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An analysis is made of various methods for exciting shear (transverse) vibrations in a two- 
dimensional electron crystal. In one of these methods a coil of an oscillatory circuit is 
magnetically coupled to currents which appear in a crystal as a result of its vibration. In the 
other case the excitation of transverse modes of an electron crystal is by a parametric 
resonance in an external homogeneous magnetic field which oscillates with time. The two 
methods are suitable for studies of Wigner crystallization on the surface of helium and similar 
crystallization in inversion layers of semiconductors. 

In spite of the discovery of Wigner crystallization in a 
two-dimensional system above liquid helium, '-"he problem 
of the existence of an electron crystal in other two-dimen- 
sional charged systems (for example, inversion layers) has 
not yet been solved. It is therefore desirable to consider alter- 
native methods for exciting transverse sound in a 2 0  elec- 
tron system which could be used more generally. Some of 
them are discussed below. 

The existence of a shear rigidity in a two-dimensional 
electron disk of radius R should be manifested when, for 
example, attempts are made to rotate this disk at a variable 
velocity by means of external forces distributed nonlinearly 
along the disk radius. Such a distribution of forces is shown 
schematically in Fig. 1 and can be brought about by a planar 
coil of radius R ,  > R connected to an oscillatory circuit of 
suitable frequency carrying an alternating current I ( t ) ;  such 
a coil surrounds the electron disk along its perimeter and 
may be used also as a guard ring of the kind usually em- 
ployed in experiments on surface electrons above helium. An 
alternating magnetic field created by the current I ( t )  then 
induces an alternating electric field with an azimuthal com- 
ponent E, ( r )  dependent on the distance r from the center of 
the disk. The distribution of forces with a surface density 
enE, ( r ) ,  where e is the electron charge and n is the surface 
density of electrons, excites shear vibrations of the electron 
disk. We shall assume that the displacements due to such 
vibrations have only the azimuthal component u, (r , t) .  In 
fact, the existence of an azimuthal velocity creates a Lorentz 
force in the radial direction, but because of the very low 
compressibility of a two-dimensional Coulomb system we 
can ignore the radial component of the displacement (which 
alters the charge density) and, consequently, we can ignore 
the Lorentz force. 

A system comprising a coupled oscillatory circuit and 
electron disk can be described conveniently by the Lagran- 
gian formalism using an electromechanical analogye4 The 
role of the kinetic energy is then played by the sum of the 
magnetic energy present in the system of currents and me- 
chanical kinetic energy of electrons in the disk, and the effec- 
tive potential energy is composed of the electrical energy of 
the capacitor in the oscillatory circuit and the elastic energy 

of the electron disk deformed in the process of vibrations. 
The charge Q on the capacitor in the oscillatory circuit can 
be used as a generalized coordinate and the disk can be de- 
scribed by the coefficients Ui (i = 0,1,2, ...) in the expansion 
of the azimuthal displacer~~ent 

in a system of functions that appear in the solution of the 
problem of radially symmetric shear vibrations of an infinite 
cylinder made of an incompressible material considered in 
the conventional theory of elasticity: 

where J, ( x )  is a Bessel function; /Zi are positive roots of 
J , (x)  = 0 which represents a compact form of the condition 
for the absence of tangential stresses on the free surface of a 
cylinder. The calculations then yield the following results 
for the Lagrangians of the disk, circuit, and their interaction: 

a - 

FIG. 1 .  a )  Linear distribution 
of azimuthal torques resulting 
in rotation of a disk as a whole; 
b)  nonlinear radial distribution 
of the forces along exciting 
shear vibrations in a disk. 
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Here, 
I 

M i=2mNai ,  a i = 2 n  j [ui i '  ( x )  ]'x dx; ( 7 )  
0 

I 2n 

2eN 
P1 = 7 rir 

u; i ' (x)xcoscp . 
yi=2n j dx J dcp 

(x2+a2-2ax cos c p )  '"' 
(9 )  

a = R,/R > 1; wi = ilic,/R = kit,; c: =p/mn is the veloc- 
ity of transverse sound in an electron crystal; p is the shear 
modulus of this crystal; m is the electron mass; cis the veloc- 
ity of light; N = rnR is the total number of electrons in the 
disk; Lo and Co are the inductance and capacitance of the 
components of the oscillatory circuit; in the case of a coil 
consisting of one turn of a thin (radius b 4 R , ) wire, we have 

The nondiagonal terms in the expressions for the Lagran- 
gian of the disk given by Eq. (4)  describe the magnetic inter- 
action of the currents created by vibrations of a disk consist- 
ing of charged particles. The sum in Eq. (4),  corresponding 
to the potential energy, does not have a term with i = 0, since 
the zeroth mode represents the rotation of the disk as a whole 
and therefore makes no contribution to the elastic deforma- 
tion energy (i.e., wo = 0).  

If we diagonalize L, with the aid of a suitable matrix D, 
i.e., if we adopt new coordinates V, = D fUk, we can write L 
in the form 

where wj are the eigenfrequencies of the vibrations of the 
disk calculated allowing for the magnetic interaction of the 
currents in the disk and p; = (D - I )  fpk. Using the expres- 
sion obtained in this way for L, we readily derive the follow- 
ing equation for the natural frequencies of the oscillatory 
circuit + disk system: 

m 

where O2 = cZ/LoCo is the eigenfrequency of the circuit in 
the absence of the disk; vf = Mi/(Cgj2);  it is assumed here 
that w;, = 0. 

The solution of this equation is an infinite-valued func- 
tion iS (O),  the first few branches of which are shown in Fig. 
2. The branches are labeled so that for p j  +O(i = 0,1,2, ... ), 

FIG. 2. Schematic representation of a multivalued function i j ($2)  which 
is the solution of Eq. ( 12) and gives the eigenfrequencies of oscillations of 
the circuit + electron disk system as a function of the eigenfrequency of 
the circuit $2. 

the branch iSo(R) reduces the O and Gi(f l )  -w,!. At low 
values O the inequality G O ( 0 )  > fl is obeyed because the 
currents excited in a disk by the alternating magnetic field of 
the coil prevent the field from changing, which can be re- 
garded as an effective reduction in the coil conductance. 

In the vicinity ofa point with coordinates (wj,w]) (Fig. 
2)  two resonance frequencies of the system are described by 

f i i ( 0 i ' )  =uif+Ai ,  ai-l=oi'+Ai-l. 

Assuming that Ai,Ai-, gw] and retaining on this basis only 
the appropriate resonance term in the sum of Eq. ( 12), we 
can find approximately A, and hi _ , , and also the total split- 
ting 6, : 

& = a i ( m i f )  -G&-1 (mi') =Ai-Ai-1, 

, mi' 
(13) 

A i m @ ,  7, Ai-im-Ai, 
2vi 

The quantity ai depends onpl which is a parameter govern- 
ing the strength of the interaction of the oscillatory circuit 
with the ith shear vibration mode of the disk. 

The quantities/,! and w,! calculated explicitly require 
finding the matrix D which diagonalizes the Lagrangian of 
the disk. This is generally a difficult problem. The situation 
simplifies when the ratio of the coefficients mv and Mi, gov- 
erned by the formulas ( 7 )  and (8), is small: 

where re = e2/mc2z3 x 10-l3 cm is the classical electron 
radius. The inequality ( 14) is obeyed in the case of the den- 
sity of surface electrons h g 1013 cm-2 for R of the order of 
several centimeters, which is always true in the case of elec- 
trons above helium and is readily realized in inversion layers 
of semiconductors. 

If E 4 1, it is possible to ignore the nondiagonal terms in 
the Lagrangian (4)  and substitute in Eq. ( 11 ) subject to Eq. 
(9)  

2eN P i ' = p i  = - T i ,  0 i p = o , .  
c2 
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Consequently, the splitting S, of Eq. (13) can be de- 
scribed by the approximate formula 

6 
2. .v 2 ' 9  ,a;'" (r,lV/L0) " - (r,NIL,) '" 
0,  

(15) 

[in writing down this estimate we assumed in Eq. ( 15) that 
a, and y, are numerical coefficients of the same order]. In 
the absence of an electron disk in the crystalline state the 
splitting causes the resonance curve f(w) of an oscillatory 
circuit to have one peak at the frequency R; in the presence 
of an electron crystal when the frequency w reaches the vi- 
cinity of one of the frequencies m , ,  the peak splits into two 
and they are separated by 6, from one another. Moreover, 
the resonance singularities should appear near the remain- 
ing eigenfrequencies of the disk w, . When the temperature is 
increased to the melting point of the crystal, these effects 
disappear and they can therefore be used to detect the liquid- 
crystal phase transition in the electron system. Note that an 
allowance for the damping in transverse vibrations of a crys- 
tal by introducing a "dissipative" stress tensor5 has the re- 
sult that 

where v is the kinetic viscosity of the crystal. If we can esti- 
mate v from Ref. 3 for T = 70 mK and assume that c, - 10' 
cm/sec (which is consistent with typical electron densities 
above helium), we find that in the case of low values of i for R 
of the order of several centimeters we obtain r 5 i.e., 
the damping is weak. 

It is worth considering particularly the case of a linear 
distributionFp ( r )  of forces along the disk radius, represent- 
ed by curve a in Fig. 1. In view of the electromagnetic origin 
of these forces, we may conclude that the situation described 
by curve a in Fig. 1 corresponds to the action on the electron 
system of a spatially homogeneous magnetic field H ( t )  
which oscillates in time. In this case the considerations men- 
tioned above cease to be valid, because the distribution of the 
surface forces linear in respect of r simply results in solid- 
state rotation of the disk as a whole and does not excite shear 
modes. However, once again the shear degrees of freedom 
may be excited parametrically. 

Let us assume that (x ,y)  is the plane of the crystal and 

H (t) =Ho+h (t) , h (t) < H 0  

is the periodically varying magnetic field along the z axis 
direction. The electric field E induced by this alternating 
magnetic field depends on the geometry of the system: if 
H ( t )  is created inside a cylindrical solenoid, then 
E(r )  = [r,h]/2c, where r is the radius vector in the ( x ,y )  
plane, but if the field is created by a coil of rectangular cross 
section with sides X( Y, then far from the smaller side the 
field has only one component E,, = - hx/c. 

A. We shall first consider the cylindrical geometry case. 
The equation of motion of an electron at the I th lattice site is 

where R, and v, are the radius vector and the electron veloc- 

ity, and Uis the Coulomb energy of the electron interaction. 
In the case of an electron disk which is completely rigid the 
last term in Eq. ( 17) would result in rotation of the crystal as 
a whole with an angular velocity R( t )  = - eh (t)/2mc. In 
view of the very low compressibility of the electron crystal, it 
remains to assume that Eq. ( 17) has a solution R, ( t )  which 
in a system of coordinates rotating at an angular velocity 
R ( t )  takes the form of small displacements p, ( t )  of an elec- 
tron from the I th site, where these displacements are inde- 
pendent of I. Then, phonons correspond to motion of the 
p, ( t )  + u, ( t )  type and if p, ( t )  varies smoothly with I, then 
for phonons of moderate wavelength, less than the distance 
over which p, ( t )  changes (which is practically equal to the 
size of the sample), the expansion of dU/dR, in terms of 
u, ( t )  is identical with the expansion for an unperturbed 
crystal at rest. Hence p, ( t )  drops out from the equation of 
motion for u, ( t ) ,  which becomes 

Here a,,, is the dynamic matrix of a two-dimensional elec- 
tron crystal and w, = eHo/mc is the cylotron frequency in a 
field H,,. 

Going over to normal coordinates Q,, and Q,, corre- 
sponding to longitudinal and transverse phonons with a 
wave vector in a crystal in the absence of a magnetic field, we 
can rewrite Eq. ( 18) as follows (we have introduced here the 
phonon damping y,, and y,, ) : 

The last terms on the right-hand side in the system of equa- 
tions (19) are time-dependent. Consequently, we may ex- 
pect that for some amplitude of the oscillating field h( t )  
expressed in the form h ( t )  = 2h0 cos 2ot the vibrations with 
wave vector k become unstable if the frequency w is close to 
one of the eigenfrequencies the crystal has with this wave 
vector when h = 0. 

Proceeding by analogy with calculations of parametric 
resonance in the problem of the harmonic oscillator6 and 
simplifying the system ( 19) by dropping the terms quadratic 
in R2(t) ,  we obtain the following value of the threshold for 
h,  in the case of given k: 

Here, the index k is omitted for brevity in the case of the 
frequencies y, , w , , w, and w,; + w- - iy- and 
+ w + - iy + are the frequencies of phonons in the pres- 

ence of a magnetic field Ho (the expressions for their real 
parts in terms of a , ,  o r ,  and w, are given in, for example, 
Ref. 7)  and the damping y , can be obtained from the damp- 
ing of longitudinal and transverse phonons in the absence of 
a magnetic field using the formula 

Minimization of 2hdHo with respect to k gives the instabil- 
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ity threshold in terms ofh, for the system as a whole. Assum- 
ing that the vibration with k = k, is the least stable, so that 
w-(k,) = w[orw+(k,) =w,dependingonthevalueofw], 
we find that in the case of the threshold (the index k, is 
omitted for all the frequencies): 

In the case of frequencies w corresponding to values of k, 
which are not too large (and located not too close to the 
boundary of the Brillouin zone), when the condition w:)w: 
is amply satisfied and we can assume that y, )w:y,/o:, we 
find from Eqs. (21 ) and (22) that 

For a typical electron density above helium amounting to 
n-5x1OX cm-* and k-10) cm-' in a field H-lo3 Oe 
(which corresponds to w, - lo9 sec-I, w, -a, -3X 10" 
sec-I, and w- = w-7x loX sec-I), we obtain 

One should mention that the value y,/w, = 1/4 for 
k - 520 cm- ' is obtained in Ref. 3 for temperatures T- 70 
mK. 

We must also draw attention to the following important 
fact. Experiments on two-dimensional electron systems 
usually have a metal electrode located parallel to the elec- 
tron system. Eddy currents created in the metal through the 
variation of H ( t )  may distort considerably the field configu- 
ration assumed above. This stray effect can be eliminated by 
making a metal electrode in the form of a fan of strips which 
are in contact only at the center of the electrode. In this case 
the electrode remains an equipotential surface but it does not 
transmit eddy currents in the azimuthal direction. 

B. In the rectangular geometry case the equation of mo- 
tion of the I th electron is obtained by replacing the last term 
in Eq. ( 17) with ( - ehx/c)ey, where ey is a unit vector in 
the direction of they axis. Eliminating the part of the dis- 
placement p, ( t )  which varies slowly with I and is due to this 

force (following a similar reasoning as that adopted above), 
we obtain the following system of equations 

Qkr+2ywQkl+ow2~kt-o, (t) Qht=O, 

where w, ( t )  = e(H,  + h ( t )  )/mc. 
Calculations indicate that in this case the threshold of 

parametric excitation of the system is equal to the threshold 
in the cylindrical symmetry case, multiplied by the factor 
(w: - 0:)/w2. 

It follows that changes in the threshold values cf h,/H, 
allow us to determine the damping of transverse phonons in 
an electron crystal; the existence of a parametric resonance 
at frequencies lying within the zone of values w - (k)  can be 
regarded as an indication of crystallization of electrons. 

The proposed method for the excitation of transverse 
waves in a two-dimensional electron system may be realized 
also in various two-dimensional charged systems in semi- 
conductors. It is most natural for this to occur in periodic 
heterostructures when there are no auxiliary metal elec- 
trodes forming a homogeneous two-dimensional system, so 
that there are no problems with the special form of the metal 
gate. 
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