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The thermal conductivity of He 11 in capillaries is found as a function of the temperature and 
the thickness of the capillary. The results have been obtained for both low pressures (when the 
phonon spectrum is slightly unstable) and relatively high pressures (when the decay processes 
are forbidden ) . 

1. INTRODUCTION 

The Landau-Khalatnikov theory of kinetic phenomena ti1dc5 (kT) -Blteb^lkT 

Lpr=c~pr, Zpr a 
( 2 ~ ) ~ p : p ~  ' in He 11 (Refs. 1-3) is based on the assumption that the 

phonon spectrum is stable. A refinement of the phonon dis- 
persion law shows that, up to pressures P of roughly 15 or 18 2 1 pol 2 A p 0  
atm r=-+-( 9 25 pc ) +--+Az, 9 kc 

(E andp are the phonon energy and momentum, respective- 
ly, and c is the velocity of sound), and, thus, the decay pro- 
cesses (the processes 1-2) and not But be- 
cause the parameter y is so small, the processes 1 + 2 are 
small-angle processes (i.e., all the three phonons have al- 
most collinear momenta). Therefore, these processes cause 
insignificant changes in the previously found'-3 values and 
temperature dependences of the kinetic coefficients, the 
computation of which was based on the assumption that the 
fastest processes in He are the establishment of equilibrium 
in the roton gas and the establishment of equilibrium-in 
energy terms-for the phonons with a given momentum di- 
rection. Phonon scattering by the rotons is the process that 
establishes total equilibrium in the phonon gas. Neverthe- 
less, as will become clear below, the change in sign of the 
parameter y (at P- 18 atm), a change that results in the 
stability of the phonons, has a slight effect on the magnitude 
of the kinetic characteristics, but does not change their tem- 
perature dependence. 

In the presence of a temperature gradient in superfluid 
He, besides the macroscopic liquid motion, which is accom- 
panied by heat transport by the normal component, a nonre- 
versible heat flow occurs: 

The thermal conductivity coefficient x is the sum of the ther- 
mal conductivity coefficients for the photons and rotons: 
x = x,  + x ,  . Above 0.9 "K the thermal conductivity coeffi- 
cient x ,  for the rotons predominates; it is determined by the 
roton-roton For T < 0.9 "K the dominant con- 
tribution to the thermal conductivity is made by the phon- 
ons. In the region 0.6-1.4 "K the phonon-governed thermal 
conductivity is determined by the scattering of the phonons 
by the rotons, which is characterized by a relaxation time 
T,, . According to Khalatnikov,' 

Besides L,, = cr,,, all the designations are conventional 
designations (C,  and S are the phonon specific heat and 
entropy per unit volume; p, and p are the normal-compo- 
nent and total helium densities; A, po, and p are the param- 
eters of the roton energy spectrum; and k is the Boltzmann 
constant). 

The formula ( 1 ) was derived under the assumption that 
the phonons moving in one direction are in a state of quasi- 
equilibrium. For T< 1 "K the thermal conductivity can in- 
deed be computed under the assumption that the equilibri- 
um-in energy terms-for the phonons moving in the same 
direction (at P < 18 atm, the process 1 - 2) is established 
instantaneously, but for T> 1 OK it is necessary to allow for 
the finiteness of the time 7, - ,  . Adamenko and Slyusarev9 
have obtained a modified expression for the phonon thermal 
conductivity coefficient, using Maris's" results for the time 
t -, ( E )  . For r1 -, -0, the corresponding Adamenko-Slyu- 
sarev formula9 naturally goes over into ( 1 ) . Allowance for 
the finiteness of the time rl-, leads to an approximately 
10% increase in x,  at 1 "K and to as much as 80% increase at 
1.4 OK. But since the relative contribution of the phonons to 
the total thermal conductivity decreases with increasing 
temperature, the effect of the finiteness of the time T~ -, is 
not too important. 

For P R  18 atm, 7,-, + 00,  and all the remaining 
phonon times increase approximately by two orders of mag- 
nitude (Adamenko and ~ s ~ ~ a n o k " ) .  As shown in Refs. 11 
and 12, in the region of high pressures ( 18-24 atm) an im- 
portant role is played in the kinetic phenomena by the relax- 
ation time t (E)  due to the emission (absorption) of phonons 
by the rotons, and we must, in computing the thermal con- 
ductivity coefficient allow for four relaxation times: t(&), 
t,, (E),  t 2-2  ( E )  (four-phonon small-angle scattering), and 
t :-, (E) (four-phonon large-angle scattering). In Ref. 1 1 an 
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expression for x, is derived which is valid for this region of 
pressures. 

Above we discussed the thermal conductivity of an infi- 
nite volume of He. The influence of the size effects on the 
kinetic coefficients was first taken into consideration by At- 
kins,13 who considered the case when the roton motion is 
similar to the flow of a viscous liquid and the phonons consti- 
tute a Knudsen gas, i.e., when the following inequalities are 
valid 

where D is the thickness of the plane-parallel capillary and 
L,,,, is the roton (phonon) mean free path. Using Atkins's 
hydrodynamic equations13 for He, we have derived expres- 
sions for the phonon- and roton-transported heat fluxes, and 
used them to derive expressions for the effective thermal 
conductivity coefficients: 

Heres,,,, ,p,,,, , and qr  are the phonon (roton) parts of the 
entropy, density, and viscosity, respectively, p, is the density 
of the superfluid component of helium, and f is the fraction 
of phonons diffusely reflected from the walls ( f< 1 ) . When 
we go over to a circular capillary, we should replace D by R 
( R  is the radius of the capillary) and the factor 1/12 in the 
second formula by 1/8. We should, however, bear in mind 
that, strictly speaking, xeff describes not the thermal con- 
ductivity proper, but the transfer of heat as a result of the 
flow of the normal component (see above). As far as we 
know, the influence of the size effects on the true thermal 
conductivity of He II has not been estimated. 

In the present paper we report the results of a theoreti- 
cal investigation of the influence of the size effect on the 
thermal conductivity in the temperature region from 0.6 to 
1.4 OK. The size effects in this region are important only for 
the phonon-governed thermal conductivity, since in capil- 
laries of reasonable dimensions ( 10-5-10-3 cm) the mani- 
festation of the size effects in the roton system can be expect- 
ed at T <  0.9 "K and at these temperatures the contribution 
of the rotons to the thermal conductivity is negligibly small 
( x ,  4 x p  1. 

In this paper we assume that the capillary is sufficiently 
wide, so that the quantization of the transverse phonon mo- 
tion can be ignored, i.e., D / A  ) 1, where A is the wavelength 
of a phonon with energy E-- 7kT. Hence 

kTD/ctt>l or T ( K )  BIOID (A) .  

It can be seen that, in the case of capillaries with lop5 
cm 5 D 5 lo-' cm, this condition does not impose signifi- 
cant limitations. 

Underlying the analysis is the assumption made about 
the nature of the interaction of the phonons with the surface: 
the scattering by the walls is assumed to be entirely diffuse 
scattering. This assumption should hold on extremely rough 
walls. It enables us to determine the maximum influence of 
the size effects on the thermal conductivity," making the 
collisions with the wall the cause of the required dissipation 

of the momentum of the directed motion of the phonon gas. 
The existence of several types of relaxation processes in 

a phonon gas can lead to a peculiarity of size effects in He 11, 
since the scattering by the rough wall should "split off' 
those dissipation mechanisms for which the mean free path 
L is significantly greater than the capillary thickness D. But 
as an analysis of the electrical conductivity of thin plates 
shows,15s16 because of the quasiparticles flying parallel to the 
boundaries (of the plate or capillary), the "memory" of the 
internal dissipation mechanism (with mean free path L )  is 
retained in the expression for the kinetic coefficient: when 
L )D, the kinetic coefficients contain the characteristic fac- 
tor ln(L /Dl. This phenomenon, which has been studied on 
conduction electrons, is investigated in the present paper for 
phonons-quasiparticles obeying the Bose-Einstein statis- 
tics, and therefore requiring that allowance be made for their 
energy distribution. 

2. THE T APPROXIMATION 

In order to get qualitative ideas about the role of the size 
effects, we shall use the r approximation, i.e., we shall re- 
place the true collision integral I{n) by the expression 
- nl/r(&), where n, = n - no is the correction to the equi- 
librium phonon distribution function 

no= {exp [ (cp-p (v,-v,) ) lkT1 - I ) - ' ,  

produced by the temperature gradient dT /dx; r (E) 

is a phenomenological parameter-the energy-dependent 
phonon-relaxation time; and v, and v, are the velocities of 
the normal and superfluid components. Let us write down 
the linearized kinetic equation for the function n,, assuming 
that the temperature gradient is directed along the x axis, 
while the normal to the surface of the plane-parallel capil- 
lary of thickness D = 2d is oriented along the z axis: 

Here v = M a p ,  n; = - n,(no + 11, and no 
- - (eCPlkT  - 1 ) - I .  We have discarded in no the convective 
term (i.e., the term - p(v, - v, ) in the expression for the 
phonon energy). It is convenient to make allowance for it in 
the final expression for the heat flux, as shown in Ref. 3: to do 
this we must multiply the expression obtained with the aid of 
the fluctuation n, by ( 1 - S T  /p, c2). This factor, which oc- 
curs also in the right member of the kinetic equation (2), is 
equal to zero for a phonon gas with a strictly linear disper- 
sion law (see Ref. 3), and we must take this into account 
when substituting the values ofp, and Sinto all the formulas 
(in particular, into the formula (1)  and the Adamenko- 
Slyusarev f ~ r m u l a , ~  which, naturally, take account of the 
convective term). 

The total diffuseness of the phonon reflection from the 
capillary walls dictates the boundary conditions for the 
function n , at the walls: 

Replacing the collision integral in the kinetic equation (2)  
by - n , / r ( ~ ) ,  and solving the resulting differential equa- 
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tion with allowance for the boundary conditions (3) ,  we rn mz 

obtain 15 e4eukrz ( e )  de  15cz x4esx ( x )  ok 
L = - c ( ~ T ) - ~ J  4n4 (ee lhT- j ) z  = - J ,  4n4 , (eX-1)' ' 

z*d dT 
ni =*(I k ~ "  - z ) p s T ( E )  pncZ [ I  - exp(-m)] z. (9) 

Notice (and this is one of the principal results of the present 
The upper sign corresponds to V, > 0; the lower sign, to section) that the quantity c a D # L .  
v, < 0 .  The thermal conductivity coefficient ( x ,  ) averaged In the case of a narrow capillary (D 4 c r )  we can use the 
over the width of the capillary is defined as follows: asymptotic expression for a(&) for (D-0) : 

CT ( E )  
m ( 8 )  m 3D(~nT ~ T ( E )  c + 0 . 4 2 ) ,  

(4) whose substitution into (5) yields 
Hence, changing the order of integration, and going over to 
spherical coordinates in p space (the angle 6 is measured 
from the z axis), we obtain 

C‘7 where 

where 
n/z 

3 '6 (e )c  
B ( E ) = -  j [ I - T  

2 0  

Comparing the limiting value of the thermal conductivity 
coefficient ( 11 ) with ( 1 ) [with the mean free path L  given 
by the formula (9)  1, we see that the expression ( 1 1 ) can be 
represented as 

It is natural to consider the two limiting cases of a wide 
- - 

(D & c T (E)  ) and a narrow (D g c  r(&) ) capillary. Strictly 
speaking, the mean relaxation time r(&) should be defined 
more accurately in the computation, but if the integrals ob- 
tained as a result of the expansions do not diverge (for this to 
be the case it is, in particular, necessary that r (&)  not go to 
infinity as E -+ 0 faster than E- ' ), then we can use the follow- 
ing procedure. Let r ( e )  = r x ( ~ / k T ) ,  where r characterizes 
the order of magnitude of r(&) for E-kT. Then we can use - 
the ratio CT/D, instead of c T(E) /D, when making estimates. 

In the case of a wide capillary ( D s c r )  we should ne- 
glect the exponential function in the expression for a ( & ) .  
Then 

Here 

Let us draw attention to the characteristic logarithmic 
dependence on the ratio of the mean free path to the capillary 
thickness, a dependence which is due to the phonons that 
scarcely collide with the surface (as we have indicated, a 
similar dependence is observed in the electrical conductivity 
of thin metallic plates). Interesting information about the 
phonon energy dispersion is contained in all the expressions 
in which the integrand contains the functionx(x). It should, 
however, be remembered that the formulas derived in this 
section are of a simplified nature, since they are based on the 
r approximation. 

Further, even though the relation between D and c r  will 
not allow the logarithmic factor to manifest itself fully, the 
resulting expressions indicate that a natural transition from 
L  to D should occur in the expression for ( x ,  ) as the capil- 
lary thins down (or as the mean free path increases with 
decreasing temperature). The dominant temperature depen- 
dence of the thermal conductivity in the case of a narrow 
capillary is determined by the coefficient in front of the loga- 
rithm: it does not depend on the dissipation mechanisms; the 
role of the mean free path is played by the capillary thickness 
in the case when CT, D. 

Let us emphasize again that we cannot replace T(E) in 
Eq. (8) or (9)  by the phonon relaxation time3 

The value of the thermal conductivity coefficient for bulk [for the meaning of T,, , see the formula ( 1 ) 1, since because 
He 11 (D+ cu ) is given by the usual formula [see ( 1) I ,  but of the rapid ( increase of r ( ~ )  with decreasing ener- 
we should substitute in place of L,, the expression gy, these integrals diverge. 
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3. THE SlZE EFFECT AT LOW PRESSURES 

In the temperature range (0.6-1.4 OK) of interest to us, 
the following processes are, as we have already indicated, 
responsible for the establishment of equilibrium in the 
phonon gas at low pressures: the decay of a phonon into two 
[this process establishes equilibrium among the phonons 
with a given momentum direction j = p/'; its relaxation 
time is t ,,, (E) ] and also the phonon-roton scattering [it 
isotropizes the phonon distribution function; its relaxation 
time is given by the expression ( 13) 1. The remaining relaxa- 
tion processes can be ignored, since their characteristic times 
are much longer than the relaxation times 7, ,, and r,, . Con- 
sidering the time T,,, to be instantaneous in comparison 
with r,, , we can ignore the deviation of the phonon distribu- 
tion function from the Bose function 

in which, however, the reciprocal temperature P is a func- 
tion of j and z (but does not depend on E!). To first order in 
d T  /ax 

Do = l/kTo, where To is the equilibrium He-II temperature. 
To determine the function PI, we must multiply the 

linearized kinetic equation (2),  in which the relaxation 
times T(E) should be taken to be equal to t,, ( E ) ,  by the 
phonon energy, and integrate over the modulus of the mo- 
mentum. Taking ( 14) into account, we have 

The boundary conditions for this equation naturally coin- 
cide with the boundary conditions forn, [see ( 3 ) J .  Comput- 
ing the function p, (and, with its aid, n, ) , we obtain for the 
averaged thermal conductivity coefficient the expression 

where 

From these expressions we immediately obtain the limiting 
values of the averaged thermal conductivity coefficient: 

The dependence of the averaged thermal conductivity 
coefficient on the dimensions of the capillary in this case is 
identical to the plate-thickness dependence of the electrical 
conductivity,I5 with, of course, I,, replaced by the electron 
mean free path I,. The reason for this lies in the absence of 
dispersion, i.e., the fact that/?, does not depend on the ener- 
gy (analogous to the degeneracy of the electron gas in a met- 
al). 

There arises the question: If we allow for the finiteness 
of the relaxation time r1 ,, , can we, in the case when D 5 L,, , 
neglect the phonon-roton scattering at all? In other words, it 
is not possible for the scattering on the rough surface to serve 
as the "final" relaxation mechanism in the computation of 
the coefficient of thermal conductivity of He 11 in a thin 
plane-parallel capillary? The answer is no. Indeed, writing 
the linearized kinetic equation with the collision integral 
I,-, {n) (in, for example, the form proposed by 
Callaway"), and taking account of the fact that the energy 
in the three-phonon process is conserved, i.e., 

J 114.{.).p2 dp=O, 

we immediately obtain for p, an equation that does not con- 
tain a relaxation term [cf. ( 15) ]. It  is clear that in this case 
Pl a (COS 8 )  - I ,  and the expression for (x, ) diverges be- 
cause of the phonons that do not collide with the surface of 
the capillary, with the result that allowance for the phonon- 
roton collisions is necessary. Furthermore, it can be shown 
[true, with the aid of simplifications that are not too well 

justified, namely, the introduction of the averaged times 
rl,, and r,, instead of the energy dependent times t ,,, (E)  

and t,, ( E )  ] that the three-phonon relaxation time does not 
enter into the capillary-thickness dependence of (x, ). This, 
it seems to us, shows that ( 18) correctly describes the size 
effect in He 11 at low pressures. 

4. THE SlZE EFFECT AT HIGH PRESSURES 

For P> 18 atm (according to some data, for P> 15 
atm) the three-phonon processes are forbidden. We shall 
base our analysis on the assumption that the fastest relaxa- 
tion process is the four-phonon small-angle scattering pro- 
cess with characteristic time ?-,-, (rpr. This case is appar- 
ently realized at pressures P2 18 atm and temperatures 
-0.6 OK. It  is interesting that the replacement of the instan- 
taneous three-phonon process by instantaneous small-angle 
four-phonon process by instantaneous small-angle four- 
phonon scattering leads to a significant (roughly a factor of 
10) change in the coefficient of thermal conductivity of an 
infinite volume of helium, although the three- or four- 
phonon relaxation time does not itself enter into the expres- 
sion for the kinetic coefficient. As in the preceding section, 
the phonon-roton scattering serves as the "final" relaxation 
mechanism. 

Let us consider the size effect in this situation. The dis- 
tribution function can then be represented in the form 

n= {exp [ (a+e) i3] -I)-', 

since the small-angle four-phonon scattering process estab- 
lishes a Bose-Einstein distribution with a nonzero chemical 
potential a and a temperature l /p  that depend on the direc- 
tion j of motion of the phonons. The linear (in dT/ax) cor- 
rection to the equilibrium phonon distribution function is 
now determined by the functions a and PI [cf. ( 14) 1 : 

n,=%'(aPo+ePi), (19) 

while the j- and z-dependent (but &-independent) functions 
a and p, should be determined from the kinetic equation 
(21, with I{ni 1 = I,, {n,). Using for I,, {n ,) the r approxi- 
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mation with the relaxation time (13), and integrating (2)  
twice (once directly over the moduli of the momenta and a 
second time after it has been multiplied by the phonon ener- 
gy), we obtain a system of two equations for the two func- 
tions a andp,. Its solution [with zero boundary conditions 
for the phonons leaving the walls of the capillary2'; cf. (3) ] 
has the form 

z*d + a. exp ( - ) } 
L(" cos 0 + a 3  , 

P' (20) 

ST 1 d T  p* = sin 0 cos p c r p r ( ~  - - -; )-- - { b ,  exp (- 
p,c kT  dx L'ij cos 0 

The plus sign ( + corresponds to cos 8 > 0; the minus sign 
( - ), to cos 0 < 0. The numbers 

a,=-59.5, az= 1.42. ~ ~ ~ 5 8 . 0 ,  

biz7.07, bzx-0.835, b3~-6 .23  

are the results of an approximate computation of the inte- 
grals containing the Bose function. The quantities 

have the meaning of phonon mean free paths. They have the 
same temperature dependence, which is explained by the 
fact that we took into account only one relaxation process: 
the scattering of the phonons on the rotons. Note that the 
condition L i!' % L $' (L $'/L $' =: 50) enables us to con- 
sider the intermediate asymptotic form in the capillary 
thickness D. 

Using ( 19 and ( 201, we can easily compute the value 
of the capillary-thickness-averaged thermal conductivity co- 
efficient (x, ). It formally coincides with ( 16), but the func- 
tion J(crP,/D) has a significantly more complicated form 
than (17): 

o, a / 2  

The integral J is easily evaluated in the limiting cases. 
A. Thick capillary (D> L i!' >L  g' ) : 
~=9.87-3 .54~: '  ID. 

As the capillary thickness tends to infinity, the integral J 
approaches the limiting value J, ~ 9 . 8 7 .  This factor shows 
that replacing the three-phonon process (T,,, = 0) by the 
four-phonon process (T,,, = 0) causes the thermal conduc- 
tivity coefficient value to increase by roughly a factor of 10 

(as we have already noted). The factor J, appears in the 
Khalatnikov formula3 as well if we set T,,, = w in it. 

B. Intermediate case (L hi' ) D ) L if') : 

C. Narrow capillary (L hi' S L  kf ' >Dl : 

We have not discarded the term with L kf', since there is a 
relatively large coefficient standing in front of it. 

At pressures of about 24 atm the shortest relaxation 
times are" t,, and t. Since both of these processes lead to the 
total relaxation of the phonon gas, we can use the T approxi- 
mation, assuming that 

where N, is the number of rotons in a unit volume and T, is a 
parameter governed by the roton-roton interaction (see Ref. 
1 1 ), and compute (x, ) with the aid of the formulas (5)  and 
(6). But the capillary-thickness-dependence of the averaged 
thermal conductivity coefficient requires further treatment, 
since for a wide capillary the energy dependence T = T(E), 
(22), leads to the divergence of the correction term. At the 
same time L can be computed from the formula (9).  

Let us, without giving the temperature dependence of 
xp = (x, ) [it is determined by the relation connecting the 
parameters contained in the formulas (22) and (7)  1, find 
out how the first correction to x, depends on D in the case of 
a wide capillary. The factor attached to 1/D contains, in 
accordance with the formula (6) ,  the integral (23) 

rn 

E 4 e e / k T  t 2 ( e ) d e  
1- j (ee/kT-l) 2 

0 

If we neglect the exponential function, the energy integral 
will diverge, since according to (22), T(E)  a E-' for E + 0. 
This means that, at sufficiently large values ofD the value of 
the integral is determined by the behavior of the integrand as 
E + 0, where 

Substituting (24) into the integral (23), and replacing E by 
the dimensionless variable x = (D /ct,) '12(&/kT), we ob- 
tain 

cc 

J=toz(kT)5 (2 ) I h  j dx exp [ (c to /D)  '"XI 
{exp[ (c t0 /D)  ' " X ] - - I ) ~  

n / z  

x j'{i - erp (-zz/cos 0) cos 0 sin3 0 do. 
0 

Sincect, (D, we can expand the exponential functions. Then 
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D '" dx x2 
J = ( - )  J, J[ I - exp( - -)]cos 0 sin3 ode. 

c t o  " x- 0 cos 0 

Now we can remove cos 8 from the exponential function. As 
a result 

Thus, 

Note that the dispersion of the relaxation time had a signifi- 
cant effect on the dependence of ( x ,  ) on D: the square root 
dependence is a consequence of the asymptotic formula 
(24). 

To compute (x, ) for D-0, we can use the formula 
( lo),  since the resulting integral does not diverge. From it 
we obtain the following characteristic thickness dependence 
of the averaged thermal conductivity coefficient: 

the Lo value being dependent on the relation between t and 
t,, at E -7kT, where the function (eelkT - 1 ) -' has 
its maximum. 

The size effect in helium at temperatures ranging from 
0.6 to 1.4 "K can be observed at low pressures in capillaries of 
thickness D lying in the range from lop5 to lo-' cm and at 
high pressures in the case lov5 5 D 5: lo-' cm. Unfortunate- 
ly, we do not know of any experiments in which the thermal 
conductivity of He 11 was measured as a function of the capil- 
lary thickness, and with which we could compare the expres- 
sions obtained. Further, we wish to point out the desirability 

of experimental observation of the thermal conductivity co- 
efficient ( x  ) anomaly due to the change in sign of y (see the 
Introduction). As far as we know, there has not been any 
experimental search for the anomaly. 

We take the opportunity to thank K. N. Zinov'ev for his 
help and for a discussion of all the results of the paper. 
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