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We consider the large-scale properties of cholesteric liquid crystals. A procedure based on 
eliminating the fast degrees of freedom is developed and permits a crossover from small- to 
large-scale characteristics of any system. A distribution function expressed in terms of the 
effective action is used to investigate dynamic properties within the framework of this model. 
It is shown that both the static and the dynamic large-scale properties of a cholesteric coincide 
with those of a smectic. We calculate all the static and dynamic large-scale characteristics that 
can be expressed in terms of the small-scale elastic moduli, kinetic coefficients, and the helical 
pitch of the cholesteric. A similar procedure is used also to describe the properties of chiral 
smectics C *. 

1. INTRODUCTION @=q,lrf @,, ( 3 )  

Cholesteric liquid crystals are known to be produced in I= [u'u] . (4)  
systems consisting of molecules that have no inversion cen- The vectors u and u' in (2 )  are mutually orthogonal unit 
ter. The absence of the inversion center causes the ground vectors, while @, is an arbitrary initial phase. The solution 
state of a cholesteric to be inhomogeneous: the director n is (2) describes a helix with pitch L = 2.rr/qo and with an axis 
twisted into a helix in this state.' The pitch L of the helix is directed along the unit vector 1. The director field with large- 
usually much larger than the atomic dimensions. The prop- scale deformation will also be expressed, following Refs. 2 
erties of an inhomogeneously deformed cholesteric depend and 3, in the form (2),  where u and u' are mutually orthogo- 
substantially on the ratio of the inhomogeneity scale R and nal unit vectors as before, but now they vary in space slowly 
the helix pitch L. At scales R 4 L the absence of an inversion (i.e., for scales ), and is a phase no longer having the 
center is immaterial and the cholesteric has the same proper- simple form (3). We shall assume, however, that the Fourier 
ties as an ordinary nematic. It should be expected from gen- expansion of @ has no rapid harmonics (i.e., having wave 
era1 considerations that for scales R %L the properties of a vectors q 2 L - I ) .  This allows us to put 
cholesteric, just like those of any other layered structure, 
coincide with those of a smectic. An attempt to corroborate 
this statement by using an averaging procedure was underta- 
ken in Ref. 2, where the large-scale static properties of a 
cholesteric were considered (see also Ref. 3 ). The main pur- 
pose of the present paper is a systematic derivation of the 
equations of large-scale dynamics of cholesterics. Since, 
however, a rigorous procedure for obtaining large-scale stat- 
ic properties has likewise not been published heretofore, we 
derive parallel equations also for the static properties. 

We develop here a method based on eliminating the rap- 
id degrees of freedom, enabling us to calculate both static 
and dynamic large-scale properties of a cholesteric. We shall 
show that from the large-scale viewpoint a cholesteric is ac- 
tually equivalent to a smectic, and express the parameters of 
a nematic that exists at scales R ( L .  

The energy associated with the inhomogeneity of the 
director field is given for cholesterics by 

-- 
cos @=sin @=0, ( 5  

where the averaging is over scales -L.  
The variation of the direction can be resolved along the 

unit vectors 1 and nX1. For the derivatives with respect to 
time and to the coordinates we have, using this expansion, 

v,nj=sl:[nl] j-(nVil)'j. 

Here 

In view of the definitions (8) ,  the quantities so and s, are 
connected by relations similar to those for the superfluid 
velocity in the A-phase of 3He (Ref. 4): 

V i ~ ~ - V j s i = ~ ~ R ~ l ~ V i l ~ V ~ l , ,  (9 )  

Visa-dsi/dt=emjnViljal,/dt. (10) 

Here K,, K,, and K, are the Frank moduli. The presence in AS a result of (9) and ( lo),  we can represent so and s, in the 
expansion ( 1 ) of a term linear in the derivatives is due to the form 
abovementioned absence of an inversion center in cholester- 
ics. The energy ( 1 ) reaches a minimum for s,=V,W+ (VIIV ' )  (~rnjnlmV~IjVtZn), (11) 

so=dWldt+( VIIVL) (em,,l,,Vl~,dl,/~t). 
n=u cos cD+u'sin @, 

(12) 
(2 )  The representations ( 11 ) and ( 12) demonstrate explicitly 

where that three degrees of freedom appear in our large-scale de- 
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scription of a cholesteric; the smectic one, related to the vari- 
able W, and two degrees connected with the unit vector 1. It 
will be shown below that only the smectic degree of freedom 
is of the Goldstone type and it should therefore be the only 
one to enter in the large-scale description of a cholesteric. 

2. LARGE-SCALE STATIC PROPERTIES 

In principle, the procedure needed to obtain the large- 
scale characteristics of any system is well known and entails 
effective elimination of the rapid degrees of freedom. For 
cholesterics, this elimination is implemented in accordance 
with the definition 

Here T is the temperature, FM is the large-scale free energy 
of the cholesteric, and integration with respect to ii means 
integration with respect to the director's rapid degrees of 
freedom, which contain Fourier harmonics with wave vec- 
tors q R L - I .  Relations of type ( 13) are usually the starting 
point for taking fluctuation effects into account, as is the 
case in renormalization-group approach to the theory of 
phase transitions. In cholesterics, the fluctuations are weak 
and integration with respect to ii is equivalent to minimizing 
EF with respect to ii. This is usually a trivial procedure and 
reduces to substituting ii = 0 in EF.  In the case of cholester- 
ics, however, the "slow" part of the director (2)  contains 
rapidly oscillating factors, causing coupling of fast and slow 
degrees of freedom. Minimization of EF with respect to ii 
becomes therefore a nontrivial task. 

By virtue of the condition n2 = 1 the director n contains 
two rapid degrees of freedom," which we shall define by 
angles 9 and q, containing Fourier harmonics with wave vec- 
tors q R L -'. An expression for the director in terms of these 
angles is 

n+G=[u cos(@+cp) +ulsin(@+cp)] cos 8+l sin 8. ( 14) 

We retain the symbol n for the slow part of the director (2) .  
Note that @ and q, in ( 14) differ in that @ is the slow and q, 
the rapid variable. In the approximation linear in q, and 9, 
the only one we shall need hereafter, we get 

;= [nl] cp+l0. (15) 

We note that 9 does not contain a term of the form 

where is a slow function. The point is that such a term can 
be eliminated by the following redefinition of the unit vec- 
tors in (3): 

It follows from (3)  and (8)  that in equilibrium 

where li is a unit vector. Thus, the large-scale deviations 
from the equilibrium state of a cholesteric are characterized 
by the quantities 
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Here sll and s, are the s-components parallel and perpendic- 
ular to 1. To calculate the direct contribution, due to the 
presence of the nonzero quantities ( 19), to the free energy F 
we must express the derivatives of n in ( 1 ) in accordance 
with ( 17) and average the results over scales - L. This aver- 
aging is carried out with the aid of the relations 

These operations yield 

F='/ ,(  K~+K$) S ,~+ ' /~K~ [si] v 
+'/zKz(sll-qo) '+'/, (Ks-Kz) (Vili) 

+'/la (3Kz+K3) (Viln)z+'Ita (4Ki-3Kz-Ks) ( V  llli)" 

+'/zKz(sli-qO) ~rnjnlrnVjL. (22) 

Here and henceforth 

The linear term of the expansion of EF [Eq. ( 1 ) ] in 
terms of 9 is, in the leading approximation, 

K' V ( [nl] rsi-njV ilk) +Ksqoesini. (24) 

The mean value of this expression is zero, since 9 does not 
contain terms of the form ( 16). Thus 9 is not coupled with 
the slow degrees of freedom, and minimization with respect 
to 9 reduces to the substitution 9 = 0. The leading terms of 
the expansion of EF in terms of q, are 

It follows from the structure of this expression that the slow 
degrees of freedom are linked with q, components of the form 

where q,, is a slow function. Substituting (26) in ( 2 5 ) ,  re- 
taining in Vll q, the leading order, and averaging, we get 

Minimization of zp with respect to pi yields the following 
contribution to the free energy: 

To obtain the large-scale free energy of the cholesteric, we 
must add expressions (28 ) to expression ( 22 ) . 

It follows from (22) that the degrees of freedom con- 
nected with 1 are not of the Goldstone type and should be 
excluded from consideration. In the approximation in L /A  
of interest to us we can neglect the second term in the right- 
hand side of ( 1 1 ), so that minimizing the free energy with 
respect to 1 reduces to minimization at constant si = V i  W. 
The minimization yields, in the leading approximation in L / 
A, 
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The end result of the minimization is replacement of the first 
two terms of (22) by 

- [ K t 2 / 4  (KI+K.q) I ( VIll) '. 
As for the remaining terms with 1 in (22) and (28 ), they are 
small corrections. They should therefore be retained simply 
with li replaced by (29). This replacement causes E ~ , ,  li V, In 
to vanish, and with it the last term of (22).  Collecting and 
transforming the remaining terms of (22) and (28 ), we ulti- 
mately get 

Fm= (K2/8q02) [ ( V  W)2-qo"] '+ (3K,/16qoZ) ( V Z W ) ' +  . . . . 
(31) 

The ellipsis stands here for inessential terms proportional to 
(V,, VW)'. The first term of (31) was transformed with 
allowance for the fact that JV W I zq,. 

Expression (31) describes the elasticity theory for a 
smectic, with moduli 

The terms proportional to (V,, V W)2 [the ellipsis in (3  1 ) ] 
play no role whatever in smectics; this becomes particularly 
clear when the long-wave fluctuations of the latter are con- 
~idered.~.' 

We conclude thus that from the standpoint of large- 
scale statics a cholesteric is indeed the equivalent of a smec- 
tic. Expressions (32) for the moduli of this smectic were 
obtained by de Gennes, who postulated the foregoing state- 
ment and compared the energies of a smectic and a choles- 
teric for two particular director configurations.' 

3. HYDRODYNAMICS OF CHOLESTERICS 

The hydrodynamic variables of cholesteric are, as for 
nematics, the director n and the densities of the energy E, of 
the mass p, and of the momentum j i .  These quantities are 
connected with the density of the entropy S by the following 
thermodynamic identity 

Herep is the chemical potential, v = j/p is the velocity, and 

The last factor in (34) and (35) stems from the fact that the 
longitudinal parts of hi and Qki have no physical meaning in 
view of the identity nidni = 0. 

The pressure P is  defined as usual as 

The thermodynamic identity for the pressure is 

The system of nonlinear hydrodynamic equations is of 
the same form for a cholesteric as for a nematic2': 

The reactive terms in (39)-(41) are defined by the expres- 
sions 

T ~ ~ = ~ v ~ v ~ + P ~ ~ ~ + Q ~ ~ V ~ ~ + ~ / ~  ( I - h )  nihj-lIa(l+h) hm,, (42) 

fi=vjV jni+i/2 (Viv j -  V j v i )  nj-'l,h (6im-ninm) n j (Vpm+Vmvj) ,  
(43) 

Qi= (P+E)  vi-'I2 ( l + h )  ni(hv)  + I / ,  (1-h)  h i (nv)  + @ i j f j .  ( 4 4 )  

HereR is the reactive coefficient. The divergence of the stress 
tensor (42) can be reduced to a divergence of a symmetrical 
stress tensor,' thereby ensuring conservation of the angular 
momentum. The dissipative terms in (39)-(41) are deter- 
mined by kinetic coefficients, viz., the torsional viscosity yi ,  
the thermal-conductivity tensor 

and the viscosity tensor 

f 2173 (ninA8i1m+ni1nm8ir) 

+ '/zVr (nin~8km+nkn18im+ninm8,1+n~nmalr) +2qsninknlnm. 

(46) 
The energy E of a cholesteric can be expressed to the 

required accuracy in the form 

E= j2/2p+Eo (p, 0 )  +EF, (47) 

where a = S /p is the specific entropy, and E, is given by Eq. 
( 1 ) . Rewriting now in terms of pressure in accordance with 
(36),  we obtain to lowest approximation 

where 

Calculating Qii and hi in accordance with the definitions 
(34) and (35) ,  we get 

Finally, in accordance with identity (33) we obtain for the 
temperature, to lowest order 

where 

All the coefficients in (48) and (50)-(52) are functions ofp 
and o, whereas to close the system (38)-(41) they should be 
expressed in terms ofp and E. To the required accuracy, the 
specific entropy a can be expressed in terms of E, using the 
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relation E = E,,( p, a), without affecting the dependence of 
expressions (48) and (50)-(52) on the director. 

4. LARGE-SCALE DYNAMICS 

The equations of large-scale dynamics of cholesterics 
can, of course, not be obtained by averaging the equations 
given above over scales -L.  We shall derive these equations 
by a procedure of eliminating the fast variables, similar to 
that used in the static case. We must integrate over the fast 
variables the distribution function exp(iI) that permits the 
dynamic correlators of the system to be calculated, just as 
the distribution function exp( - F / T )  has enabled us to cal- 
culate the static correlators. The effective action for such a 
distribution function was constructed in Refs. 8 and 9 (see 
also Refs. 10 and 1 1 ). The action I includes a dependence 
both on the hydrodynamic variables and on the auxilliary 
fields, with both Bose and Fermi parts, but we shall not need 
the Fermi part of the action. The nonlinear hydrodynamic 
equations can be obtained, as usual, as extremals of I. 

The effective action I for cholesterics can be construct- 
ed from Eqs. (38)-(41) in accordance with the procedure of 
Refs. 8 and 9. The Bose part of this action is 

where the Lagrangian density Y takes, to our specified ac- 
curacy, the form 

p = ~ i a i i l a t - V k ~ , T c , +  V A ~ , . r l i A n m v n v ~ + i T . r l i A ~ ~ v ~ p { v ~ p ~  
an, ah' + y i p +  ~ , f , + ~ , h i l y ~ + i T ~ ? l ~ i + p  ;ji- a t  

Herep, ,p, and y, are auxilliary Bose  fields;^, is conjugate to 
ji , p  is conjugate to E, and y, is conjugate to n,; furthermore 
yi must satisfy the orthogonality condition 

We can accordingly always expand y, in terms of the vectors 
1 and n x l :  

We have left out of (55) the dependence onp, since Eq. (38 ) 
can be regarded as an expression for p in terms ofj. 

We must now separate in (55) the contribution of the 
rapid degrees of freedom. We specify these degrees for the 
director, as before, by means of the angles p and 8 defined in 
Eqs. ( 14) and ( 15). All the other variables in (55), viz., pi, 
ji = p i ,  y, yll , p, E, simply break up into sums of slow and 
rapid parts (the latter will be marked with tildes). The effec- 
tive action I,, which describes the large-scale dynamics of 
cholesterics, can be obtained now by analogy with (13) by 
integrating over the rapid degrees of freedom: 

e x p ( i I M )  = I D ~ I  DO Db, D ~ ,  Dij D$, DP DE e x p  ( u )  . (58) 

Just as in statics, fluctuations play no role whatever in the 
dynamics of cholesterics. The integration in (58) reduces 
therefore to a search for the extremum of1  with respect to all 

the variables listed in (58). This search is not trivial since, 
just as in statics, the slow part of the director (2)  contains 
rapidly oscillating factors, so that the rapid and slow degrees 
of freedom become linked. 

It is easy to verify that in view of the presence of the 
term - c2Vijip (where c is the speed of sound) in the La- 
grangian density (55) the integration over the rapid acoustic 
degrees of freedom makes negligible contribution to I,. We 
therefore disregard these degrees of freedom and put 

It is also easy to verify that, just as in statics, 0 is not coupled 
with the slow degrees of freedom, so that evaluating the ex- 
tremum with respect to 8 reduces to the condition 0 = 0. As 
for the remaining fast variables, their components coupled 
with the slow variables are 

Here p i ,  mik , l i ,  x are slow functions. For p we have Eq. 
(26) as before. The tensor mik in (60) has the same proper- 
ties asp, in (26), and for the remaining quantities we have 

The second term is included in (61) to satisfy the condition 
Viji = 0 accurate to first order in L /A  (we need no such 
term in bi ) . 

We must now substitute the rapid parts of ( 15), (26), 
and (60)-(62) in the Lagrangian density (55), express the 
derivatives of the slow part of the director with the aid of (6)  
and (7),  and average the result over scales -L  with the aid 
of (20) and (21). Integration of exp(iI) with the resultant 
Lagrangian density over the variables pik and xi and with 
respect to the non-Goldstone variable3' l i ,  gives rise to the 
appearance of functional 6-functions that are eliminated by 
integrating with respect to the variables mik, Pi ,  and gi. All 
these transformations are quite cumbersome and we leave 
out their details. The calculations yield the large-scale action 
I,,, and the Lagrangian density consisting of a reactive part 
2, and a dissipative part 2,. 

To lowest order, we have for the reactive part of the 
Lagrangian density 

Here 1, is given by (29). We note that the variable yll has 
dropped out completely, and also that we have discarded in 
(64) the terms proportional to Viland VII V1 (cf., the discus- 
sion in the static case). As for the dissipative part of the 
Lagrangian function, it is given in leading order by 
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The structure of (65) is such that it leads automatically to 
satisfaction of the fluctuation-dissipation theorem (cf., 
Refs. 8 and 9).  Note that in the derivation of (65) we have 
included in Y d  a term - (1/2) flidli/dt, having trans- 
formed the derivative of 1 by using the reactive equation 
W = - q,l.v and the representation (29). 

Expression (64) with allowance for (29) agrees fully 
with the reactive part of the Lagrangian obtained in Ref. 12, 
and accords with smectic dynamics with the same smectic 
moduli (32) as obtained in statics. Thus, from the stand- 
point of large-scale dynamics, a cholesteric is equivalent to a 
smectic whose dynamics is consistent with the expression for 
its free energy. Expression (64) is connected with the dissi- 
pative part of the hydrodynamic equations and permits the 
large scale viscosity, heat-conduction, rind permeation coef- 
ficients. 

The hydrodynamic equations corresponding to the ex- 
tremals I are of the form 

aE/at=- V, [ ( P + E )  v,+M, (vAVkW) +M,kVA (v,, V,W)1 

awlat=-vv w+aRlavjMj, (72) 

where we have used the notation 

ltf;=':2Z~2 [go-' ( C W) ' - l ]  VilV-3/aVn (Kslqo") VnVilV, 

iMjj=Va (Kal~e') ViVjW, 

Tij=P6ij+p~ivj+kIjViW+MjnVnViW, 

Ti, is the stress tensor, P is  the pressure, and we have intro- 
duced the large-scale dissipative function 

R = ' / 2 R i j V i T V j T + ' l z ~ i j n m C : j ~ i V n ~ m - 1 1 ~ ~ ~  [ VU~sVivI 

+ ( V ~ ~ I I ) ~ + ( V ~ ~ I ~ V I I V ~ ) - ~ ( V ~ ~ ~ ~ ~ ) ~ I  

+El (V,fifi)2-(E2~o/T) LViTVJfj. 

In the large-scale limit we get thus the usual hydrody- 
namic equations for ~mect ics .~ . '~  The coefficient 6, describes 
a phenomenon known as percolation,' i.e., flow of a layered 
system (smectic or cholesteric) with constrained layers. In 
accordance with (65) and (72), the percolation coefficient 
is 9, = l / y ,q :  (the physical meaning of the terms with the 
kinetic coefficient C2 will be discussed below). 

The large-scale viscosity coefficients q!M' are expressed 
according to (65), (67) and (68) in terms of the small-scale 
bare viscosities of the cholesterics: 

It is important to note that the large-scale viscosities are 
independent of the pitch 2 ~ / q ,  of the cholesteric helix. This 
conclusion can be experimentally verified by measuring the 
dependence of the viscosity on the concentration of the opti- 
cally active additive in ordered nematic-cholesteric mix- 
tures. 

Unfortunately, there are at present for the viscosity co- 
efficients of cholesterics nowhere near complete data, for 
any scale, to compare with the equations presented above. 
One can only expect from general considerations the coeffi- 
cients q ,  and 7,1~ to be somewhat larger than the remaining 
ones (since they are not related to the presence of liquid- 
crystal order). It follows therefore, in the large-scale limit, 
that the coefficient T:~ ' ,  expressed in terms of "large" bare 
viscosities, must be relatively large. No such increase is ob- 
served for the coefficient qiM', in which the "large" viscosity 
coefficient is canceled out by the term, q6. 

Let us discuss some of the terms left out above. Thus, we 
have disregarded the term ( 1/21 YE,,, I, V, v,, that stems 
from y, f;. and leads to the appearance, in the right-hand side 
of (72), of a term 

Accordingly, account must be taken in the right-hand side of 
(7 1 ) of the omitted term 

We have also omitted above from the equations for the mo- 
mentum density and the director the reactive purely choles- 
teric terms (i.e., those which are not invariant under spatial 
inversion). Thus, Eq. (40) may acquire a term proportional 
to 

An anlogous term should be added also to Eq. (39) for j, . 
Averaging of term (75 ) and also of many others of like struc- 
ture adds to the right-hand side of (72) a term proportional 
to (73), while averaging of a corresponding term to the 
equation for ji adds to the right-hand side of (71 ) a term 
proportional to (74). The terms (73) and (74), multipled 
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by certain coefficients, enter thus in the right-hand sides of 
(72) and (7 1 ) . Although these terms are of the same order 
in L /A as the dissipative terms in (71) and (72), it is easy to 
verify that they entail negligible corrections to the spectrum 
of the modes obtained in the large-scale theory, and can in- 
deed be omitted. 

Besides these purely cholesteric reactive terms, we have 
also left out some purely cholesteric dissipative terms. We 
shall need only the pair of such terms with coefficient g,, 
which must be added to the right-hand sides of Eqs. (40) 
and (41 ) , respectively: 

These are precisely the terms that generate the kinetic terms 
we included in (70) and (72) and containing the coefficient 
l2 that has in the large-scale theory the meaning of the cross- 
over thermomechanical percolation coefficient. 

5. CHIRAL SMECTIC C (SMECTIC C") 

A helicoidal structure similar to that of cholesterics is 
possessed also by the smectics known as chiral Cand usually 
designated C *. Besides spontaneous violation of rotational 
invariance, smectics are known to be subject also to violation 
of translational invariance along one of the directions, and 
the result is a layered structure. The unit vector normal to 
the layer, which we designate 1 in the present section, is not 
collinear in smectic C with the director n. Smectic layers are 
therefore not iosotropic: they have a preferred direction 
which we designate by the unit vector 

Smectics C *, just as cholesterics, consist of molecults 
that have no inversion centers. As a result they have in the 
ground state, in analogy with (2) ,  

Y=U cos (qolr) +ul sin (qolr), (77) 

where u and u' are mutually orthogonal unit vectors that are 
also orthogonal to 1. 

We shall describe smectic ordering with the aid of a 
function Wsimilar to the one introduced above for the large- 
scale description of a cholesteric, and having the meaning of 
the density-wave phase in smectics. By virtue of its defini- 
tion, the function W is such that the equation W = const 
describes the position of a certain smectic layer in space, 
such that the vector V W is normal to the layer. Hence it 
follows that 

In view of the conditions (76) imposed on it, the vector v has 
one degree of freedom, so that its variation can always be 
represented in the form 

The angle q, introduced in this manner is a nonholonomic 
variable, so that only its variation is meaningful. For the 
commutator of the variations it is easy to obtain from (79) 

The angle q, is the cause of the additional Goldstone mode 
considered in Ref. 13 and present in smectics C. 

In real smectics C the director makes a small angle with 
the normal 1 to the layer. Hereafter we regard this inclination 
angle 8, as a small parameter. With allowance for this small- 
ness, we can confine ourselves to the following terms of the 
expansion of the free energy that describes the smectic and 
orientational orders: 

F='I ,B[q , -Z(VW)2- l ]V(1 /21  VW12)K,kmnV,VkWVmVnW 

where 

Here, B, K,, and K,  are moduli characterizing the smectic 
ordering, and K,, K3-pc2a2, where p is the density, c the 
speed of sound, and a the atomic dimension. B /PC' is a small 
quantity (usually 10-3-10-2), meaning that the smectics 
are close to a point of second-order transition into the nema- 
tic state. The quantities a,, can be naturally estimated at 
a -pc2a28 i. The wave vector qs in (8 1 )  represents the 
thickness of the smectic layer and is of the oder of lo7-10' 
cm-', while the vector q, represents in accordance with 
(77) the pitch of the helix in smectics C *. The ratio q,/q, is 
the small parameter of the problem and is a measure of the 
weak pertutbation of the symmetry center. 

An important feature of smectics C * is the presence of 
dipole (besides the smectic and orientational) ordering. 
This ordering is allowed just in smectic C * and is due, first, 
to the angle made by the molecules with 1 and, second, to 
their chirality (i.e., to the absence of inversion centers). The 
dipole moment produced in smectics C * is directed along the 
vector Y introduced above [see Eq. (76)]. In view of the 
presence of the dipole moment, it is necessary to take into 
account in the free energy, besides the local term (8 1 ) , also a 
nonlocal dipole term, which we write in the form 

Here p is a constant of order pc2 ( qoa ) 8 6 .  
To obtain the large-scale free energy of smectics C * we 

must follow the procedure described above for cholesterics. 
The free energy (8 1 ) is easily averaged over scales -9 ,  ' 
with the aid of the relation 
- 
Y , V ~ = ' / ~ G , ~ ~ .  (85) 

Before we average the dipole term (84), we note that if Vi Y, 

is expressed in accordance with (79) it is easily seen that 
V-, can be replaced by - g o 2 .  This makes the averaging 
trivial. It can be readily estimated that the only substantial 
term from among the resultant ones reduces to a renormal- 
ization ofa,, . A direct verification shows that elimination of 
the fast degrees of freedom and @ makes no substantial 
contribution to the large-scale free energy. The large-scale 
free energy of smectic C * coincides with (8 1 ), where now 
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Nonlinear dynamic equations for smectics C were ob- 
tained in Ref. 13 using the Poisson-bracket formalism. With 
an insignificant modification due to the presence of the di- 
pole term (84), they are suitable also for smectics C *. These 
equations for W, p, and the momentum density j are: 

Here li, r, qikmn are kinetic coefficients, and in view of the 
smallness of 8, the tensor qikmn has the same structure as the 
viscosity tensor in cholesterics, subject to the obvious substi- 
tution 6, -6: in (46). The stress tensor Ti, determined 
from the local part of the energy density E (see Ref. 13) is 

(90) 
where 

The force Fi in the right-hand side of (89) is due to the 
presence of the dipole term (84): 

To obtain the large-scale dynamics of smectics C * we 
must follow the procedure described by us for cholesterics. 
Averaging of the effective action over scales -9; ' reduces 
in this case to averaging of Eqs. (87)-(89). It is obvious that 
averaging of (87) and (88) is equivalent to replacing E by i? 
in these equations, and the latter coincides in accordance 
with the foregoing with the large-scale energy density. As for 
Eq. (89), its last term is not affected at all by the averaging. 
When Tik [Eq. (90)] is averaged the term dE /dVk W is 
replaced by aE /avk W, the last term of (90) vanishes, and 
the averaging in the remaining terms reduces to the substitu- 
tion E-E. Allowances for the term 6. of (89), averaged in 
the same manner, leads to a final equation 

The tensor T !F' is determined here from the large-scale en- 
ergy density by the procedure (90). It can be directly veri- 
fied that elimination of the fast degrees of freedom leads to 
inessential corrections to the averaged equations; these cor- 
rections are small in the parameter k /go, where k is the char- 
acteristic wave vector. 

Thus, from the large-scale standpoint, the entire differ- 
ence between C and C * smectics reduces to the presence of 
terms proportional to go in the expansion of the free energy 
(81), and to the presence of the kinetic coefficients c,, 
c4 ccgo in Eqs. (87) and (88). These terms lead, in view of 
the smallness of qo/q,, to small efects. Therefore, in particu- 
lar, the orientational-mode spectrum in smectics C * has the 
same diffusive form as in ordinary smectics C: 

In the derivation of (94) we used the smallness of a - 8 :. 
Thus, the situation in smectics C * differs radically from 

the case of cholesterics, considered in the preceding sections, 
where the transition to large scales restructured the natural- 
mode spectrum (one propagating mode was obtained in lieu 
of the two small-sale diffusive nematic modes). 

In conclusion, the authors thank G. E. Volovik for sup- 
plying his unpublished results on large-scale statics of cho- 
lesterics. 

"Note that the number of slow Goldstone degrees of freedom is not neces- 
sarily equal to the number of fast degrees of freedom. 

"This statement will be made more precise below. 
3 ' J~s t  as in statics, the second terms in the right-hand sides of ( 11) and 

( 12) can be neglected here. 

'P. G. de Gennes, The Physics of Liquid Crystals, Oxford, 1974. 
'G. E.Volovik, Pis'ma Zh. Eksp. Teor. Fiz. 29,357 and erratum on p. 524 
(1979) [JETP Lett. 29, 322 (1979)l. 

'G. E. Volovik and E. I. Kats, Zh. Eksp. Teor. Fiz. 81,240 (1981) [Sov. 
Phys. JETP 54, 122 (1981)l. 

4N. D. Mermin and T. L. Ho, Phys. Rev. Lett. 36, 594 (1976). 
'A. Z. Patashinskii and V.L. Pokrovskii, Fluktuatsionnaya teoriya fazo- 
uykh pereuodou (Fluctuation Theory of Phase Tansitions), Nauka, 1982, 
Chap. VIII [transl. of earlier edition,Pegamon, 19791. 

6E. I. Kats, Zh. Eksp. Teor. Fiz. 83, 1376 (1982) [Sov. Phys. JETP 56, 
791 (1982). 

'G. Grinstein and R. A. Pelcovits, Phys. Rev. Lett. 47,856 ( 1981 ); Phys. 
Rev. A26,915 (1982). 

". V. Lebedev, A. I. Sukhorukov, and I. M. Khalatnikov, Zh. Eksp. 
Teor. Fiz. 85, 1590 (1983) [Sov. Phys. JETP 58,925 (1983)l. 

91. M. Khalatnikov, V. V. Lebedev, and A. I. Sukhorukov, Phys. Lett. 
94A, 272 ( 1983). 

'OH. K. Janssen, Z. Phys. B23,377 (1976). 
"C. De Dominicis, J. de Phys. 37, C-247 ( 1976). 
"E. I. Katsand V. V. Lebedev, Zh. Eksp. Teor. Fiz. 85,2019 ( 1983) [Sov. 

Phys. JETP 58, 1172 (1983)). 

Translated by J. G. Adashko 

524 Sov. Phys. JETP 64 (3), September 1986 E. I. Kats and V. V. Lebedev 524 


