by the surface. The energy spectrum of the car- 
riers in such semiconductors consists of two bands with dif- 
ferent effective masses (light and heavy holes). It turns out 
that in this case a size dependence is present which affects 
the carrier mean free path, although scattering of the holes 
by the surface is specular. The point is ?hat in the course of 
scattering by the surface, processes in which a light hole 
converts to a heavy hole (and conversely) can occur with 
nonzero probability (see Fig. 1 ) . Since the mobilities of light 
and heavy holes are different, these processes give rise to an 
effective frictional force between the light and heavy hole 
gases. The presence of this force leads to lowered electrical 
conductivity of the film. Since the effectiveness of this fric- 
tion increases as the film thickness is decreased (because a 
larger and larger number of holes can reach the surface), the 
hole-conversion processes at the surface lead to a depend- 
ence of the film resistivity on its thickness. For a film thick- 
ness a large compared to the mean free path I, the relative 
decrease in the conductivity is of order I /a 4 1. This quantity 
is simply the fraction of carriers which can reach the film 

surface and can undergo conversion. For a 4 1 the electrical 
conductivity saturates, and its value for these thicknesses is 
smaller than that of bulk samples by roughly a factor of 2 
(for comparable masses of light and heavy holes). 

Since the component of momentum parallel to the sur- 
face does not relax for specular scattering, in a static electric 
field the resistive mechanism investigated here, being due to 
conversion of holes at the surface, cannot by itself be respon- 
sible for a finite film resistance. This is correct even if the 
film thickness is small compared to the mean free path, so 
that the holes collide with the surface more often than they 
scatter in the interior. In other words, if we exclude scatter- 
ing of holes in the interior (by impurities or by acoustic 
phonons), the conductivity of the system becomes infinite. 
This is easy to understand. In reality, since the total charge 
of a system of holes is not zero, in a static electric field ap- 
plied parallel to the plane of the film a nonzero momentum 
will be "pumped" into the system; since this momentum 

FIG. 1 .  A schematic of specular scattering of light and heavy holes at a 
surface, taking into account the conversion of one type of hole into an- 
other. Themomentaofthe light hole (p,,p,) and ofthe heavy hole (p2,p1) 
before and after scattering are shown. The equation of the surface is z = 0. 
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cannot relax (if bulk scattering is excluded) the system can- 
not establish a stationary state. Stated simply, the system of 
charges as a whole will be accelerated without limit by the 
field, which implies an infinite conductivity. 

Let us now consider the case of a time-varying electric 
field of frequency w .  As we already noted, conversion of 
holes at the surface leads to the appearance of a frictional 
force between the light and heavy components of the hole 
gas. It is clear that in a time-varying field this frictional force 
will cause absorption of field energy in addition to absorp- 
tion due to collisions in the film bulk. To avoid misunder- 
standing, let us emphasize that the frequency of the field is 
assumed to be small compared to the characteristic separa- 
tion between the light and heavy hole bands, so that the field 
does not cause interband transitions. Under these circum- 
stances, whereas the resistance of the film in a static field is 
controlled by collisions in the interior, the situation for a 
time-varying field is quite different; since the momentum 
communicated to the system of charges by the external field 
is zero when averaged over a period of the field, it is clear 
that for a sufficiently high field frequency the real part of the 
conductivity, which corresponds to absorption of field ener- 
gy, can have a finite value even if scattering in the interior of 
the film is absent. In this case the absorption of energy is 
wholly determined by the mechanism under discussion here, 
i.e., conversion of holes at the surface. For example, in the 
case where w - '  <rf <r (T  is the mean free time relative to 
scattering in the bulk, T,.-a/u is the time of flight, iT is a 
characteristic hole velocity ), the dissipative part of the con- 
ductivity is 

where m is a hole mass and n is the hole concentration (we 
here assume that the masses of the light and heavy holes are 
the same order of magnitude). This formula has the usual 
form; the role of the mean free time is played by the time of 
flight. 

The resistivity mechanism we investigate in this paper, 
which is due to the conversion of particles at the surface 
accompanied by a change in their mass, is in many ways 
analogous to the resistivity mechanism connected with elec- 
tron-electron collisions between particles with different 
masses in a three-dimensional gas.2 As shown in Ref. 2, tak- 
ing into account electron-electron collisions between differ- 
ent-mass particles leads to the appearance of a frictional 
force between the different components of the gas due to the 
difference in their mobilities. Collision of a hole with the 
surface, in the course of which it converts to a hole with a 
different mass, plays a role analogous to collision of particles 
with different masses in the three-dimensional gas. 

Let us discuss still more briefly the relationship between 
the problem investigated in this paper and the problem of 
size effects in the conductivity of many-valley semiconduc- 
tors (n-type germanium). At first glance it seems that these 
problems are completely equivalent from a physics stand- 
point, since in a many-valley semiconductor scattering of 
electrons by the surface can be accompanied by a change in 
their mass (both in the course of inter-valley transfer and in 

the course of intra-valley scattering). However, it is well- 
known that in many-valley semiconductors and semimetals 
the effect of finite size on the mean free path is absent for 
specular scattering of electrons by a surface (see the review 
in Ref. 3). The point is that in the case of many-valley semi- 
conductors the conductivity is a tensor, and when an electric 
field is applied parallel to the plane of the film a transverse 
concentration gradient arises consisting of carriers from dif- 
ferent valleys, and a transverse electric field appears so as to 
reduce the transverse carrier currents to zero. Thus a trans- 
verse field arises of just the right size to ensure that the size 
effect is absent for specular scattering.' In the problem we 
investigate in this paper the conductivity is a scalar, and 
when an electric field is applied parallel to the plane of the 
film, neither an electric field nor a hole concentration gradi- 
ent will appear in the transverse direction. For this reason, it 
is found that size effects are present even for specular scatter- 
ing of carriers. 

The film thickness will be assumed to be large com- 
pared to the wavelength of the holes, so that the behavior of 
the carriers can be described by the Boltzmann kinetic equa- 
tion. The presence of the film boundaries is taken into ac- 
count with the help of boundary conditions imposed on the 
light- and heavy-hole distribution functions. The derivation 
of these boundary conditions is given in the Appendix. 

In Section 2 we obtain a general expression for the film 
electrical conductivity in a time-varying field for an arbi- 
trary film thickness and arbitrary ratio of light and heavy 
hole masses. 

In Section 3 we calculate the film electrical conductiv- 
ity in a static electric field in certain special cases for which 
an analytic investigation is possible (the cases of small and 
large film thicknesses, and small ratio of hole masses). 

Finally, in Section 4 we calculate the real part of the 
film electrical conductivity in a time-varying field in certain 
limiting cases. 

2. GENERAL EXPRESSION FOR THE FILM ELECTRICAL 
CONDUCTIVITY 

In the spherical approximation the energies of light and 
heavy holes are determined by the expressions 

E l  (k) =A2kZ/2rnl, &h ( k )  =fi2k2/2rnh, 

in which m, and m, are assumed to be positive. A nonequi- 
librium state of light and heavy holes is described with the 
help of the momentum distribution functionsfi (k) ,  f, (k)4,5 
(see also the Appendix). As shown in the Appendix, the 
boundary condition for the distribution functions for the 
case of specular scattering of holes at the surface takes the 
form ( z  = 0) : 

f i  (VS) =Wl'fl(pt) f W h 1 f h ( p 2 )  9 fh(~o=Wl~fi(pl) + W h h f h ( p 2 ) ,  

(1) 
where 

wl'=whh=l-w, w=wIh=wh' = 
3 sin 201 sin 20h 

1+3 ~ 0 ~ ~ ( 6 1 - 0 h )  ' 

(2)  
The relative arrangement of the vectors p,,  p,, p,, p4 is 

shown in the Fig. 1. The angles 8, and 8, (see Fig. 1 ) are 
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connected by the relation 

sin Oh=p'l2sin of, ~ = m ~ / m ~ < l ,  (3) 

( i )  eEop. tafo 1 f ,  

ml d e  (I-io'c) 
+ A(ol,)exp {- Z/l-iWT) } 

r COS e, ' 

which follows from the equality of the longitudinal compo- 
nents of hole momenta. The quantity Wis the probability of 
conversion of a light hole into a heavy one (and conversely) 
upon collision with the surface. It is small for small mass 
ratios, which is related to the fact that in this case the avail- 
able range of angles for the heavy holes is small (see Fig. 1 ). 

In order to find the film conductivity, we must find a 
solution to the kinetic equations for the light and heavy hole 
distribution functions and subject them to the boundary con- 
ditions ( 1 ) at both surfaces of the film. Since in the problem 
investigated here spatial gradients can be large, of the order 
of a carrier mean free path, in the collision-integral term 
which includes bulk scattering we are not in general allowed 
to introduce a relaxation time which depends only on ener- 
gy. This is connected with the fact that the equation for the 
first angular moment of the distribution function, which de- 
termines the current, is coupled to the equations for the oth- 
er moments. Therefore we will assume that the scattering 
;~l.>bability in the volume has the simple isotropic form; wkk 
= w$ [ ~ ( k )  - &(kt)  ]/V, where wO does not depend on an- 

gle and Vis the volume of the system, while the momenta k, 
k' pertain either to one and the same energy band (for intra- 
band transitions) or to different bands (for interband scat- 
tering). This scattering probability was used in the first pa- 
per of Pikus4 to describe kinetics in p-Ge. Then the 
relaxation times for light and heavy holes are found to be 
equal to one another, and are given by the expression4 

The kinetic equations for the hole distribution func- 
tions take the form (the z-axis is perpendicular to the plane 
of the film) 

where u,, , u,, are the z-components of velocity for light and 
heavy holes, respectively,J;, is the equilibrium distribution 
function which depends only on energy and is the same (for 
a given energy) for light and heavy holes, E(t)  = Eo exp 
( - iwt), and E,, is an electric field vector parallel to the 
plane of the film. We note that the collision integral reduces 
to the simple form shown in (5 )  (for an isotropic scattering 
probability) only in the case that f; (k) ,  f, (k )  equal A,, 
where the bar denotes an average over directions of the mo- 
mentum k. As we will see, in the present problem this is the 
case even when we include spatially-inhomogeneous terms 
in the distribution functions. Under these circumstances, 
when the approximations we have assumed relating to bulk 
scattering hold, the solution we obtain below is exact. 

Solutions to Eq. (5 )  have the form 

where 

In Eqs. (7)  1, = u,r, lh = vh rare  the mean free paths of light 
and heavy holes respectively, 0, is the angle between the 
light-hole velocity vector and the positive direction of the z- 
axis (and analogously-0, ). When we subject the functions 
( 7 )  to the boundary conditions ( 1) on both surfaces of the 
film (Z = f a/2), we obtain, using (2) ,  

In Eqs. (8)-(10) (and all equations that follow) it is neces- 
sary to assume that 8, and 0, are connected by the relation 
( 3 ) .  

Knowing the distribution function, we calculate the 
current density 

o / z  

Then for the light-hole conductivity we obtain 
n / z  

(12) 
where n, is the concentration of light holes. The angular 
brackets in ( 12) imply an average over the Maxwell distri- 
bution (for a nondegenerate hole gas); 

m 

<D)= '/,n-'I e-a. ( e l )  "'D (8') de', e f = e / k B T .  ( 13 ) 

Analogously, for the heavy-hole conductivity we obtain 

where n, is the concentration of heavy holes. We note that 
the hole concentrations are expressed by the usual formulae 
which involve equilibrium distribution functions (it is easy 
to convince oneself of this with the help of Eqs. (6)-(8) ), 
and thus do not depend on the coordinates. In Eq. ( 14) the 
integration over 0, is taken only up to the cutoff angle arcsin 
,u ' I2 ,  since for larger angles the conversion probability of 
heavy holes to light holes equals zero. Using relation ( 3 ), let 
us proceed from the 8, integration in ( 14) to the integration 
over 0,. Then the integral in Eq. ( 14) can be expressed in 
terms of the integral in Eq. ( 12). Taking into account also 
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that I, = p"'l,, n, = p3/ 'nh,  we finally obtain 

XI do, sin3 oBi cos 0, 
0 

(15) 
for the total hole conductivity. We note once more that in the 
integral ( 15 ) the functions of the angle 8, must be converted 
into functions of angle 8, by using relation ( 3 ) .  

The expression we have obtained for the electrical con- 
ductivity is correct for any ratio of hole masses (p < 1) and 
any film thickness. 

3. STATIC ELECTRICAL CONDUCTIVITY 

Let us study first the electrical conductivity of a system 
in a constant electric field (o = 0). We will for the present 
assume that the ratio of light to heavy hole masses is of order 
unity. Then the mean free paths of light and heavy holes are 
of the same order of magnitude (I, -1, -I) and there are 
two distinct parameter regimes; the regimes of large and 
small film thicknesses. 

1 ) In the case of large film thickness ( a  % I) ,  y, PS 1 in 
Eq. ( 15), and we obtain for the electrical conductivity of the 
system 

where 
nhe2<7> 

( J ' O )  = @,(O) + ,&"'), oh(u' = - co,  - n , e 2 ( d  , 0, -------- (17) 
rnh ml 

is the hole electrical conductivity for an unbounded sample. 
In writing out ( 16) we have allowed for the fact that the hole 
mean free path does not depend on energy. For the integral 
I ,  ( p )  we have the following expression (in the integral ( 15) 
we have introduced the variable of integration x = sin'8, ): 

1 

As is clear from Eq. ( 16), for large film thicknesses the rela- 
tive decrease in the conductivity is small and equals the frac- 
tion of carriers which reach the film surface. 

2)  In the small-film-thickness case ( a  < l ) ,  0, y < 1. Ex- 
panding the function under the integral sign in (15) for 
small values o f p  and y, and introducing the variable of inte- 
gration x = sin26,, we obtain 

0=d0) - -5 a:@) (l-p)aIz (p), 
2 

Integrating leads to the result 

((l+p)'12+ pah) ((l+p)lb-l) ( I  +(l-p2)a'*) 
Xln -- [ ((1+p)~*--p~/2, ~ c l + p ) : ~ ~ + l )  ( l - - ( l -p~)~~ ,  11 

(20) 
Thus, the relative decrease in the electrical conductivity (for 
p - 1 ) as we go from large to small thicknesses is of order 
unity. 

Let us now turn to the case of a small ratio between light 
and heavy hole masses (p 1 ) . Here, the mean free path of 
heavy holes is small compared with that of light holes: 
1, =p1'21/. 

For large film thicknesses Eq. ( 16) is correct, in which 
the integral I , (p )  must be evaluated a t p  = 0. It is easy to see 
from Eq. ( 15) that this expression is correct for a  g I, (when 
we can neglect the second term in the denominator of the 
integrand in (15) compared to the first). So, 

Let us now investigate the thin-film limit a  (1,. We in- 
troduce a new variable of integration t = cos 8, into the inte- 
gral ( 15). As it turns out, characteristic values o f t  in ( 15) 
for a < I, are such that P*: 1, y ( 1. Expanding the integrand 
in (15) in these small quantities, we obtain 

the probability of hole conversion ( 2 )  now is 

In writing down (22),  (23), we have taken into account the 
smallness of the angle 8, for small mass ratios p (see Eq. 
( 3  1 ) ). It is easy to show that integrating over the region t- 1 
leads to the value 2/3 for the integral in (22), so that the 
expression in the square brackets in Eq. (22) reduces to 
zero. Therefore, we will calculate the integral (22) in terms 
ofcorrections to the value 2/3. It is easy to see that the basic 
corrections are determined by the region t ( 1. Starting from 
this, we transform the integrand in the following way: 
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and substitute for Wits value in the limit t < 1. Then from Eq. 
(22) we obtain 

L 

(24) 
Finally, from Eq. (24) we have 

Of course, we note that Eq. (25b) is also a consequence of 
using Eqs. ( 19), (20), in whichp is assumed to be small. 

Let us integrate these results fo rp  < 1. As can be shown 
from Eqs. ( 12), ( 14), for small p the deviation of the con- 
ductivity of heavy holes from its bulk value aiO' is always 
parametrically small compared with the deviation of the 
light-hole conductivity from its bulk value a:'). This is relat- 
ed to the fact that for small mass ratios only a small fraction 
of the heavy holes undergo conversion due to collision with 
the surface (those which arrive almost normal to the sur- 
face). However, light holes can undergo conversion when 
they are incident at any angle. Thus, for small p we can 
assume that the entire difference between the electrical con- 
ductivity of the film and that of a bulk sample is related to 
conversion of light holes to heavy holes at the surface. So 
long as the film thickness is large compared to the mean free 
path of light holes I,, only a fraction of the light holes, equal 
to /,/a < 1, undergoes conversion due to collisions with the 
surface; in this case, the conversion probability is small; 
w-p'l' (see Eq. (23)) .  Therefore, for a %  1, our result 
takes the form (21).  For I, $a  all the light holes reach the 
film surface, and since the probability for conversion into 
heavy holes after one collision is small, a light hole in the 
interval between two consecutive collisions in the bulk is 
specularly reflected many times first by one, then by the oth- 
er surface of the film is succession. In this case the probabili- 
ty for conversion to a heavy hole increases. The frequency of 
collisions with the film surfaces for a typical light hole 
(which arrives at  the surface at  an angle - 1)  equals l,/a. 
This large factor (for a <I, ) is precisely what appears in Eq. 
( 2  1 ) . Therefore, as long as a >) I, the majority of light holes 
still do  not undergo conversion into heavy holes within the 
time between two consecutive bulk collisions. 

At still smaller thicknesses ( a< lh  ) the conversion 
length for a typical light hole (equal to -a/p'12) becomes 
smaller than its mean free path I,. Let us show that the main 

contribution to the light-hole conductivity comes from holes 
which are incident at  small angles to the surface. Despite the 
fact that their number is small, their contribution turns out 
to be decisive due to their long effective mean free paths. In 
fact, the effective mean free path I, of a light hole arriving at  
an angle t t o  the surface is determined by the condition 
p '12tl, t /a - 1 (the conversion probability for holes after one 
collision is -p 'I2t; see Eq. (23 ) ) . The number of such holes 
is -n,t. Then their contribution to the electrical conductiv- 
ity is -ujo)a/l, t. Substituting the minimum angle t,,, into 
this formula, where tmin is determined from the condition 
I,,,, -I,, we find (see Eq. (25a) ) that the main contribution 
comes from the light holes which arrive at  the surface at  the 
small angle (a/lh ) ) 'I2. 

Under these circumstances, for small hole-mass ratios 
the film electrical conductivity in the limit of small film 
thicknesses is smaller than that of a bulk sample by a quanti- 
ty equal to the electrical conductivity of light holes in a bulk 
sample. 

4. TIME-VARYING ELECTRIC FIELD. REAL PART OF THE 
ELECTRICAL CONDUCTIVITY 

Let us determine the frequency dependence of the real 
part of the conductivity. 

1 ) We first investigate the case of small mass ratios p. 
Let the film thickness lie in the interval pl, < a  <Ih ,  so that 
in a static field Eq. (25a) is valid (i.e., the quantity a is such 
that the terms with the logarithm in this formula can be 
neglected). Then for w r ( T )  < 1 ( 7  is evaluated at  the ther- 
mal energy) Eq. (25a) is correct. Assume now that the con- 
ditionl <wr (  T )  <Ih /a is fulfilled. When this relation holds, 
the moduli of the complex quantitiesp and y in the integral 
( 15) are small compared to unity. Expanding the integrand 
in Eq. (15) in these small quantities, and introducing the 
variable of integration t = cos O,, we obtain 

where the probability Wis determined by Eq. (23).  Just as in 
the case of a static field (see Section 3),  integrating near the 
region t -  1 leads to a value of 2/3 for the integral in Eq. 
(26), so that the expression in square brackets reduces to 
zero. We will calculate the integral in Eq. (26) by taking into 
account corrections to the value 2/3 (they are determined by 
the region t <  1).  For this case we will transform the inte- 
grand exactly as was done in Section 3. Ultimately we obtain 
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where r* = a/p1/2ul is the conversion time of a typical light 
hole (see Section 3) due to collisions with the film surfaces 
(r*/r-a/lh 4 1). If, however, the frequency of the field is 
such that (wr(T))lh/a) ,  then in the denominator of the 
integrand given in Eq. ( 15) we can neglect the second term 
compared to the first, and we obtain 

If w* ( t )  ( 1, then the length traversed by a light hole 
within one period of the electric field is larger than its con- 
version length to a heavy hole. Therefore, the majority of 
light holes (in addition to those which are incident on the 
surface at a small angle) respond as if the field were static, 
which is the cause of the weaker frequency dependence of 
Re a (see Eq. (27) ). However, when the length traversed by 
a typical light hole within one field period becomes smaller 
than its conversion length, the formula for Re a, which de- 
scribes the contribution to absorption connected with con- 
version of light holes at the surface, takes the usual form; the 
role of a mean free time is played by the conversion time (see 
Eq. (28) ). We note that for a ( ,~ ' /~1 , ,  beginning with fre- 
quencies w - I / (~T*T')  ' I3  4 1 / ~ * ,  the quantity Re a is de- 
termined by the hole conversion mechanism at the surface. 

2) Let us now investigate the casep - 1 (1, -Ih -1) and 
small film thicknesses a 4 1. Let the field frequency be such 
that 1 < a r ( T )  4 1  /a. Then the moduli of the quantities P 
and y in the integral ( 15) are small compared to unity. Let 
us expand the integrand in Eq. ( 15) in a series in these quan- 
tities; in the denominator of the integrand we save only terms 
proportional to the first power of fl and y, and also terms 
containing the product of the first power of these quantities; 
in the numerator, we save only terms mpy. Finally, after 
some simple transformations, we obtain 

(29) 
where T~ = a/o, is the time of flight, and 

... - 
sin 01 [i+3 co~'(0rf 0.J I 

~ ' ( p ) ~  I 0.(c,os 0,+p' cos 0.)' 

sin 0h=p% sin e l ,  0n < n/2. 
This integral forp -- 1 has a value of order unity. We will not 
concern ourselves with evaluating it. Finally, in the region 1 / 
a <wr(T), after transforming the functions sh fl and sh y, 
taking into account the smallness of the ratio d l ,  we obtain 

W I . (p ,p )=  5 do1 sin", cos O ~ W ( L - W )  { ( I - W ) ' +  (-) 
0 2 

Here p = arf & 1. AS we can show, for large p the integral 
(3  1 ) does not depend on p, and has a value of order unity 
(forp-1).  

Thus, in the casep - 1, Re a decreases in the usual way 
iii' the frequency interval r- ' <w 9 (rrf) - ' I2  (energy ab- 
sorption in this case is due to collisions in the interior). Then 
there is a wide plateau in the frequency interval 
(rrf) - I t 2  <w 4rf-' (see Eq. 29) ), for which absorption is 
due to conversion of holes at the surface. For these frequen- 
cies, we can wholly exclude bulk scattering ( r  - a, ); never- 
theless, the magnitude of the energy absorption is finite. The 
constancy of Re u in this frequency interval is easily under- 
stood, because the length traversed by a hole in one period of 
the field is large compared to the film thickness for w < rf ' 
(forp - 1 this length plays the role of a conversion length). 
Finally, when the length traversed by a hole in one field peri- 
od becomes smaller than the conversion length, the formula 
for Re a (sce Eq. ( 30) ) again takes the usual form; the time 
of flight plays the role of the mean free path. 

I am grateful to M. I. D'yakonov, V. Ya. Kravchenko, 
and I. B. Levinson for useful discussions, and also to E. I. 
Rashba for critical comments. 

APPENDIX 

Let us determine the form of the boundary conditions 
which the light- and heavy-hole distribution functions must 
satisfy at the surface. 

A hole state in a complex band is characterized by an 
angular momentum projection M along the direction of its 
quasimomentum (i.e., its helicity); the values M = + 1/2 
correspond to the light-hole band, while the values 
M = + 3/2 hold for the heavy hole band. Each band is dou- 
bly degenerate. The wave function of a hole state can be 
written in the form" 

V: ( k )  = exp (ikr) X M  (k), X ,  ( k )  = D:!) (k) u., ( ~ 1 )  
& 

where u, is an eigenfunction of the matrix J, ( A  = + 1/2, 
+ 3/21, - 

(4.) 
D A M  = exP (-ihrq) d::' (0) exp (-iM$) 

is a finite-rotation matrix,' p, 9 are the polar angles of the 
vector k; the angle is arbitrary, and we will henceforth set it 
equal to zero. 

As was shown in Ref. 8, in order to describe a nonequi- 
librium state of carriers in a complex band it is necessary in 
general to use the density matrix f,, , (k) .  The elements of 
this matrix with I M 1 = I M ' I = 3/2 describe the heavy holes. 
The nondiagonal (in the bands) elements with IM I # IM '1 
are small in the absence of an alternating field which can 
cause interband transitions.' Because we do not treat these 
transitions in this paper, henceforth the density matrix ele- 
ments with IM I # JM ' I will not be included. Then there exist 
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two density matrices f gM, and f :A, (k )  (light and heavy 
holes), consisting of four elements. 

If we take bulk scattering into account in the Born ap- 
proximation, then in an unbounded sample there exist closed 
equations for the momentum distribution functions of light 
and heavy holesx The distribution function is the trace of the 
corresponding density matrix. 

However, in a bounded sample (film) the equations for the 
distribution functions turn out to be unclosed, since the 
boundary conditions can in principle mix the diagonal 
( M  = M ' )  andnondiagonal ( IM I = ( M '  1, M # M  ') density 
matrix elements. Therefore, it is necessary to determine 
boundary conditions for the light and heavy hole density 
matrices. 

For later use, we will require the value of the scattering 
amplitude F:;~'  at the surface from an initial state Mp to a 
final M 'p'. To determine this quantity, let us write down the 
wave function for a state of the system in which a wave is 
incident on the surface corresponding to a light hole having 
momentum p, and helicity MI ,  after which a reflected wave 
appears corresponding to a light hole with momentum p, 
and a heavy hole with momentum p, (see Fig. 1 ) : 

exp (--iqtz) Y ,  = erp (ixr,,) [-- exp (iqtz) 
I w l r l I h  

XM, (Pi,) + I wlr  l'la 

The momenta p,, p,, p,, p, have the same component h 
along the surface, while their z-components equal - fiq,, 
- +iqiql, fig,, figiqz respectively. Analogously, the wave func- 

tion corresponding to the process of scattering a heavy hole 
with momentum p2 and helicity M I  takes the form 

Y2 = exp (ixr,,) 

In Eqs. (A3),  (A4) u ,  , u,, are thez-components of the light 
and heavy hole velocities while r,, = (x ,y ) .  

The boundary condition for the light- and heavy-hole 
density matrices for the case of specular scattering can be 
written in the form (z = 0) 

The kernel K, which is responsible for the surface scattering, 
is written in terms of the scattering amplitudes in a way anal- 
ogous to the way the collision-integral kernel which de- 
scribes bulk scattering is written in the kinetic equations for 
the bulk density matrix (see Refs. 8, 9).  The coefficient of 
proportionality in (A6) was chosen to be unity because the 
quantity KE$, (pl,p), which is obviously the transition 
probability from the state M,p into the state Mp', must equal 
the ratio of the z-component of the current density for the 
wave incident on the surface. This ratio precisely equals the 
squared modulus of the corresponding scattering ampli- 
tudes, according to our definition of these amplitudes (see 
(A3), (A4)) .  

Let us now determine the scattering amplitude. In the 
parabolic spectral region (where the hole energy is small 
compared to energy involved in scattering into other energy 
bands) the wave functions Y ,, Y2 satisfy zero boundary con- 
ditions at the surface; Y, (z = 0)  = Y2(z = 0)  = 0.10311 Us- 
ing these conditions, we obtain from (A3) and (A4) two 
systems of four equations each: 

where p, (8)  is a four-component column vector whose A- 
component isp:z2' (8); the angles 8, ,Oh are shown in Fig. 1. 
Using properties of the finite-rotation matrices,' we find 
from the system (A7), (A8) that 

~ z ' p '  = ( - l ) ~ r - ~ ~ - M ' ~ '  
- .wp . (A91 

Using this property, we obtain for (MI  I = /MI ' [  

where M = f 1/2 if the momentum p' belongs to the light- 
hole band and M = f 3/2 if it belongs to the heavy-hole 
band. Taking the trace of equation (A5) and using property 
(AlO), we obtain Equation ( 1) of the main text, in which 

M - z t ' b  M-*'I* 

From the systems (A7), (A8) we finally obtain expression 
(2)  for the probabilities W f . We note that the equality of the 
transition probabilities (see ( 2 ) )  is a consequence of the 
principle of detailed balance. Using ( 1 ), (2) ,  we can easily 
show that the total light- and heavy-hole current incident on 
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the surface equals the total hole current reflected from the 
surface. 

Thus, we have established that the boundary condition 
( 1)  contains only the distribution functions (A2) and does 
not mix in the nondiagonal components of the density ma- 
trix. This fact is a consequence of property (A9) of the scat- 
tering amplitude, which in turn is a consequence of the zero 
boundary condition which the wave functions Y ,, Y, satisfy. 
It would seem that more general boundary conditions on the 
wave functions do not result in closed boundary conditions 
for the distribution functions, since they also contain the 
nondiagonal components of the density matrix. 
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