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The amplitude, temperature, and time dependences of the damping constant S,, and modulus 
of elasticity G ' at 80 kHz are studied for He4 crystals containing He3 impurities (2. lop6, 
2- at.% He3). The introduction of lo-' He3 causes S,, and G ' to become dependent on 
the amplitude of the excitation starting at deformations E,  - below 0.7 K, the damping 
constant depends nonmonotonically on the amplitude. The results are analyzed using the 
Granato-Lukke theory. The parameters of the dislocation lattice, the magnitude of the phonon 
viscosity, and the binding energy between an impurity and a dislocation are determined. 
Possible explanations for the anomalously small threshold E, are considered. 

The nature of the defects responsible for the large 
damping (aHe 5 0.4) in solid helium' at frequencies 10-100 
kHz remains unclear. Recent studiesZ using improved appa- 
ratus3 have made it possible to select "good" specimens with 
reproducible results and to measure the elastic modulus G ' 
as a function of temperature. In pure specimens, 6,, and G ' 
are both independent of the excitation amplitude for 
E = 10-9-10-6. The modulus is found to decrease monoton- 
ically with cooling, and at the minimum temperature 0.41 K 
is just -20% of its value near the He melting point. 

The observed behavior is apparently due to relaxation 
of structural defects in the internal stress field. Using the 
relaxation model in Ref. 4 and the measurements in Ref. 2, 
one concludes that the defects have the following general 
properties. 

1. The behavior is reproducible for "good" specimens- 
the defect distribution does not change significantly during 
the experiment. 

2. Both SHe and G ' are time-dependent after a thermal 
shock-the plastic deformation caused by nonuniform heat- 
ing generates defects that alter the observed relaxation and 
presumably contribute to the damping. 

3. For "good" specimens, SHe has a maximum at 
T = 1.1 K; the relaxation time is rr z 5. s. 

4. G ' drops with temperature-there is a decrease in T, 
(i.e., an increase in the mobility) with decreasing tempera- 
ture. Qualitatively, this suggests that the phonon viscosity 
plays a decisive role in the defect dynamics. 

In this paper we study the internal friction in specimens 
grown from a He4 + xHe3 mixture, where x = 2 .  
2. The addition of the He3 impurity may give rise to 
relaxation peaks caused by the diffusion of the He3 atoms. 
On the other hand, the impurity may hinder the movement 
of structural defects by disrupting the regularity of the lat- 
tice. The amplitude and temperature dependences in this 
case can yield qualitative insight by giving information 
about the way these defects interact with a point defect. 

Since the damping and modulus depend on the impurity 
concentration near a defect, 6, and G ' can serve as mea- 
sures of the concentration. We are therefore interested in 
measuring the time behavior for two types of damping- 

damping following a temperature jump, and damping after 
the excitation amplitude is decreased from a large to a small 
value. Measurements of the first type give information about 
the relaxation times for the He3 atoms to reach an equilibri- 
um concentration in the specimen, i.e., on the diffusion of 
the impurity over distances comparable to the distance 
between the structural defects. In measurements of the sec- 
ond kind, the distribution of the impurity is disrupted when 
the excitation causes the defect to oscillate with a large am- 
plitude, whereas for small amplitudes equilibrium is reached 
through diffusion of the impurity near the defect. 

The equipment used previously in Ref. 1 did not permit 
one to select "good" specimens, and the results there must 
therefore be regarded as qualitative only. 

EXPERIMENTAL METHOD 

The crystalline helium specimens were grown at a con- 
stant pressure of - 35 atm. The growth vessel and the me- 
thod for growing and cooling (or heating) the specimens 
were described previously in Ref. 2. The He3 content of the 
gas from which the crystals were grown was given by 
x = 2. los6, and 2. at.% He3. The mixtures were 
prepared by mixing a known amount of He3 (He4 concentra- 
tion 5 0.1 % ) with He4 which had been purified thermome- 
chanically (He3 < lop6). 

As in the previous experiments, a quartz resonator (tor- 
sion fundamental oscillation mode) set up vibrations in the 
solid helium. The fill factor of the radio-frequency pulse fed 
to the composite quartz-solid helium vibrator was chosen 
close to the resonance value - 80 kHz. The quality factor Q 
and the period T of the composite vibrator were found by 
analyzing the free decay of the oscillations after the applica- 
tion of a pulse. The measurement technique is discussed in 
detail in Ref. 2, together with the calculation of the logarith- 
mic damping constant S,, and the mean shearing modulus 
G ' in terms of Q and T. 

The signal/noise ratio in our experiments was as low as 
0.1 at the minimum deformation amplitudes E -  The 
signal was therefore recorded by a stroboscopic integrate? 
fabricated in conformance with the CAMAC standards. The 
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data were processed automatically by an AKK-83 crate con- 
troller (Ref. 6) containing standard components (registers, 
D-A converters, timer). The measured signal was processed 
as follows. 

1. The locations of the extrema were determined and the 
corresponding amplitudes were calculated; the initial and 
final amplitudes E, and E, of the oscillations were found. 

2. The method of least squares was used to draw a 
straight line through the points giving the positions of the 
extrema, and the mean-square error in the slope was calcu- 
lated. The slope of this line (equal to the period r )  was used 
to calculate the modulus G '  averaged over the interval (E,, 
E ~ ) .  The horizontal bar in Fig. lb  shows a typical interval 
(El, E 2).  

3. The oscillation amplitudes were logarithmically 
smoothed using a 7-point spline approximation and were 
then differentiated (again with smoothing). We then calcu- 
lated the dependence S,, (E) from the known value of T. 

4. ThedependenceS,, (E) and the values G '[ (E ,E~)  'I2] 
were then output to a plotter. The entire range of excitation 
amplitudes - was covered by successively de- 
creasing the amplitude of the rf voltage pulse, which was 
chosen so that the various portions of the S,, (E) plot over- 
lapped. The total recording and processing time ranged from 
20 s to 10 min, depending on the number of samplings need- 
ed per measurement. 

6: arb. units 

FIG. 1. Damping and elastic modulus in specimens with lo-' at.%He3: 
a) amplitude dependence of 6,, measured at T = 1.70, 1.13, 1.03,0.78, 
0.53, and 0.41 K (top to bottom). The bottom curve is unshifted; each 
subsequent curve is displaced vertically from the previous one by the 
amount shown by the arrow. The dotted and dashed-dotted curves at the 
top and the remaining solid and dashed curves correspond to different 
excitation amplitudes; b) amplitude dependence of G': 0, 1.72 K; A, 0.78 
K; 0, 0.41 K. The vertical bars give the mean-square error, while the 
horizontal bar shows a typical E interval in which the period T was mea- 
sured. 

The dependences Q( T) and r( T) were also recorded 
continuously on a plotter during the experiment (the design 
of the measurement block is described in Ref. 3). The damp- 
ing constant and modulus found by this method correspond 
to a deformation of - 

We recorded the time dependence of S,, and G ' in two 
separate experiments: a )  after a step increase in the tempera- 
ture ( r l ) ;  b) after a step change in the amplitude of the rf 
excitation pulse (7,). In the first series of experiments, the 
crystal was held below 0.8 K to avoid plastic deformation 
during relaxation. After the amplitude dependences of S,, 
and G ' were measured, the temperature of the He3 bath was 
changed by 0.05-0.1 K. The temperature relaxed after - 3 
min and was held constant thereafter for 30-60 min by an 
electronic thermostat accurate to -2 mK. We recorded S,, 
and G ' continuously during the experiment (E - and 
the amplitude dependences were measured at intervals of 
40-200 s. 

In the second series of experiments we studied the time 
dependence of S,, and G ': a)  after turning on the rf oscilla- 
tor (E- and leaving it on for 1 to 30 min; b) after 
decreasing the amplitude of the rf pulse by a factor of 200, so 
that E ranged from - to - lo-'. In this series we ana- 
lyzed the effects of changing the repetition rate of the rf 
pulses from 20 to 400 Hz. 

RESULTS 

We added 2- He3 to a total of five crystals, and no 
amplitude dependence ofs,, or G ' was detected in this case. 
The temperature behavior of S,, and G ' was similar to that 
measured in pure He4. 

When the concentration was increased to loW5 (six 
crystals), both S,, and G '  became amplitude-dependent 
throughout the range of temperatures and deformations in- 
vestigated. Some typical results are shown in Fig. 1; the scat- 
ter in the values from one specimen to the next is -20%. 
The curves SHe (E) are monotonic at high temperature 
T> 0.8 K but acquire a characteristic maximum at low 
T < 0.8 K. We note that S,, always depends on E, even at the 
minimum deformations - 5- (see, e.g., the curve at 
0.41 K).  The shearing modulus decreases monotonically as 
E increases, and the relative magnitude of the drop increases 
as T decreases. 

The measured temperature dependences of G ' differ for 
large and small deformations-for E -  the curves 
G f ( T )  are the same as for pure He4 crystals, while for 
E - 5. G ' is independent of T to within the experimental 
error. Figure 2 shows S,, ( T) for the three deformations 

5.10-', and 5.10-9. We note that the curve for the 
internal friction, which is independent of the excitation am- 
plitude, lies below the values S,, (T, E = 5 .  loW9); this is 
because (as noted above) the flat top of the curve was not yet 
reached at these small deformations. For the same reason, 
S,, ( T, E -, oo ) at low temperatures lies below S,, ( T, 
E = Taking this into account, we see that S,, (T, 
E = agrees closely with S,, (T)  for pure He4. 

Time measurements were carried out by the above tech- 
niques for temperatures from 0.78 to 0.52 K. No time de- 
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FIG. 2. Temperature dependence of the damping (x = for three 
amplitudes: +, A, lo-'; 0,5. The insert shows how the mean 
distance between impurities depends on temperature. The dashed line 
corresponds to an activation energy of 0.6 K. 

pendence was detected to within the recording error, 
r ,  < 200 s, 7, < 1 ms. 

Figure 3 shows the results for the five crystals with 
LT = 2.10-4. Due to a malfunction in the recording equip- 
ment, we were able to measure the amplitude dependence 
only for the damping constant in the range E = 10-7-10-6; 
the modulus was measured at a fixed amplitude Figure 
3 shows that increasing the He3 content to 2 -  caused 
SHe to drop. For deformations in the interval 10-7-10-6 the 
damping constant increased with E; moreover, SHe de- 
creased with 1/T for both small and large deformations 
(Fig. 3). In contrast to the situation for pure specimens, here 
G ' increased as the temperature was lowered. 

We were unable to continue measuring SHe at E = 
down to the minimum temperature due to beats in the free 
damping signal. The beating was observed for S,, (T, 
E)  (0.05 and was apparently caused by the propagation of an 

FIG. 3. Temperature curves for the modulus at amplitude low6 (the 
right-hand scale is for curve 1 ) and for thedamping; the solid curves show 
S,, ( T) for E = lo-', while the dashed curve gives 6,. ( T )  for specimen 4 
with E = 

elastic wave from the end faces of the quartz vibrator. This 
prevented us from carrying out time measurements with a 
temperature jump; no time dependence of S,, was noted 
after the deformation amplitude was changed for 1 $ T g  1.72 
K, r2 < 1 ms. 

DISCUSSION 

Figures 1-3 show that a gradual increase in the impuri- 
ty concentration is reflected in a smooth change in the damp- 
ing constant and modulus. To within the experimental error, 
the addition of 2. of He3 leaves SHe and G ' unchanged. 
In specimens with x = lop5, SHe ( T )  and G '( T )  for large E 

are similar to thecurves for pure helium; only the addition of 
2. He3 produces a significant (severalfold) drop in the 
damping at these deformations. We thus conclude that for 
x = 2. 10-6-2- the primary effect of the He3 impurity 
atoms is to alter the motion of the same defects responsible 
for damping in pure helium. 

The curves S,, (T)  do not reveal any new damping 
peaks associated with the added impurity. Either the relaxa- 
tion peaks due to He3 diffusion lay outside the temperature 
interval investigated, or else their height was less than the 
measurement error. 

The doped and pure specimens differed qualitatively in 
that the damping constant and the modulus both depended 
on the amplitude in the former case. This dependence can be 
explained by assuming that the He3 atoms obstruct the 
movement of structural defects, and that this effect disap- 
pears when the internal stresses are sufficiently large. This 
model can account qualitatively for the following features of 
SHe and G': 

1) At high temperatures T- T,,,,,, (Fig. 1 ), S,, and G ' 
are insensitive to the amplitude; the high temperature is suf- 
ficient to permit the defects to overcome the impurity bar- 
rier; 

2) For Tz0 .4  K the modulus increases with decreasing 
amplitude; fewer defects can overcome the barrier and trap- 
ping occurs at the impurities, so that G ' increases; 

3) The temperature dependences of SHe and 
G ' ( x  = lov5, Fig. 2) for E = are similar to those for 
pure He4; the internal stress is so great that the defects easily 
overcome the barrier and the defect dynamics is governed by 
the same deceleration mechanism as in pure helium (by the 
.phonon viscosity ); 

4) The subsequent drop in the damping when x in- 
creases to 2. can be explained in two ways: a )  if the 
defect is extended (linear or planar), there will be more im- 
purity stopping sites per defect as the concentration is in- 
creased; b) if the number of defects (e.g., for x = lop5) is 
greatekhan the number of impurity atoms, increasing x will 
increase the number of defects pinned by the impurity; 

5) No time dependence of SHe or G ' was observed in the 
experiments in which the temperature jumped or the excita- 
tion amplitude was changed. The He3 diffusion rate was thus 
either so large that the relaxation times were less than the 
experimental resolution, or else the impurity did not move at 
all. We observe that in the second case, the change in the 
amplitude dependences as T varied implies that the mecha- 
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nism by which the defects overcome the energy barrier of the 
impurity must differ at high and low temperatures. 

The above conclusions are quite general, since they are 
based only on the assumption that the damping is due to 
relaxation. The next step is to identify defects that satisfy the 
above requirements and have properties 1-4 listed in the In- 
troduction. Little theoretical work has been done on how 
defects in quantum crystals contribute to mechanical relaxa- 
tion. Point delocalized defects were considered by Meiero- 
v i ~ h , ~  and in a recent ~ a p e r '  Markelov solved the problem of 
determining how a dislocation with delocalized bendings os- 
cillates. Planar defects (.grain boundaries, twins, etc. ) have 
not been considered theoretically. 

Since point defects (vacancies and impurity atoms) 
produce damping of magnitude comparable to their concen- 
t r a t i ~ n , ~  i.e., less than lop3, they cannot be responsible for 
the observed relaxation at 80 kHz. 

Markelov's formulasX for the damping constant at kilo- 
hertz frequencies were derived in the delocalized bending 
model and are valid only for rather high temperatures ( T> 1 
K ) ,  for which the mean free path is much less than the length 
of a segment. The correction to the modulus in pure helium 
and the effects of an impurity were not considered. More- 
over, a comparison of the results in Ref. 2 with the theory8 
does not enable one to unambiguously identify the helium 
defects as being quantum dislocations. The validity of Mar- 
kelov's model can be verified qualitatively by measuring the 
frequency dependence of the damping constant and deter- 
mining T, directly. The theory predicts that T ,  - T -' and 
6-T, [ w ( l  + T , * w ~ ) ]  - I .  

In previous papers'.2 the results have been interpreted 
using the classical Granato-Lukke (GL)  theory for oscillat- 
ing dislocation segmenk9 This was due partly to the lack of 
theoretical results on dislocations in quantum crystals, and 
partly to the close agreement with the predictions of the the- 
ory. In the GL model a dislocation is regarded as a line with a 
mass -pb ' per unit length and a tension -Gb2 ( p is the 
density of the material and b is the Biirgers vector); a viscous 
frictional force F = Bv per unit length acts on a moving dis- 
location. The first two results should remain valid for quan- 
tum crystals, because the mass depends on the size of the 
core, while the tension depends on the energy of the defor- 
mation field of the dislocation. The constant B depends on 
the mechanism by which the vibrational energy of the seg- 
ment is transferred to the phonon subsystem and may differ 
markedly from its classical value. An analysis using the GL 
model for pure He4 yields the values RAL,'-0.5, B = gT' , 
and n = 3 (here C? is an orientational factor, A is the concen- 
tration of dislocations, and L, is the average length of a seg- 
ment). 

In the G L  model an impurity atom interacts with a dis- 
location with energy U,. The rather large stress frees the 
dislocation from the impurity trap, i.e., there is an amplitude 
dependence (cf. 1-4 in the Discussion). With increasing 
temperature it also becomes easier for the dislocations to 
escape (see 1,2), i.e., the G L  model is qualitatively consis- 
tent with the observations. 

To find the dislocation parameters using the G L  theory 

we start with the temperature dependences 6,, ( T )  and 
G '(7') in the limit of small deformations, for which most of 
the segments remain pinned by the impurities. The ratio of 
the damping constants for large and small E (Fig. 2 )  can be 
used to calculate the average length L ( T )  of a dislocation 
loop (L ' - L ,; ' +.L , I, where Li is the average distance 
between impurities). The insert to Fig. 2 shows that L i  de- 
creases with 7'. Setting Li - (b  /x)exp( - U,/T), we get 
L,-  5 .  1OP\m and the estimate U"20.6 K; this gives a low- 
er bound for U,, since the amplitude-independent region was 
not reached even for the minimum deformations - 5 .  
A similar analysis of the data for the specimens with 2. 
He3 (Fig. 3) gives 1.2 < U,, <2.5 K. 

The above discussion implies that the G L  model re- 
quires a rather high coefficient for impurity diffusion from 
the interior toward a dislocation, D l  > L;/T,,D, > lop' 
cm2/s. 

The GL formulas cannot rigorously be used to analyze 
the amplitude dependences of 6,, and G ', because the tem- 
perature was close to the binding energy and general formu- 
las for the amplitude dependences valid for T- Uo were not 
obtained. We therefore calculate the critical deformation 
E,  - Uo/Gb 'L sufficient to free a dislocation in specimens 
withx = lo-' at the minimum temperature0.4 K, for which 
exp( - U,/T) - 10- -hnd  the effects of thermal fluctuations 
may be assumed small. The estimate gives L-L,/lO and 
E, - lo5-loP4, which is at least three orders of magnitude 
greater than the observed values (see Fig. l a ) .  This discrep- 
ancy could be due to the following factors: the G L  theory 
may not apply to quantum crystals; in the framework of the 
G L  theory: a )  the temperature may not have been low 
enough to justify neglecting the thermal fluctuations; b )  a 
significant percentage of dislocations may have been freed 
even at energies less than required to overcome the impurity 
barrier; c )  the longitudinal mobility of He3 atoms is high, 
and during the oscillation process they may have moved out 
toward the edges of a segment, thereby freeing a dislocation 
without any need to overcome the barrier; then D, > Lo2/ 
T?- lo-" cm2/s. For comparison, at this concentration we 
have D z 2 .  10Wh cm2/s in the interior of the crystal. 

We may compare the results with the measurements 
carried out by Iwasa and Suzuki" at 10 MHz in specimens 
with 3. loP5  Heband with the studies of Paalanen er al." at 
33 1 Hz, x = 3.10-  '; however, because these frequencies are 
two orders of magnitude higher and lower than ours, respec- 
tively, one cannot rule out the possibility that different types 
of defects may have been studied in each frequency range. 
Nevertheless, certain common features are found-the 
damping in pure helium was large"; addition of impurity 
caused S,, and G '  to depend on the oscillation ampli- 
t u d e ~ . ~ O . ~  I .  , the damping decreased as the He' concentration 

increa~ed'~" '~";  the amplitude dependence had a maxi- 
mum"; the values of U,, L,,, and B found using the G L  the- 
ory are similar. 

We conclude from our analysis that the available ex- 
perimental and theoretical results do not suffice to pinpoint 
the mechanism for the strong damping at kilohertz frequen- 
cies. Since the nature of the defects is unclear, it is important 
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to directly measure the temperature dependence of the relax- 
ation time in pure specimens in order to understand the in- 
ternal friction processes. (This temperature dependence has 
hitherto been deduced from S ( T )  and G '( T) by using the 
GL formulas and making assumptions of dubious validity- 
for example, in a previous paper2 we assumed that the 
lengths of the segments were exponentially distributed.) 
This will require that the frequency dependence of S be mea- 
sured directly at various temperatures for frequencies 1-100 
kHz; T, can then be deduced from the position of the maxi- 
mum 6(0). The interval 1-100 kHz is chosen to overlap 
with the other measurements carried out in the kilohertz and 
low-frequency ranges. 

It will be of interest to extend the measurements of S 
and G ' at 80 kHz down to lower temperatures in order to 
detect a time dependence. If the same defects are in fact re- 
sponsible for the observed behavior at MHz and kHz fre- 
quencies, one expects that for T- 100 mK the damping 
should depend on the repetition rate of the rf pulses and have 
typical relaxation times 20-40 ms, as was found by Iwasa 
and Suzuki." At lower temperatures - 20 mK, time depen- 
dences with relaxation periods - 1 h may be observed (Paa- 
lanen et al. ' ' ) . 
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