
Short-range effects in the Hubbard model 
E. G. Goryachev and E. V. Kuzrnin 

L. V. Kirenskiilnstitute of Physics, Siberian Division of the Academy of Sciences of the USSR 
(Submitted 12 December 1985) 
Zh. Eksp. Teor. Fiz. 91,902-912 (September 1986) 

The single-site coherent potential approximation is extended in the neutral Hubbard model. A 
one-particle Green's function is obtained which takes into account both local elastic scattering 
processes (which ensures the existence of the Hubbard I11 solution) and the nonlocal 
characteristics of the system which determine the intensity of the processes. In this case, the 
equation for the metallic order parameter is extended to finite temperatures. The nonlocal 
contribution, related mainly to the spin correlation function (SSh ), is calculated in the 
appropriate self-consistent field approximation. A new dielectric phase region with respect to 
the parameter A = 2 W/U is obtained on the phase diagram ( W is the band half-width and U 
the Coulomb energy). The temperature-dependent region of the new phase is in the range 2/ 
d3<A< (1 + d2) ' I2 .  

1. INTRODUCTION 

The neutral Hubbard' model (number of electrons 
equal to number of lattice sites) is widely used in studying 
phase transitions in systems with strong Coulomb correla- 
tions: 

In Ref. 2 it was shown that for the SC and BCC lattices, the 
Hamiltonian ( 1 ) describes the metal-insulator phase transi- 
tion (MIT), and the critical relation A, = 2W/U = 21/3 
was found between the constants for the semielliptical den- 
sity of states (Hubbard I11 [HIII] solution). In the work of 
ZaYt~ev,~ based on a diagram technique, the result A, = (z/ 
3) ' I2  (Z is the number of nearest neighbors) was obtained for 
the SC and BCC lattices. Subsequently, it was shown that the 
decoupled Green's function procedure used in the derivation 
of the solution HIII is equivalent to the single-site coherent 
potential approximation (CPA) .4 

The shortcoming in such solutions is the absence of the 
temperature dependence of the self-energy part of the single- 
particle Green's function. As a result, the MIT line on the 
phase diagram (crosses in the figure) has no temperature 
slope.5 

In this work, the single-particle Green's function is de- 
rived in a more general form than allowed by the CPA. Be- 
sides taking account of all single-site scattering processes 
(CPA) this Green's function contains nonlocal characteris- 
tics connected with the immediate environment of the site in 
the lattice. We note that there exist at least three reasons that 
such nonlocal characteristics are important. First, as was 
mentioned in Ref. 6, perturbation theory starting from the 
atomic limit experiences difficulties with the choice of 
ground state. The ground state is 2N-fold degenerate. Start- 
ing from the point b = 0, we may find ourselves in the para- 
magnetic regime, when U) 1 b 1 > T )  b '/U, or in the antifer- 
romagnetic regime, when U) I b ( ) b 2/U> T (see Fig. 1 ). 

Thus, the Green's function, in a more general form than the 
solution HIII, must convey information about the degener- 
acy of the ground state (that is, "remember" from which 
region of the phase diagram the passage to the limiting point 
b = 0 is made). Such information is in the correlation func- 
tions of the form (SoS, ), contained in our Green's func- 
tions. Secondly, all the correlators of a nonlocal nature aris- 
ing are temperature-dependent, which allows us to 
generalize the relationship between the metallic order pa- 
rameter and the final temperature. In the results, this leads 
to: a )  the slope of the MIT curve; b) the appearance of a new 
region of insulating phase. Third, in Ref. 7, the HI11 solution 
was criticized because of the absence, in the metallic regime, 
of a temperature dependence in the quasiparticle decay- 
which contradicts the theory of the Fermi liquid. As will be 

FIG. 1 .  Phase diagram for the neutral Hubbard model. PD denotes the 
paradielectric phase, PM the parametallic phase, and AFD the antiferro- 
dielectric phase. The crosses are the HIII (CPA) solution. The dashed 
line is the asymptotic line dividing the phase with alocal moment from the 
metallic zone (the significance offl = 1.69 is derived in Ref. 8 ); the solid 
curve gives the qualitative form of the new solution, taking into account 
the effects of short-range order. 
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apparent from the present work, in second order in b /Unon- 
local averages play the role of intensities for quasiparticle 
scattering processes; this leads to a temperature-dependent 
coefficient in the imaginary part of the single-particle 
Green's function. We note, however, that at present the 
agreement with the results of the Fermi-liquid theory can be 
examined only outside the region of existence of a local mag- 
netic moment, which is distributed in the metallic phase up 
to the value A * >A, of the coupling constant (for a semiel- 
liptic density A * = 1 6 / 3 ~ ) . ~  

2. GENERAL FORMALISM: SINGLE-PARTICLE GREEN'S 
FUNCTION WITH NONLOCAL CHARACTERISTICS TO FIRST 
ORDER IN b/U 

The most important feature of the perturbation-theory 
formalism which we use, in comparison with the diagram 
forrnali~m,~ is the means of finding an analytic expression 
for the self-energy part B with the aid of the equation-of- 
motion method for the retarded temperature Green's func- 
tion. Differentiation of such equations with respect to time 
( t ' ) "  allows one to derive an expression for the Green's 
function through the T-matrix, composed of the partial T, - 
matrices corresponding to orders of b /U: 

where Go is the Green's function in the zeroth-order approx- 
imation. On the other hand, using the Dyson equation and 
the expansion 

it is easy to find the relationship of T to 8: 

Comparing (2)  and (4) for first (E)  and second (E') orders, 
we conclude that 

This approach to finding the self-energy part allows us 
to avoid the laborious search for all the topologically inequi- 
valent graphs in the diagram approach. For this reason, 
from now on the set of diagrams leading to the HI11 solution 
will not be needed. 

We will construct the perturbation theory from the 
atomic limit. Thus, Z0 is the zero-order (unperturbed) part 
of the Hamiltonian ( I ) ,  and 2, plays the role of the pertur- 
bation (bfl. is the interaction potential). We will examine 
the single-particle Green's function <aju (t);  a,;Cu ( t  ') ) and 
its time Fourier transform 

where the Afau = n; "aju are the Hubbard operators2 with 
the following commutation properties: 

-a -a  -a 
{A/ , , ,  ~ j fa , c )=G~~~6aa*n ta  n,+ =n1-', nl- =I-ny ,  

[Ajnot Z o ]  =&aAtaor &+=Uj2, &-=-U/2.  
(7 )  

Using the equation-of-motion for the operator A/,, and 
the property of differentiability of the double-time Green's 
function with respect to time," we obtain for GT' (w)  

aa' 
( 0 - e a )  Gtfr ( 0 )  = 6 ~ ~ ~ 6 , , ~ / 2 + < Z ~ ~ . , ;  A:,,,)),, 

(8 )  
( z ~ u o ;  ~ T a e a B u  ( w - ~ a ~ )  =( {Zlaa7 A?a*o} )+((Zlaa; z ; ~ ~ ~ ~ ) ~ ,  
where Zfau is an operator of the form 

-a 
= L b  ( f - f ' )  [afranla - a ( ~ ; " ~ a ~ - - , + ~  ( o ) ~ ~ ~ ~ a : - , )  1, 

We will represent (8)  in T-matrix form (2)  and isolate 
on the right-hand side the terms 

which are proportional, in agreement with the definition (9) 
of the operator ZhU, to the first (E)  and second (E') powers 
of the interaction potential: 

{[ ( o I - E )  G-N]  ( o 1 - E ) ) ; ' = E { T ~ )  ; : ' + e 2 { ~ , )  y:', ( 10) 

where 

Using the representations (3) ,  (4),  and ( lo),  and satis- 
fying (5)  we obtain 

Here G:, ( 0 )  = Sff.w/(w2 - U2/4) is the single-site 
Green's function. The components of the self-energy part of 
the Green's function to first order in the coupling constant 
for the paramagnetic neutral model can be reduced to the 
expression 

{ ~ ~ ) ~ ' = 4 b , ~ .  ( 
(13) 

K. (R)  = K ( R )  =K ( f - f ' )  =<SlSf~>-(Xj02X~~20)+'/~, 
where S is the spin operator on sitef, R = f - f '. Below we 
will examine the usual case, when Bff, #O only for nearest 
neighbors, that is, R = h. 

For the class of spatially uniform solutions, equation 
(3) in the p-representation takes the form 

As a result, for G(w,p) = Xu,. G ""'(w,p) to first order in b / 
U we obtain 

Here E (p) = - Wyp is the electronic dispersion relation in 
the periodic field of the lattice, 
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where l ( p )  is the dispersion resulting from the existence of 
short-range order. For K = 1/4, which corresponds to the 
neglect of the nonlocal contribution, ( 14) agrees with the 
Green's functions of Ref. (1 ) (the Hubbard I ( H  I )  solu- 
tion). The critical value ofA follows: A, = (K - 1/4) 'I2. A 
self-consistent calculation, carried out in section 4, shows 
that K c  1/4. Thus, in this approximation, as in the solution 
H I, the insulating gap does not vanish. 

It is important to note that all the effects connected with 
the temperature corrections result only from the considera- 
tion of nonlocal terms, and therefore in this case problems of 
improving the accuracy do not arise. 

3. SECOND-ORDER PERTURBATION THEORY: THE 
EQUATION FOR THE METALLIC ORDER PARAMETER 

The mechanism responsible for the MIT is connected 
with the consideration of elastic scattering processes in the 
static and dynamic state fluctuations which arise in second- 
order perturbation theory in the coupling constant. The situ- 
ation in this case is highly analogous to scattering by heavy 
(bound) impurities. As shown in Ref. 11, consideration of 
such processes gives the nonvanishing imaginary part of the 
mass operator in all regions ofp-space and, most important- 
ly, on the Fermi surface. We recall that inelastic processes 
for T = 0 are proportional to (p -p,)' and, consequently, 
do not have the required effect. On the other hand, the Hub- 
bard model does not, intrinsically, contain separate subsys- 
tems with heavy impurities and light carriers, but as a result 
of the collectivation of atomic excitations each quasi-parti- 
cle has two degrees of freedom: collective and localized. The 
"scattering" of these degrees of freedom on each other leads 
to elastic scattering (because flipping a spin in the paraphase 
requires no energy) and to Fermi surface extinction. Thus, 
the analogy between scattering processes in the Hubbard 
model and the problem of scattering on bound impurities 
would be complete if we only considered static spin fluctu- 
ations which are included in Green's functions of the type 
(X j u 2 ( d ) ;  X?-"(t ') ) and (Xy( t ) ;  X y ( t  ') ). Consi- 
deration of the collective degree of freedom for an initially 
fixed electron leads to the existence of processes of scattering 
on dynamic spin fluctuations, for which Green's functions of 
the type g X  juua,- -,(t); a f f - o ~ 7 - 6 ( t  I ) )  and 
(Xy( t ) ;  Xf"- "a;- ( t  ') ). The analogy in alloys is scat- 
tering on ionized impurities. 

Processes of scattering from static and dynamic state 
fluctuations are contained in the diagonal approximation for 
the self-energy part in second order in b/U: {z,};' 
=:{Z2}7'. This approximation includes all single-site scat- 
tering processes (the CPA) and two-center correlations. 
Outside its limits there are only the three-center correla- 
tions, which are important in the correct description of the 
zone boundary (A -+ co ) . 

Let us turn to the calculation of gZfa,;Z,t;,u S , .  In the 
definition (9) ZfaU is represented by three operators Zfau 

= 2;:; + 2;;; + 2;:; ) which we will express in terms of 
the Hubbard operators: 

The matrix element (Zh, (t);Z,?,- ( t  ') ) contains nine 
terms, for the determination of which, in second order, we 
use the equation of motion 

Each term of the matrix element takes into account a specific 
process in the system, with an intensity which contains the 
appropriate correlator, reflecting the existence of short- 
range order. The value of each term is given in the Appendix, 
where the expression for the irreducible self-energy part 
{X,};' is also derived. Then, for the Fourier transform of 
the Green's function and the irreducible self-consistent 
(Go - G) self-energy part R (w ({Z,);' = aa'4R (w ) ) we 
have 

- - 0-48  ( 0 )  +s ( p )  (1-4K) 
02-Ua/4-4oQ(0)  -4s ( p )  [Ko-SZ ( a )  ] -s2 ( p )  (1-4K) 

~ ( a )  =2(i-W) J p ( 8 )  s2 dc J p (a') G (o, a') da', ( 16) 

where in ( 16) we have gone from a summation overp to an 
integration over the density of states p ( E )  corresponding to 
the dispersion relation E (p) . 

For K = 1/4 Eq. ( 16), after integration over the semiel- 
liptic density of states p,(&) = 2 [ 1 - E /  W) '1 ' I 2 / r  w used 
in Ref. 2, and the substitution F(w) = w - U2/ 
4[w - 4f l (o ) ]  leads to the basic equation of Ref. 2 [see 
there formula (70) I .  In this case ( 15) also coincides with 
the Green's function of solution HI11 [formulas (58) ,  
(59) 1. Thus, our proposed method of finding the self-energy 
part through perturbation theory in b /U completely repro- 
duces the CPA4 result and the solution HI112 in the limiting 
case where nonlocal effects are neglected. 

Below, we shall follow the concept of the metallic order 
parameter introduced in Ref. 3 and independently in the the- 
ory of localization of Ref. 12. The fixation of the MIT line is 
connected with the appearance of a purely imaginary root in 
Eq. ( 16) for w = 0. Equation ( 16) is the equation for the 
metallic order parameter, but in the present work, due to the 
presence of the correlator K, it depends intrinsically on tem- 
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perature. On the MIT line f i  (0) - 0; therefore, expanding 
G(w,E) in ( 16) to first order in fl(O), we obtain 

w 

For comparison in the limiting case with the result HI11 we 
restrict the integration in ( 17) to the semi-elliptic density of 
states cited previously. Then, for the critical value of the 
coupling constant we have the expression 

As we expect, for K = 1/4 we obtain from (18) the HI11 
solution, A, = 2/1/3. 

We will make one comment on the replacement of the 
quantity X, lb(h) 1' = zlb l 2  in (A3) by the quantity which 
results from integration over the model (semielliptic) den- 
sity of states, that is, 

It is easy to show that the use of the value Ib I2z in ( 16) leads 
in formula ( 18) to the replacement 1 - 4K ' -4( 1 - 4K 2 ) /  

z. In this case for K = 1/4 we have A, = (z/3) 'I2, which 
agrees with the result of Ref. 3. As will be seen subsequently, 
the result for A, with K = 1/4 is the asymptotic limit for 
t = T/U+ CQ. Therefore in our theory the value of A, as 
T- CQ has the meaning of a reference point for a new insulat- 
ing phase and is unimportant in the basic result of the work. 
We will base our work on the solution HIII, as it flows logi- 
cally from Eq. ( 16) with the use of the semi-elliptic density 
of states. The appearance of az-dependence in A, is related to 
the integration of Eq. (16) with densities of states corre- 
sponding to SC and BCC lattices. 

4. SELF-CONSISTENT CALCULATION OF THE 
CORRELATION FUNCTION K 

Since the correlation function K enters into the coeffi- 
cient determining the intensity of the scattering processes 
[see formula ( 16) 1, which on the MIT line are calculated 
from the linear expansion in f i  (O), it is sufficient to calculate 
the function K (A, T, f i (0))  to first order in b /U (that is, for 
fl(w) = 0).  For this purpose we introduce the set of opera- 
tors P, ( j  = 1, 2, 3, 4),  the specific operator structure of 
which will be set forth below. On the basis of the equation of 
motion for the operators a,, A 2, = A, + , - ap,/2: 

we obtain 

(a,,; Pj)),=< {a,,, Pi)  >G1 ( o ,  p) +4< {A::, P,) >((A:;: ; a,,+)),, 

(21) 

where 4 A  r;',;a,+, ), is calculated in the same way as 
G1(w,p)  [Eq. (14) ] in first order in b /U, and has the form 

(A?:!; ap,+)),=U/4D ( a ,  p )  . (22) 

Using the spectral theorem,13 we obtain from (21 ), ( 14), 
and (22) the basic relationship for the subsequent derivation 
of the correlator: 

<P,a,,>=<{a,,, P j ) > l , , + < { A : ~ ~ ,  P j )>mpa ,  

19o=L=  [ ( ( J b + - E p ) f  (a,+) 

- (up--Ep) f ( o p - )  l i ( ~ p + - o p - )  -1/2, 

(23) 

We introduce the operator ( j = 1 ) 

having the property 

Summing (23) forj = 1 and calculating the expectation val- 
ue from the anticommutators, we obtain 

<SozShz>=<noanha~-1/~=-12 ( h )  + (<nhnno-u>-i/,) m ( 0 )  , (26) 

In (26) it is taken into consideration that m (h)  = N - ' 
Xp exp( - iph)mp = 0. To derive the correlator (n;ncu) 
we introduce the second ( j = 2) operator 

From (23) forj  = 2 it follows that 

< nhuno-"> -'I,= <SozShz> m (0). (28) 

Substituting (28) in (26), we find for the correlator (S ;S ', ) 
the final form 

In an analogous way we introduce the operators P, and P,: 
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This permits us to calculate to first order in the coupling 
constant the correlators 

(S,+S,->=-lZ(h)/[l+m(0) 1, 
(30) 

<X,02X,"'9=1Z(h)/[1-m(0)].  

Consequently the correlator K can be put into the form 

Integration of (3 1 ) with the semielliptic density of states in 
the case t ,  1 leads to the following result: 

From ( 32) it follows that K = 1/4 for t + a, which reflects 
the fact that our solution asymptotically coincides with the 
solution HIII. 

and is located wholly within the region where localized mo- 
ments exist (we recall that A * = 1.69). 

So, taking account of the nonlocal environment leads, 
first of all, to a broadening of the region of existence of the 
insulating phase by comparison to the solution HIII. Sec- 
ondly, in the new region of the insulating phase 
( 1.15 (A ( 1.55 ) there exists a temperature MIT. This region 
is shaded in the figure. 

In References 8,14, and 15 an approach to a description 
of the MIT from the zone limit is developed on the basis of a 
functional integral method. The authors of this work, having 
shown that a region exists in which a local moment in the 
metallic phase develops, obtain results different from HIII. 
In Ref. 8 the value& = 3/2 is found, which agrees with the 
interval (34). The result of Ref. 14, represented in the ana- 
lytic form A, =: 3/2 - 4r, agrees with (33) in the sign of the 
slope of the MIT line. In Ref. 15 the result of a numerical 
calculation gives a small positive slope for the MIT line; this 
contradicts not only our relation (33) but the result of Ref. 
14. 

5. RESULTS; COMPARISON WITH PREVIOUS THEORIES In conclusion, the authors are pleased to acknowledge 
R. 0. Zaitsev for numerous useful discussions and for a con- The basic result of our work is the determination of the 
sistent interest in this work. sign of the derived function A, = Q, [K(A,t) 1. Having (32) 

available, and using ( 19 ) , we find APPENDIX 

dl0 To second order in E we have for the nine matrix ele- 
-= 

(dh,laK) ( a K l a t ) ~ ~  
dt l - (dhC/aK) (aK/ahc), < 0. (33) ments 

Let us estimate the region inil where the new insulating 
phase exists. The first possibility of such an estimate is tied to 
the derivation of a self-consistent point for T = 0. In this 
case (3 1) is expressed in terms of complete elliptic integrals 
which are represented in the form of a series inp2/( 1 + p2), 
wherep2 = A2(2K - 1 )2. Consequently we have, for the de- 
sired correlator at T = 0, K = - 0.35 + 0.055A 2. Solution 
of this equation together with (18) gives the following re- 
sult: K = - 0.1357, A, = 1.9736. Obviously, such an esti- 
mate is exaggerated, as the negative sign for K testifies to the 
strong antiferromagnetic instability at T = 0. The value for 
A, itself is outside the region where a local moment (A, 
>A *)  exists, which from the physical point of view is incor- 
rect. 

The manifestation of an antiferromagnetic instability in 
the system makes it possible to carry out a more accurate 
calculation. In fact, by definition the correlator K(T,A) >O; 
the value K(h)  = 0 is attained in the limit of the antiferro- 
magnetic NCel structure, when K(R)  = [ I  + ( - 1)R] /4  
(R is the number of the coordination sphere, R = h = 1). 
The vanishing of the correlator (3  1 ) fixes the point of insta- 
bility of the paramagnetic phase. In the figure this is the 
point where the lines for a phase transition of the 3,5, type3 
and for a transition of the 2 type intersect (the triple point). 
Inserting the value K(TN,Ac) = 0 in (18), we obtain A, 
= ( 1 + V 2 )  "2= .  1.55. Thus, the additional region of exis- 

tence of the insulating phase (by comparison with the solu- 
tion HIII) is between the limits 

+ z b , i ~ b ~ , ~ ~ ( ~ ~ T - ~ i ~ ~ - a ( ~ , a o - ~ ~ z )  )}, 
f 'f" 

z b , . b ; , , . ( ~ , , , - p ; . ~ ; * ) } .  
f ' f" 
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1 where y = + , - and the following operators are intro- 
tz,:.:z~.r. = a -{YE 1 bfr  I 2 < ~ : .  nfa--,,x~2) duced: 

., 0 + ~ 7  ,r 

- ( a ) a f x  b, ,vb;frr  < A : , - P ~ ~ ~ x ~ ) ) ,  We note that in (A. 1 ), in the summation over f ', f " only the 
f ' f "  terms for f '  = f " are retained, since for f '  # f " the summed 

correlators are of "superfluous" degree in E.  The remaining 
transforms are analogous to those we carried out in the cal- 

((Z:,,; ~ ~ ~ > , ~ = < < Z ~ a o ;  Z;:,>>,=O, culation of I;,, so that in matrix notation aa' we obtain 
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