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A generalized concept of a Bloch line is presented, and a condition is found for Block lines to 
be present in ferromagnets and ferrites. The relationship between the specific magnetic 
structure in magnetically ordered crystals and the properties of domain walls with Bloch lines 
is investigated. Magnetic symmetry classes are constructed for planar 180" domain walls with 
Block lines in ferromagnets and ferrites, and the coordinate dependence of the magnetization 
density in domain walls belonging to each of the classes is described qualitatively. It  is shown 
that there are 32 magnetic classes for domain walls with Bloch lines in ferromagnets and 
ferrites. Kinematic magnetic classes are also found which describe a domain wall with a Bloch 
line moving at constant velocity. 

INTRODUCTION 

Domain walls in magnetically ordered materials are 
currently under active study.' Two types of domain struc- 
tures with different walls can be distinguished. In the first 
type the domain structures are thermodynamically stable 
and form near first-order phase transitions induced by an 
external magnetic field H (Ref. 2) .  The usual domain struc- 
ture in ferromagnets and ferrites is stable even when H = 0 
and is of this type. These domains are stabilized by the mag- 
netic dipole interaction field H, in magnets of finite size, 
and also by the fact that at least two of the distinct magnetic 
phases are energy-degenerate; we take the magnetization 
vectors in these phases to be M I  and M,, respectively 
(M2 = - M I  for ferromagnets). The condition for a first- 
order phase transition is that the thermodvnamic votentials 
@ of the different phases be equal. 

Another type of domain structure is also possible for 
which the magnetic states have the same magnetization M 
but different antiferromagnetic vectors L. Then H, = 0 and 
domains form randomly as the system goes from a disor- 
dered to an ordered state; such a domain structure is said to 
be "kinetic" (Ref. 3).  

The crystal symmetry determines the energy degener- 
acy of magnetic phases with different M or L; similarly, the 
boundary conditions for a domain wall in a crystal deter- 
mine the possible energy degeneracy for walls with different 
M or L distributions (this is discussed in more detail below). 

In this case the kinetic mechanism may give rise to a 
complex domain wall which consists of regions that have the 
same surface energy but different magnetization distribu- 
tions. The boundaries separating these regions are called 
Bloch lines. Bloch lines formation in a domain wall thus 
requires that the latter be energy-degenerate but is not ther- 
modynamically inevitable. This process is analogous to ki- 
netic formation of domain walls in antiferromagnets or 
between crystallite boundaries in polycrystals during phase 
transitions. Although it is possible that energy factors may 
also stabilize Bloch walls, their thermodynamic stability re- 
mains an open question. 

Although studies of domain walls with Bloch lines are 

of great interest, no accurate description is available. It may 
therefore be helpful to develop a classification system (mag- 
netic symmetry classes) for such walls to qualitatively de- 
scribe the distribution of the magnetization. 

A complete symmetry classification was given in Ref. 4 
for plane 180" domain walls in magnetically ordered crys- 
tals. The purpose of the present paper is to develop an analo- 
gous classification for walls with Bloch lines in ferromagnets 
and ferrites. As in Ref. 4, we limit ourselves to domain walls 
with dimensions large compared to interatomic distances; 
we do not consider the space groups, but only the symmetry 
classes of domain walls with Bloch lines. We show that there 
are 32 such symmetry classes altogether. Finally, we analyze 
how the symmetry and spatial structure of a domain wall at 
rest are altered by the uniform motion of a Bloch line. 

1. CONDITION FOR EXISTENCE OF BLOCH LINES 

Bloch lines are quite common in domain walls in ferro- 
magnets and ferrites.' However, it was shown in Ref. 5 that 
they cannot exist in magnetic materials belonging to certain 
crystallographic classes, because the different directions 
along which the magnetization vector rotates are not energe- 
tically equivalent. 

We will find a general condition for Bloch lines to be 
present. First we observe that in terms of their symmetry 
properties, ferromagnets and ferrites (systems which have 
inequivalent magnetic atoms) are identical. We will there- 
fore use the abbreviation F M  to denote both ferromagnets 
and ferrites. Let G,, be the symmetry class for the paramag- 
netic phase of an FM crystal, let G,, be the symmetry class of 
the boundary conditions for a plane domain wall in an FM 
with no Bloch lines, and let G, be the symmetry class for a 
planar domain wall without Bloch lines (see Ref. 4 for the 
definition of G,, and G, ). Then 

Eq. ( 1 ) shows that G, is a sum over G, whose coefficients g,  are 
representatives of the coset classes (they are called lost operations 
in the theory of phase transitions), and m is the index of the sub- 
group G, in G,, (Ref. 6 ) .  
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By analogy with the theory of phase  transition^,^ one can 
show that when the boundary conditions in the doma'in (i.e., G, ) 
are specified, there exist m energetically equivalent domain walls 
which have the same symmetry G, but different magnetization 
distributions M, (x) ,  where 

and the x axis is normal to the plane of the wall. 
Bloch lines form when regions with different M I  (x)  coexist in 

a domain wall. Since for each region I with distribution M I  (x)  
there are m - 1 regions I '  with distribution MI .  ( I 1 #  l ) ,  we have 
m(m - 1) types of boundary conditions altogether for a Bloch 
line in a domain wall when the boundary conditions (G, ) in the 
domains are specified. Each type generates a symmetry group G c  
that characterizes the boundary conditions for the Bloch line in the 
wall; the elements of this group do not alter the magnetization 
distribution in domains far from the domain wall nor the magneti- 
zation distribution in the domain wall itself far from the Bloch line. 

We denote the symmetry group of the Bloch line by G,; it is a 
subgroup of G EL, 

Its index Y in GEL gives the number of possible energetically equiv- 
alent types of Bloch line for a given GEL. Thus, 

different Bloch lines are possible for a specified G, . It  is important 
to note that all of these lines are energetically equivalent. Bloch 
lines can thus exist only when G, is a proper subgroup of G, (i.e., 
its index Y is 22) .  

We consider two examples illustrating the above condition. 
Let us suppose that the symmetry group G, for the boundary 
conditions coincides with the group GI in the classification in Ref. - - -  
4: GI = ( 1,2,,2, ,2, . ( 1,i ') .  Here the z axis is parallel to M inside 
the domains, and the normal n to the wall points along ex ,  the unit 
vector along the x axis; they axis is parallel to the wall (~LKJ) .  

As usual, the symbol 2, denotes a rotation of order 2 about 
the a axis ( a  = x,y,z); 2, = 2,. 1 is a reflection plane perpendicu- 

- 

lar to the a axis, and i is an inversion. A prime on a symmetry 
element indicates that a time-reversal operation is simultaneously 
performed. 

Let the symmetry group G, of the domain wall coincide with 
the symmetry group G, = ( 1,2;,2,,2: ) for a Bloch wall. Since G, 
has index 2 in G,,  there are 2 energetically equivalent domain 
walls. The anti-inversion 7' is the lost symmetry operation here; it 
changes the component My of the magnetization distribution in 
the G, magnetic class which is symmetric with respect to x: 
My - - My. As a result, two energetically equivalent domain 
walls with different magnetization distributions can coexist. This 
result reflects the familiar fact that the energies are equal for Bloch 
walls in which the M vector rotates in opposite directions. The 
number of Bloch lines in this magnetic class will be examined in 
more detail below. 

As a second example, consider the following. As before, let 
the symmetry group G, coincide with GI but take the symmetry 
group of the domain wall to be G, = G, = ( 1,2,,2,,,2, ). As in the 
previous example, G, has index 2 in G, and the lost symmetry 
operation can again be taken to be an anti-inversion. However, in 
this case only M, (x)  differs from zero in the domain wall, and the 
antisymmetric - function M, (x)  is left unchanged by 1'. However, 
1' does change certain other characteristics such as the electric 

polarization P or the deformation, for example. I t  was shown in 
Refs. 7 and 8 that in such a domain wall, P has a component lying 
in - the plane of the wall and is a symmetric function of x. Since the 
1' operation changes the sign of this component, such a domain 
wall can also posses Bloch lines which, however, differ essentially 
from Bloch lines of the normal type. 

In the most general case, a Bloch line separates regions of a 
domain wall which are characterized by different physical param- 
eters that transform under irreducible representations of the sym- 
metry group G, for the boundary conditions. It  is important to 
note that (as follows from the above example) Bloch lines may 
separate regions of the wall that have equivalent magnetization 
distributions but differ in other respects. 

We will thus distinguish between two kinds of lines-magnet- 
ic Bloch lines, which separate regions with different magnetization 
distributions, and nonmagnetic Bloch lines, which separate re- 
gions which have identical magnetization distributions but in 
which certain other characteristics of the domain wall differ. 

Expression (2)  describes both magnetic and nonmagnetic 
Bloch lines. We will confine ourselves henceforth to magnetic 
Bloch lines. The quantity 

q ,  ( x )  =n-'M0-'[MldMl/dx] ( 3 )  

is convenient for characterizing the different energetically equiva- 
lent distributions M, (x)  in a domain wall; here M, is the magni- 
tude of the magnetization inside the domains. We call q, (x )  the 
differential helicity of the domain wall; the corresponding total 
helicity is 

0 

91 = J q l  ( X I  ax. (4) 
-OD 

Like the magnetization MI  ( x ) ,  the differential helicity q, ( x )  
is left invariant by the group G, . However, the lost operations g, 
change both MI  (x)  and q, (x).  Each of the energetically equiva- 
lent walls is thus characterized by its own differential helicity 
q,(x),  and the same is true for the total helicity Q,. The total 
helicity is related conceptually to the notion of the winding num- 
ber of the vector M in closed  domain^.^ 

Let us calculate the differential and total helicity for Bloch 
and Nbel walls for the case when G, = G I .  In a Cartesian coordi- 
nate system, we have 

-- 0, M:,!)== f M, sin 8, M!,': = Mo cos 0, (5 )  

cos 8=-th ( x / A )  , ( 6 )  

for a planar Bloch domain wall; here 0 is the rotation angle of M in 
the wall, which is of width A. From (5)  we obtain 

For a Bloch domain wall we readily see that Q I;' = + 1, depend- 
ing on the direction of the rotation. 

Similarly, for a Nee1 wall 

M,::'= *Mo sin 8, M ,I:'= 0, JIlfi' = Ma cos 8, ( 8  ) 

Here ey is the unit vector along they axis; Q I;' = + 1. 
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2. MAGNETIC SYMMETRY CLASSES FOR DOMAIN WALLS 
WITH BLOCH LINES 

Before developing a symmetry classification for domain 
walls with magnetic Bloch lines, one should note that  the 
symmetry class Uk of a wall with a Bloch line is a subgroup 
of the  magnetic symmetry class for the  paramagnetic phase 
of the crystal. T h e  same assertion also holds for  the  class G, . 
However, in general Uk is not  contained i n  Gk : 

UkCGbcCGprn,  UkaGk.  (10) 

We will therefore not use the classes Gk directly to construct the 
magnetic symmetry classes U, below but will proceed instead as 
follows. First we observe that since the problem here is two-dimen- 
sional (unlike the case in Ref. 4 ) ,  an approach based on classifying 
the possibly boundary conditions for the vector M is awkward 
because one must analyze the various orientations of the Bloch line 
relative to the directions specified in the boundary conditions. For 
the same reason, it is inconvenient to use a coordinate system4 in 
which one axis moves together with M (  w ). We therefore 
choose the coordinate system shown in Fig. 1 for an FM with a 
plane domain wall containing a Bloch line: the wall lies in the yz 
plane, the Bloch line is along the z axis, ex is parallel to  the normal 
n to the wall, and they coordinate is parallel to the wall and per- 
pendicular to the Bloch line. 

The elements of the magnetic symmetry classes must neces- 
sarily preserve the geometry shown in Fig. 1 and must thus be 
contained in the following set of 16 elements: 

To find the possible symmetry of the magnetization distribu- 
tions corresponding to these elements, we first introduce some ter- 
minology. Distributions that are symmetric (antisymmetric) un- 
der the transformation x-  - x are denoted by Sx (A, ). Similarly, 
functions symmetric (antisymmetric) undery - - y are denoted 
by S, (A, ), and functions invariant under (x,y) -+ ( - x,  - y )  are 
denoted by &(A,). 

We can divide the 16 operations in ( 11 ) into four sets. 
1. We denote by g ,  the elements that do not interchange the 

positions of the domains or the domain wall segments (by seg- 
ments we mean the portions of the wall to the right and left of a 
Bloch line). We thus have the operations 

TABLE I. Symmetry of the components of the magnetization corre- 
sponding to elements and subgroups of second order in the starting 
group U. 

I M x ) M x  (x, Y) . MU(x, Y) 
elements I I I 

The constraints imposed by g, are as follows: 
a )  if g,Ma = M, then M, &; 
b) if g2Ma = - M, then M a d , .  
3. Elements that interchange segments but not domains are 

denoted by g,. Thus 

For these operations we have the rules 
a )  if g,Ma = Ma then M, q; 
b )  if g,Ma = - M, then M a d , .  
4. Elements that interchange both the domains and the do- 

main wall segments are denoted by g,: 

g,: J, T', 2,, 2,'. 

We have the rules 
a )  if g4M, = Ma then Ma ES,; 
b) ifg4Ma = -Ma then Mad,. 
Using these rules, one can determine the symmetry of the 

components of the magnetization vector corresponding to the 
operations in ( 11 ) (Table I ) .  Naturally, we are interested only in 
the symmetry classes for which a magnetic Bloch line can exist in 
the domain wall. We will use the fact that the magnetization distri- 
bution in a domain wall with a Bloch line must satisfy the following 
two conditions. 

I. For a domain wall to exist, it is necessarv and sufficient that 

They constrain the magnetization distribution as follows: the magnetization distribution M have at least one component 
M, $0 whose symmetry is consistent with the constraint AxSy. a )  Ifg,Ma = Ma then g ,  imposes no constraints on the form 

of M a ;  such functions will be denoted by the symbol ; 
Consistency with the condition A ,  ensures that M is aligned oppo- 

b)  Ifg,M, = - M a ,  then M, = 0. sitely in the domains to the left and right of the wall, while the 
conditions, ensures that the magnetization is uniformly distribut- 2. Elements that interchange domains but not segments are 

denoted by g,. Thus, ed within the domains. 
11. In order for a Rloch line to be present in a domain wall, it is 

g2: 2., ?%!, 2"', 2x'. ( 13) necessary and sufficient that M have at least one component Mp 
$0 whose symmetry is consistent with A, (in particular, one may 
have a = 0) .  This condition is necessary to ensure that M varies 
spatially along the domain wall, as required for a magnetic Bloch 
line. This variation is of course described by a function that con- 
tains an antisymmetric part. It  should be noted that the conditions 
mentioned above constrain the magnetization distribution in the 
Bloch line itself and at distances that are not too large compared to 
the width of the line. Far from the Bloch line (but within the do- 
main wall), the magnetization distribution is described by the 
classes G k .  Far from the domain wall (i.e., inside other domains), 
M is of course described by one of the Shubnikov symmetry classes FIG. 1. Coordinate system for a crystal with a Bloch line. 
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TABLE 11. Symmetry of the components of the magnetization specified by subgroups of U of 
order 4 and 8 and corresponding to domain walls with Rloch lines. - 

for the homogeneous phase. It is thus possible, for example, for the 
magnetization component Ma to contain a component of symme- 

k 

1 4  

I .: 
16 
f7 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

31 

try S, in addition to one of symmetry A , .  The only requirement is 
that the symmetric component must vanish at distances x $ A .  

Conditions 1 and I1 provide a generalized definition of a do- 
main wall with a Bloch line. The above discussion enables us to 
immediately remove from consideration all classes containing the 
operations 1' and 1, as well as certain classes containing the ele- 
ments j ,  and 2:.  

Symmetry 
elements 

1, 2,, 2,, 2,  
1, 2z, 2,, 2,, 
1, l', ZZ, zZ' 
1, f' ,  2x, 2x' 
Is l', 2,, 2 ' 
1, 2 z ,  2rf, Jyl 
1, 2x, 2 Z f ,  2,; 
1, 2,, 2 Z f ,  ZX, 
I, Zz, 2zr, 2y 
I ,  2,, ZZ', &' 
1, 2%, 2/, 2 ' 
1, 2,1, 2,, 2" 
1, 2 x ,  2( ,  2z '  
1, l', Zz, 2z' 
I, l', 2%, Zz: 
1 3' 2, 2, 

L'fr,' zZ2' 2 x t , 2 g 9  

z; ,  2;, 2,  
1, f:, 22; zY! 2 % ~  

2,, 2,,  2 ,  

We are then left with one class U, , -  I of order 1, 13 classes 
U ,  - U , ,  of order 2,  16 classes LJ, ,  - U,, of order 4, and two 
classes U,,, U,, of order 8. The symmetry of the magnetization 
distribution determined by the second-order classes is listed in Ta- 
ble I (k  = 1 - 13), while Table I1 gives the distributions for the 
higher-order classes ( k  = 14 - 3 2 ) .  

As an illustration, let us find the symmetry ofM, correspond- 
ing to the fourth-order class U,,: 1,2,, ?,, 2,. We take the genera- 
tors to be the elements 2, and 2 , .  By symmetry, we must have 

M, (x, v) 

SO-4, ( A  ,) 
SoAx(Ay) 

0 
A o s x  ( A  y )  
AoAx(SY) 
S O S ~ A S ~ )  

0 
So& ( S y )  
-40.4% ( 8 , )  
AoAx (S , )  

0 
0 

A o 
AoAx (S! , )  
Aosx (A , )  

0 

0 

M x  (x7 U )  

A oA. (S,) 
AaSx(A,) 

A o 
AoAz(Sy) 
A oAz (S,) 
A oAx (SV)  

S, 
-1, 

AoSx(Au) 
SoAz (4,) 
S O S . ~ ( J , )  

v 
Sx 
0 

AoSx ( A V )  
AoSx(Ay)  
AoAx (S , )  

AoSz(A,) 

whence 

My (x, U) 

AoSX(A , )  
AoAx(S,) 

A o 
A OSX ( A  v )  
- 4 0 s ~  ( A , )  
AaSx(A,) 

A ,  s x  
( S y )  

so& (s,) 
SoAz (Ay)  
8, 
Ax 

0 
AoAx (S , )  
AoAx(S,) 
AoSx(Ay) 

AoAz(Sy) 

Thus, M, has the symmetry AJx  ( S ,  ), and the information pro- 
vided by A d ,  (or A , S ,  ) alone is sufficient for the classification 
(for this reason, the symmetry of the magnetization distribution 
with respect toy  is indicated in parentheses in Table I1 for sub- 
groups of order greater than 2 ) .  

It should be noted that the symbol So in Table I can be inter- 
preted in different ways-as S,JX ( S ,  ), as S,J, ( A ,  ), or as having 
no definite symmetry in the coordinates x and y taken separately. 
The situation is analogous for A , .  

3. ANALYSIS OF THE SYMMETRY OF THE MAGNETIZATION 

We now examine the magnetization distributions in Ta- 
bles I and I1 in greater detail. Table I11 lists the magnetic 
structures corresponding to the symmetry classes that admit 
Bloch lines. The second column lists the elements of the 
class, while the third enumerates the components Ma whose 

symmetry is consistent with condition I (specifying the di- 
rection of M in the domains). The fourth column lists the 
MD for which condition I1 (necessary for a Bloch line to 
exist) is satisfied. The remaining nonzero components M, in 
the domain wall are listed in the next column, while the last 
column gives the international symbols for the classes in ab- 
breviated form. 

We note that several types of domain walls can be dis- 
tinguished, depending on the symmetry elements determin- 
ing the distribution M in the wall. For example, if the sym- 
metry class of the domain wall contains at least one of the 
elen~entsg, ( 14), the Bloch line can be said to have a center, 
i.e., the magnetization distribution has a plane of symmetry 
(or  antisymmetry) with respect to t h e y  coordinate. Walls 
whose symmetry group contains elements g, (13) have a 
central plane, i.e., M is symmetric (antisymmetric) under 
x - -- x. If the symmetry group contains elements g, ( 15) 
then the domain wall has a center with respect to which M is 
symmetric (antisymmetric). None of these features are 
present for a wall with a Bloch line if the symmetry group 
consists only of elements g, ( 12). 

The following point should be noted. The magnetic 
classes U ,,,, U , ,  - U,,, and U,, - U,,  describe distributions 
M(x,y)  for which M(0,O) = 0. This means that Bloch lines 
described by these classes can exist either in F M  (ferromag- 
nets or ferrites) whose magnetic anisotropy energy exceeds 
the exchange interaction energy, or else near the Curie tem- 
perature. In ordinary FMs at  low temperatures 
(M,  = const), 21 different types of Bloch lines are thus pos- 
sible. 

Figures 2-4 show some magnetization distributions 
corresponding to magnetic symmetry classes that admit 
Bloch lines. Figure 2a shows a Bloch wall (class U,,), while 
Fig. 2b shows a Nee1 wall ( U,). Figure 3 shows a head-to- 
head wall with a Bloch line ( U ,  ,), and Fig. 4 shows a wall in 
an F M  for which the easy magnetization axis lies in the xy 
plane ( U,, ) . This magnetic structure is reminiscent of the 
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TABLE 111. Structure of domain walls with Bloch lines as determined by the various symmetry 
classes. 

one for domain walls with a horizontal Bloch line (we note 
that horizontal Bloch lines in thin films have recently been 
shown to be unstable-they tend to migrate out to the sur- 
face of the material; see, e.g., Ref. 10). 

Table I11 also lists magnetization distributions which 
describe magnetic structures that have not been discussed 
previously. As an example, consider the magnetic class U,,: 
1,2,,, 2:, 2:. Inside the domains, the dominant alignment of 
M is parallel to e,; in general, however, there is a nonzero 
component MyCrJx (S, ) at the domain wall, i.e., the wall is 
similar in this respect to a simple Bloch wall. In addition, 
however, there is another component Mx with symmetry 
S&, (A, ) which gives rise to a Bloch line as defined by con- 
ditions I and 11. This component vanishes in the central 
plane (at x = 0) and at the center of the Bloch line (y = 0). 

Such a structure can be explained as follows, for exam- 

k 

0 
1 
7 

3 
4 
5 
6 
7 
8 
9 

10 
I I 
12 
:3 
14 
15 
16 
17 
18 
10 
20 
21 
22 
23 
24 
25 
26 
27 
18 
29 
30 

31 

ple. Consider a ferromagnet of class D,; the easy axis coin- 
cides with the z axis, while the x axis is intermediate. As was 
shown in Ref. 5, ordinary Bloch lines cannot form in such a 
crystal, because right- and left-hand rotations of M are not 
energetically equivalent due to the presence of the invariants 
MxdM,/dy - M,aM,/dy in the Hamiltonian for the sys- 
tem. Nevertheless, an "anomalous" Bloch line described by 
the U2, symmetry class may be present in such an FM. 

Indeed, linear (pulsating) walls are known to be pres- 
ent near the Curie temperature Tc in FMs (see, e.g., Ref. 1 ); 
in these walls M = M, (x) e, has only one nonzero compo- 
nent. However, because of the invariant MyaM,/ 
ax - M,aMydx in our case, a component My -dM,/dx is 
necessarily induced in the domain wall. This implies that 
near Tc the wall is described by the class G, in the classifica- 
tion in Ref. 4, i.e., M rotates in the yz plane. However, since 

M,=O M,= 0 

FIG. 2. Distribution of the magnetization in Bloch and N k l  domain walls: a )  for the class U,,; b) for the class (I,. 

International 
Symmetry elements I a I k3 1 v 1 symbols 
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1 
1. 2, 
1. 2, 
1. 2, 
1. 2: 
1. 2, 
1, 2, 
I. ZZ' 
1,2/  
I. 2; 
I, i f ,  
1. 2, 
I, 2,' 
I. 2; 
1. 2,, 2,, 2, 
1. 2,, 2,, Z,, 
I. It, 2z, 2r  
I, 1'. 2,, 2%; 
I, T', 2,. 2,, 
I. ZZ, 2;, 2 ' 
1, 2,, ZZ', 2; 
I, 2,, ZZ1,  .2( 
I, ZZ, 2%', 2; 
I, 2v, 2/, 2/ 
I, 2z', zX, 2,; 
I. 2/, 2,, 2z  
I, 2;, 2x, 2;' 
I IT, 2z, 2z 
I. !', 2,- Zxf 
1 , I r . 2 , , . 2 ;  
1 7 ~ ' 7 2 z ~ , 2 x 7 2 v ,  
2;, 2;, 2, 
I ;  f',, 2z,, 2x, z,, 
2x9 2,t zz 

x ,  Y ,  z 
x, Y  

5 

5, z  
Z 

Y, 
Y  
Z 

Y ,  z  
Y  
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x ,  Y  
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5 . 2  

x 
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x 
x 
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z 
Y  
Y 
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Y 
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Y  
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x  
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m 
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FIG. 3. Magnetization dis- 
tribution in a "head-to- 
head" wall containing a 
Bloch line (class U,,). 

the plane of easy magnetization for this FM is the xz plane, 
we expect that M will become realized and acquire a compo- 
nent M, in the domain wall as the temperature drops. The M 
vector can leave theyz plane in two different directions. Such 
an FM can therefore support Bloch lines in the sense of con- 
ditions I and 11. 

It is important to find out which magnetic symmetry 
classes correspond to Bloch and NCel domain walls which 
admit Bloch lines in ordinary FMs. We consider a model 
rhombic FM with an energy density of the standard form 

Here a is the inhomogeneous exchange interaction constant, 
K, and K, are the anisotropy constants, and 8, q, are the 
polar and azimuthal angles for M, with 0 measured from the 
z axis and p from they axis. When K, > 0 and K, > K,, the 
predominant alignment of M in the domains is parallel to e,. 
The inequalities K, > 0 and K, < 0 correspond to stable NCel 
and Bloch walls, respectively. 

If K, % IK, I, we have the following approximate solu- 
tion for a domain wall with a Bloch line': 

for a Bloch wall 

cos 0=-th ( x / A ) ,  cos q~=-th ( y / A o ) ,  (18) 

for a NCel wall 

cos 0=-th ( x l A ) ,  cos cp=-ch-* ( y / ~ , ) .  (19) 

Here A and A, are the width of the wall and the Bloch line, 
respectively; A = (a/K, ) 'I2, A, = (a/K, ) 'I2. The magne- 

FIG. 4. Magnetic structure 
in an FM with easy axis in 
the xy plane (class U,,). 

tization distribution ( 18) satisfies the conditions 

while the distribution (19) satisfies 

We readily see by consulting Tables I and I1 that there is no 
symmetry class that corresponds to this approximate solu- 
tion, although classes U,, and U,, which admit a lower de- 
gree of symmetry and describe Bloch and NCel walls, do 
exist. This indicates that one or more invariants admitting a 
rhombic symmetry must have been omitted from the energy 
(17) used in deriving the solution (18), ( 19). And in fact, it 
is easy to convince oneself that the expression for the energy 
can also contain terms 

where@, and& are constants. The origin of the term itr can 
clearly be traced to the spatial dispersion of the anisotropy 
energy. One can show that when iZ is included, the magneti- 
zation distribution M becomes 

where m is given by the following expressions: 
for a Bloch domain wall 

where p = PI + P2 and Q = Ai/A2 is the quality factor of 
the FM. The function y(x)  behaves asymptotically as fol- 
lows: 

In our approximation K, ) I K,  I we have for a NCel wall 
m:N) = - my) ,  mjN) = m:B), 

mJN' = 0. (26) 

It is easy to see that the additional terms (24)-(26) indeed reduce 
the symmetry of the solution (18) ,  (19) to that described by the 
classes U,, and U, for Bloch and NCel domain walls, respectively. 

We will now determine how many types of Bloch lines can 
exist in Bloch and NCel domain walls. If the symmetry class G ,  for 
the boundary conditions for the wall coincides with GI, then the 
boundary condition symmetry class GEL for a Bloch line in the 
wall must be U,, for a Bloch wall and U2, for a NCel wall. As noted 
above, the symmetry class of a wall with a Bloch line coincides 
with U,, for a Bloch wall and U, for a NCel wall. The correspond- 
ing symmetry classes for a wall without a Bloch line are G, and G,, 
respectively (Ref. 4). 

Together with the discussion in Sec. 1, this implies that N = 4 
types of Bloch lines can exist in such a domain wall; the direction of 
rotation of M in the Bloch line inself and the relative alignment of 
the magnetic moments in the segments of the domain wall separat- 
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TABLE IV. Change in magnetic symmetry of a wall caused by motion of a Bloch line (the 
numbers k are given for classes U, corresponding to the same domain wall with V = 0 and 
VZO). 

ed by the Bloch lines both depend on the type. No Bloch lines can ic symmetry classes coincide with the original classes U,, 
form in the walls if G, coincides with the symmetry classes G, or and U,, i.e., the line motion does not change the wall symme- 
G, for Bloch and Nee1 walls without Bloch lines. This situation was try in this case. 
considered in Ref. 5. 

4. KINEMATIC SYMMETRY OF DOMAIN WALLS WITH 'A. Hubert, Theory of Domain Walls in Ordered Media [Russian trans- 
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therefore suffices to know the index of the magnetic class U, . horov. eds. ). Mir. Moscow ( 1984). v. 69. 
~ ~ b l ~ ~  1-IV can then be used to find the quaiitative form if 9A. P. Malozernoff and J. G. ~lonciewski, Magnetic Domain Walls in 

Bubble Materials, Solid State Sci. Suppl. I, Academic Press, New York the magnetization distribution in a domain wall with a mov- ( 1979). 
ing Bloch line. The change in wall symmetry due to the mo- IoYu. F. Sokolov, "Structure and dynamics of domain walls," in: Proc. 
tion of the Bloch line is indicated in Table IV. Ninth All-Union School/Seminar on New Magnetic Materials for Mi- 

Among other things, Table IV shows that for Bloch croelectronics, Saransk ( 1984), p. 157. 

lines in domain walls of the Bloch or NCel type, the kinemat- Translated by A. Mason 

548 Sov. Phys. JETP 64 (3), September 1986 Bar'yakhtar et a/. 548 


