
An investigation of the configurational statistics of a polymer chain in an external 
field by the dynamical renormalization group method 

A. Yu. Grosberg and E. I. Shakhnovich') 

Institute of Chemical Physics, Academy of Sciences of the USSR, Moscow 
(Submitted 21 February 1986) 
Zh. Eksp. Teor. Fiz. 91,837-850 (September 1986) 

The familiar analogy between the configurational statistics of an ideal polymer chain and the 
random motion of a Brownian particle is expressed in the fact that the recurrence relation that 
transforms the distribution function of the end of the chain when one link is added has the 
form of an equation of motion in which the role of the "time" is played by the length of the 
chain. This equation is analogous to the time-dependent Schrodinger equation or the diffusion 
equation of a particle in an external field. If a sufficiently strong external field attracts the links 
of the chain, a phase transition (collapse), i.e., capture of the chain by a potential well, occurs 
when the chain is infinite. It is shown that the corresponding equation of motion near the 
phase-transition point possesses the property of critical slowing down and exact 
renormalizability. On this basis a variant of the method of the dynamical renormalization 
group is developed in which the dynamical scaling hypothesis is exact. It is shown that an 
external field concentrated in a vanishingly small region of space is a fixed point of the 
renormalization-group transformations. Explicit expressions are obtained for the 
thermodynamic and geometric characteristics of the chain in the region of the transition. The 
method developed can be applied to the description of any phase transition that occurs in a 
one-dimensional system when a discrete level is split off from the edge of the continuous 
spectrum of the transition operator. 

1. INTRODUCTION 

Compactly coiled states of polymer macromolecules 
play a central role in most molecular-biological phenomena 
and, therefore, have been the subject of numerous theoreti- 
cal investigations (for more detail, see the reviews in Refs. 1 
and 2). The simplest (and the fundamental) phenomenon in 
this area-the collapse of an ideal (i.e., consisting of infinite- 
ly thin links) polymer chain under the influence of a com- 
pressive external field-was considered systematically in 
general form by Lifshitz3 and, for a number of particular 
cases, by other authors (see the bibliography in Refs. 4 and 
5) ,  and the theory constructed in these papers for the sim- 
plest globule-coil transition is asymptotically exact in the 
limit N -  UJ , where N is the number of links in the chain. As 
regards chains of a real finite length, only the statement that 
their properties change sharply in a narrow temperature 
range has been made in the literature. The width of the tran- 
sition region is proportional to N to a certain negative power 
that depends on the dimensionality of space and tends to 
zero as N -  UJ. The present work is devoted to a systematic 
analysis of the properties of a polymer finite length in the 
region of the coil globule transition. The interest in this ques- 
tion is due to the fact that the number of links in real polymer 
chains, though large, is insignificant in comparison with the 
number of particles in ordinary thermodynamic systems; as 
a result, the width of the region of the coil-globule transition 
can, in reality, reach tens of degrees. 

The problem under consideration is similar to the prob- 
lem of the temporal behavior of a quantum particle in a po- 
tential well whose depth is close to the threshold for the 
appearance or disappearance of a discrete energy level near 

the edge of the continuous spectrum. This type of problem is 
also connected with the spiral-coil transition in two-filament 
macromolecules of the DNA type.6 

The question under discussion can be posed as the fol- 
lowing mathematical problem. It is well known that for the 
investigation of one-dimensional statistical systems there ex- 
ists the general Kramers-Wannier matrix method according 
to which the Green's function of a t-link segment is deter- 
mined by the recurrence relation 

h 

y that the partition function is ZN = TrG, = Tr@ , where 
Q is the so-called transition operator (the analog of the time- 
evolution operator in quantum mechanics). In the simplest 
cases the transition operator reduces to a matrix, or, at least, 
has a discrete spectrum because the set of states of each site 
of a one-dimensional lattice is discrete (the Ising model) or 
at least compact (the Heisenberg model); the analysis of this 
situation in the thermodynamic limit reduces to seeking the 
largest eigenvalue of the transition operator, because as 
N -  co we have ZN =A:,, (the so-called ground-state- 
dominance approximation). The subject of &he present pa- 
per is the phase transition that occurs in a one-dimensional 
system in the more complicated situation when the set of 
states of each link is unbounded, and so the transition opera- 
tor has a band of continuous spectrum, and from the upper 
edge of this band a discrete eigenvalue splits off. Here, to 
describe one of the phases (namely, that in which the dis- 
crete level exists), for N -  UJ the* ground-state-dominance 
approximation is applicable, and it is on this approximation 
that the above-mentioned theory of Lifshitz3 and other anal- 
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ogous theories of the coil-globule transition are based. Our 
problem, however, consists in going beyond the framework 
of this approximation and investigating the behavior of a 
system of finite length. 

The recurrence relation ( 1 ) can be interpreted formally 
as the equation of the dynamical evolution of a quantity G , ,  
with the length t along the chain playing the role of the time. 
We shall show that near the phase-transition temperature 
the "dynamical equation" ( 1 ) possesses the property of 
critical slowing down. For this reason an adequate approach 
to our problem can be based on the method of the dynamical 
renormalization group. A feature of the proposed approach 
in the context of the statistical physics of macromolecules is 
that what is subjected to renormalization is not the Hamilto- 
nian of some particular field model, as is often the case (e.g., 
in Ref. 7 ) ,  but the "dynamical equation" ( 1 ) , and this makes 
it possible to consider the renormalization group directly in 
the t-representation, without going over to the Laplace 
transform. This approach makes it possible to analyze in a 
more transparent and natural form the thermodynamic be- 
havior of an individual finite macromolecule in the region of 
the coil-globule transition as a function of the length of the 
chain, and to elucidate from a unified point of view the dif- 
ferences in the pattern of this transition in spaces of different 
dimensionalities. Another merit of the proposed method is 
that it seems to be more promising in application to the much 
more complicated (and exceptionally important for biologi- 
cal applications) phenomenon of the collapse of a disordered 
heteropolymer. 

For the particular case of a point potential well the 
problem posed of the collapse of an infinitely thin homopo- 
lymer can be solved exactly. Its solution for different spatial 
dimensionalities has been discussed repeatedly in the litera- 
ture (see the bibliography in Refs. 4 and 5) ,  and for arbitrary 
dimensionality the exact solution is also given in the Appen- 
dix. This solution has a cumbersome and rather opaque 
form. Nevertheless, it can be analyzed numerically, and the 
analysis is in full agreement with the results of the renormal- 
ization-group investigation. For illustration, in Sec. 6 we 
also give a simple derivation of the principal results (to with- 
in factors) using scaling considerations. 

2. QUALITATIVE DESCRIPTION OF THE COLLAPSE OF AN 
IDEAL POLYMER CHAIN AND OF THE RENORMALIZATION- 
GROUP TRANSFORMATION PROPOSED FOR THE 
DESCRIPTION OF THE CHAIN 

We recall that the state of a polymer chain on whose 
links a nonuniform external field p(x )  acts is determined by 
the competition between the energy gain from lowering of 
the links into the potential wells and the entropy loss from 
the restriction of their fluctuational motions. If the external 
field has the form of a potential well concentrated in a cer- 
tain finite region of space, then at a low temperature the 
entire chain is found to be localized in the region of the well 
and the volume occupied by the chain does not depend on its 
length2' N-this is the globule state. On the other hand, at 
high temperature, when the role of the energy of the external 
field is unimportant, a coiled state is realized with character- 
istic localization volume -ad NdI2, where a is the micro- 

FIG. 1.  Typical configurations of a polymer chain interacting with an 
external field: a )  for the coiled state; b)  for the globular state. 

scopic size of a link and d is the dimensionality of space. Of 
course, there is an essential difference between the coil and 
the globule only in the case when the characteristic size D of 
the region of localization of the potential well is smaller than 
the size of the coil: 

i.e., for sufficiently long chains. If this inequality is fulfilled, 
then between the purely coil region and the purely globule 
region there exists an intermediate region of temperatures in 
which a typical instantaneous. state of the chain includes 
parts "anchored" in the potential well and loops of various 
lengths separating these parts (see Fig. 1 ). Here the loops, 
being situated in free space, are, from a local point of view, 
parts of a Gaussian coil. Of course, in a globule at not too low 
temperatures fluctuational loops also exist, but their lengths 
are finite and the number of loops is -N; for a infinite chain 
such a situation is preserved right up to the critical tempera- 
ture of the globule-coil transition. It is clear that our prob- 
lem in the present work is to investigate a situation when the 
length of a loop gradually becomes comparable with the 
length of the chain. In view of the inequality (2 ) ,  it is clear 
that in a state with long loops the potential distribution in- 
side the region of the potential well and the details of the 
microscopic structure of the links of the chain itself should 
not play any role-just as microscopic details are usually 
unimportant in the critical region. 

The idea of the renormalization-group transformation 
that must be applied in the long-loop situation described is 
connected with the decimation procedure proposed by De- 
Gennes9 in connection with the problem of the excluded vol- 
ume,-a procedure which is a "variation on the theme" of 
the well known block construction of Kadanoff." A specific 
feature of our problem is that its renormalizability [i.e., the 
fact that when we go over to block variables the functional 
form of the basic recurrence relation ( 1 ) does not change] 
cannot be established beforehand from any particular a 
priori diagrammatic considerations, but is a directly verifia- 
ble fact. Briefly, this follows from the fact that a coil (and, 
approximately, a loop in a globule) is a fractal object. We 
must go over to a new way of considering the chain, in which 
the role of a link is played by a segment of several original 
(bare) links. Of course, when we do this the profile of the 
external field distribution is renormalized, and the role of 
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the attractive center is taken not only by the original (bare) 
potential well itselfbut also by the short loops surrounding it 
(see Fig. 1 ) . It is natural to expect, therefore, that as a result 
of numerous repetitions of such renormalizations the entire 
chain will be reduced to a one-link "tail" situated near a 
point potential well, and such a system, of course, can be 
treated very simply. 

We turn now to the task of carrying out the program 
outlined above. 

3. DISCUSSION OF THE ANALOGY WITH CRITICAL 
SLOWING DOWN, AND CONSTRUCTION OF THE 
DYNAMICAL RENORMALIZATION GROUP 

The transition operator for a polymer chain in an exter- 
nal field p (x)  has the form3 

where 2 is the so-called "linear-memory operator," which 
can always be reduced' to an integral operator with a spheri- 
cally symmetric difference kernel g(x, x') E g (  )x  - x'l ). 
The partition function of a chain of t links with an end 
clamped at the point x is equal to' 

G'" (x) =QtS (x) (3  

[In order not to have to consider the entropy of the transla- 
tional motions of the chain as a whole, we suppose that the 
beginning of the chain is clamped at the coordinate origin, 
and this is reflected by the 6-function in formula (3) 1. It is 
obvious that for G"' we have a recurrence relation of the 
form 

G('+') (x) =QG(t) (x), 

or, after Fourier transformation, 

We can formally regard this recurrence relation as a 
kind of equation of motion for the field G"' (x),  the label of a 
link along the chain being regarded as the analog of the time 
(this is why it has been denoted by the letter t ) .  It is impor- 
tant to emphasize that we are not considering any real dy- 
namics or kinetics in the present paper; we are concerned 
with the purely formal analogy of the recurrence relations 
(4)  with dynamical equations. The principal difference 
between Eq. (4) and the usual time-dependent one-particle 
Schrijdinger equation written in terms of the dynamical-ev? 
lution operator is due to the nonunitarity of the operator Q 
and is expressed in the fact that the normalization of the 
function G'" (x) changes with t. This circumstance has a 
direct physical meaning, since 

is the partition function of a t-link chain with a free end, and 
this function, of c o u r ~ ,  depends on t. If the largest eigenval- 
ue A of the operator Q is separated from the next gap, then 
when t increases by unity the partition function is multipled 
by A (this is the ground-state-dominance approximation; 
for all the details and justifications, see Refs. 1, 3, and 9). 

Therefore, to obtain an equation with stationary behavior it 
is sufficient to divide3' the right-hand side of (4)  by A, when 
it can be seen immediately that the characteristic "relaxation 
time" of the mode with wave vector k is of the order of 

The kernel of the operator g is a spherically symmetric 
difference kernel, and, in addition, has the meaning of a 
probability. It follows from this that g, depends only on the 
modulus (k( ,  O<gk (1, gk=,  = 1, and g, ~1 - (ka12/2d 
for ka 4 1, where a is the microscopic length of a link. With 
regard to the potential p ( x )  of the external field we assume 
that both it and the Mayer function f (x )  fall off sufficiently 
rapidly at infigty. From this it is clear that the spectrum of 
the operator Q includes a continuous band-the segment 
[O, 1 1, and if the quantity f is sufficiently large in the appro- 
priate sense (to be specified below), then the discrete eigen- 
value A > 1. Consequently, the value of A corresponding to 
the critical temperature, i.e., to the coil-globule transition 
point in an infinite chain, is A = 1. Correspondingly, near 
the critical temperature the expression (5)  gives 

rk=(A-l+ (ka) ' /2d) - '  for (A - 1) 4 1 and (ka) 1. (6) 

In view of the importance of this simple formula for 
what follows, it is worthwhile to discuss its physical meaning 
in more detail. Putting aside the dynamical analogy, we can 
say that rk is that number of links (or that length along the 
chain) which forms a loop with characteristic spatial size - l/k. As can be seen, there is a characteristic length 
(A - 1 ) - ' along the chain, and a characteristic spatial scale 
-a (A - 1) -'". For shorter segments of the chain we have 
T~ - (ka)-'; i.e., over short lengths the chain behaves as a 
Gaussian coil. On the other hand, at large distances, 
rk - (A - 1 ) - ' does not depend on k. In other words, if the 
whole chain is longer than (A - I)-', it can be effectively 
divided into loops of the critical length; i.e., a (A  - 1 ) -"* is 
the N-independent size of a globule for N>  (A - 1 ) - ' [cor- 
respondingly, our problem will consist in the analysis of the 
situation N 5 (A - 1 ) - ' I .  Returning to the dynamical anal- 
ogy, the above can be summarized as follows: In our system 
the analog of critical slowing down'' occurs: As the critical 
temperature is approached the relaxation times of the lon- 
gest-wavelength modes increase without bound. This gives 
us the possibility of applying the dynamical renormaliza- 
tion-group technique," based on the successive elimination 
of the fast variables. 

In order to avoid excessively cumbersome formulas, we 
shall consider the interaction of a chain with a point poten- 
tial well 

exp(-q~(x)lT) =l+V (x), (7) 

which corresponds to the k-independent quantity fk =/3. 
This may appear at this point to be a very important assump- 
tion, but we shall show below that under the condition (26) 
any potential well can be reduced to a point well. Further- 
more, to simplify the notation it is convenient to introduce in 
place of k the new variable 

x2=i-gt (O<x<i). (8) 
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Since for us the most interesting region is the region of small 
k, where x - ka, for a qualitative understanding we can as- 
sume throughout that x and k are the same. We note that x is 
a scalar quantity, because for a point well ( f, = P )  Eq. (4)  
becomes spherically symmetric. Next, we introduce the 
function h, ( x )  in accordance with 

In particular, from (8 )  it follows that for x 1 

Using the notation (7)-( 1 1 ) we can write our basic equation 
in the form 

I 

Our aim is to eliminate, step by step, the modes with 
large momenta, expressing them in terms of modes with 
smaller momenta at the cost of a coarsening of the links, i.e., 
an increase of the scale oft .  For this purpose we introduce 
two parameters: A and 6; an elementary renormalization 
step will consist in the elimination of momenta correspond- 
ing to x > 1 - A, and simultaneous combination into an ef- 
fective 1 + 6 bare monomers. Of course, since we shall con- 
struct an infinitesimal renormalization-group 
transformation, we shall let parameters A and S tend to zero 
in a mutually consistent manner at the end.4' 

We shall consider Eq. ( 12); its formal solution can be 
written exactly as 

We first discuss the modes with x > 1 - A. For these, in for- 
mula ( 13) we can make three important simplifications: a )  
In the sum over r we can omit all terms except the first 
(corresponding to T = 1 ) , because they all contain the factor 
( 1 - x2)  5 A to positive powers; b)  we can integrate over x' 
from 0 to 1 - A only, because the contribution to the inte- 
gral from the segment x '  > 1 - A is less than or of the order 
of A; C)  by virtue of a )  and b),  G $ - " can be replaced by 
G $', because, by virtue of the critical slowing down (6), the 
change of the "slow" modes with x ' <  1 - A in the time 
T = 1 must be neglected. As a result, we have 

G!" = $ 1 h . ( x l )  G:!' d x l + o ( ~ )  for x > 1 - A ( 14) 
a 0 

Thus, the modes with "large momenta" x > 1 - A are ex- 
pressed in terms of modes with smaller momenta at the same 
"time." The result ( 14) must be substituted into the basic 
equation of motion ( 12 1, and a closed relation that includes 
only modes with x < 1 - A is then obtained. It follows from 
the physical considerations discussed above that narrowing 
the range of momenta requires that the time scale be simulta- 
neously coarsened. For this it is necessary to write 1 + 6 

equations ( 12), pertaining to successive links t, and to add 
them term by term. Here it is again necessary to make use of 
the property of critical slowing down: Since the change of G, 
in the time from t to t + S is itself small (since x < 1 - A), 
the term I;:?=6, Gjf')  can be replaced by (1 + S)Gjfl .  As a 
result we obtain 

It is obvious that this equation can be easily brought to the 
original form ( 12) by making the change of variable 

and relating the parameters 6 and A by the condition 

The fact that the scales of length and time (in our case, 
the length along the chain) are connected by a simple power 
relation of the type ( 17) constitutes the essence of the dy- 
namical scaling hypothesis.I3 As we shall see, in our problem 
this hypothesis is exact. We recall that the physical meaning 
here is very simple and consists in the fact that on small 
scales all loops look like Gaussian coils, for which the square 
of the spatial size is of the order of the contour length, and 
this is what is expressed by formula ( 17). We cannot explain 
the renormalizability of our model by any general reference 
to field-theoretical analogies; however, the calculations de- 
scribed in detail above have shown that coarsening of the 
scale does indeed lead to an equation [Eq. ( 12) 1 that does 
not differ in structure from the original equation, and the 
ren~rmalizabilit~ is thereby proved. 

The difference between this situation and the usual ap- 
plications of the dynamical renormalization-group meth- 
~ d ' ' , ' ~  is that the analog of the external force (the quantity 
8 )  appears in the equation of motion multiplicatively, and 
not additively as in other cases. Nevertheless, as we shall see, 
a consistent change of the scales leads, as usual, only to re- 
normalization of the "force": 

The quantity P,,, has the meaning of the virial coefficient of 
the interaction of the attractive center with a chain segment 
consisting of 1 + 6 monomers. 

If we make several (say, I) renormalizations, we obtain 
a division of the chain into blocks of ( 1 + 6)' monomers. In 
order to arrive at blocks of a finite lengths, it is necessary to 
go through a sequence of 1- (In s)/6 infinitesimal renormal- 
ization transformations, in which, obviously, S d  In s. Un- 
der each succeeding transformation of this kind the quantity 
P(s)  obtained in the preceding step is transformed in accor- 
dance with formula ( 18 ); it is necessary only to remember 
that now x" is a quantity that has been renormalized I times 
in accordance with (16), and therefore the integral term in 
formula ( 18) must be replaced by Ah, (s-'I2). Therefore, 
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taking (17) into account as well, we can write the law of 
renormalization o f p  in the following final form: 

2dfi ( s )  / d  111 s=2P ( s )  + f iZ ( s )  hd ( s - l h )  u-~s-".  (19) 

We recall that s is the number of monomers in a block. Since 
an unperturbed block has volume -adsd", it is convenient 
to go over fromB to the quantity b(s) =P(s)s -d'sa - ; for 
this quantity we have 

2db ( s )  /d  In s= ( 2 - 4  b  ( s )  - t b Z ( s )  hd(s- ' " )  . (20) 

To aid understanding, it is useful to note at once that the 
coefficient of b '(s) in the above equation tends with increase 
of s, for any dimensionality of space, to a constant h ,*. 

4. ANALYSIS OF THE RENORMALIZATION-GROUP FLOW 
DIAGRAM 

We turn now to the phase portrait of Eq. (20) (see Fig. 
2 1. We see that ford # 2 the renormalization-group transfor- 
mation of the quantity b(s) has two fixed points, of which 
one is stable and the other is unstable. Ford  = 2 there exists 
one fixed point-stable in one direction. The domain of at- 
traction of the stable fixed point is the interval ( - co , 0)  for 
d<2 and the interval ( - co < b < b,, = (d  - 2)/h 2) for 
d > 2. As will be explained in detail below, the domain 
- co < b < b ,, corresponds to a coiled state of the chain, and 

the domain b > b ,, to a globular state. Thus, the form of the 
phase protrait of the renormalization-group equation (20) 
points to the asymptotic universality of the behavior of poly- 
mer coils, irrespective of the bare value ofb (0) < b ,, ; to put it 
more simply, for b(0) < b ,, , with increase in length the chain 
approaches the state of an unperturbed Gaussian coil. In this 
region b(0) determines only those values of the chain length 
N for which the properties of the chain turn out to be univer- 
sal. On the other hand, the globular state is nonuniversal; its 
properties depend on b(0), since this state arises for those 
values of b which lie outside the domain of attraction of the 
stable fixed point. This implies that in the globular state a 
finite scale, dependent on b(0), appears. We note that for the 
coiled state there exists an upper critical dimensionality 
d = 2. For d>2 the stable fixed point of the renormalization- 
group transformations corresponds to a free coil, while for 
d < 2  it corresponds to a coil interacting with a potential 
"hump" for which 0 = E/ h ,*, where E = d - 2. 

Having discussed the qualitative properties of the solu- 
tions of the differential equation (20), we shall integrate it. 
This is easily done, since it is linear in l/b(s). As a result we 

FIG. 2. Phase portrait of the renormalization-group equation (20)  for 
different dimensionalities of space: a )  d < 2; b)  d = 2; c)  d >  2. 

FIG. 3. Renormalization-group flow diagram ford > 2 ( a ) ,  and d < 2 (b) .  

obtain 

where p is the parameter of the original monomer. The be- 
havior of the integral curves depends in an essential way 
both on the dimensionality d of space and on the bare param- 
eter b. The corresponding diagrams are given in Fig. 3a for 
d>2andinFig .  3bford<2.  

As we see, in all cases the diagrams contain separa- 
trices, starting from the point 

If P >  P ,, , then b (s) becomes infinite over a finite scale of s 
(which grows as P - 0 ,, decreases). But if P <B,, , then 
with increase of s the quantity b(s) tends to zero ford > 2 or 
to a negative constant ford < 2. What does this mean? 

The sharp increase of b(s) at finites must obviously be 
interpreted as a manifestation of the globularity of the state. 
For a long segment of the chain the effective attraction to- 
ward the center is so strong that fluctuation detachment 
from the center becomes essentially impossible. According- 
ly, thequantity b ,, [the boundary below which b(s) does not 
increase for any segment length s]  must be identified with 
the critical point of the globule-coil transition in an infinite 
chain. In fact, it is easy to convince oneself of this by direct 
calculation, since for the present cake of a point well the 
leading eigenvalue A of the operator Q is determined by the 
following exact equation': 

1 
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but since the transition point in an infinite chain corresponds 
to A = 1, for the critical value o f0  we obtain formula5' (22). 
Moreover, the sales [we call it I( p) ] at which the increase 
of b (s) occurs for the given bare P should coincide with this 
characteristic loop length (A - 1 ) -I; it is easy to convince 
oneself of this, since the integrals in formulas (21 ) and (23) 
are very similar in structure and differ only in the method of 
elimination of the divergence at small t t .  In (21 ) there is a 
nonzero lower limit, while in (23) there is a positive extra 
term A - 1 in the denominator; therefore, we obtain 

The region P <P, corresponds to the globule regime. 
Here the difference between the cases d > 2 and d < 2 calls to 
mind in an obvious way the well known theorem14 concern- 
ing the probability of the return of a random walk to the 
starting point. In the three-dimensional case this probability 
is equal to zero, and therefore a weakly attractive center or a 
repulsive center has no effect at all on the coil over large 
scales [b(s) -0 with increase ofs] ; on the other hand, in the 
one-dimensional case this probability is equal to unity, and 
therefore a repulsive center remains important for the coil on 
all scales. Incidentally, the same theorem also explains the 
fact that p,, = 0 for d<2 and@,, > 0 ford > 2. 

We now discuss the question of the accuracy of the re- 
sults obtained. We recall that an essential assumption in all 
the calculations on the route between the original equation 
and the renormalized equation was that one monomer con- 
stitutes a small fraction of the characteristic length 
(A ( p) - 1 ) - ' of a loop. When we are concerned with the 
next steps in the renormalization, the same condition arises 
naturally with respect to the block monomer. Consequently, 
renormalization is possible and is asymptotically exact for 
s < l (  p ) .  This is the situation for P>P, , .  As regards the 
region 0 < P  ,, , here the renormalization is exact for any s 
and any dimensionality of space-obviously, simply because 
the coil is a trivial fractal object. 

Thus, if 0 < P  ,, , the renormalization can be continued 
up to s = N, i.e., we can reduce the problem to the trivial 
problem of one link in an external field. The same can also be 
said of the case when fl is slightly larger than P,, but the 
length N of the chain is smaller than the length of a loop: 
N <  (A( p) - 1 I- ' .  We recall that in the case of the oppo- 
site inequality N S  (A( P) - I ) - '  the usual theory of Lif- 
shitz3 becomes asymptotically exact. Thus, as usual, the re- 
gions of applicability of the theories of the Landau type and 
renormalization-group type become joined. We note and 
stress here one further important fact. The renormalization 
group makes it possible to carry out the renormalization cor- 
rectly in order of magnitude up to the loop length (as usual, 
up to the correlation length), and thereby determine the or- 
der of the size of the globule, as was shown above; moreover, 
on these scales the globule can be regarded crudely as an 
accumulation of mutually independent loops, and in this 
sense the renormalization group itself already gives definite 
information about the globular state as well. 

Before implementing (below, in Sec. 5)  this program 
for carrying out the renormalization up to the full chain 

lengths = N, we shall also discuss the general case of a non- 
point external field. The starting point here should be an 
"equation of motion" in the form (4)  with a k-dependent 
Mayer function fk. The infinitesimal renormalization- 
group transformation consists in the elimination of these 
modes k for which gk <A. Performing the calculations, 
which in all important aspects repeat those described above, 
one can show that Eq. (4), like the simpler ( 12), is renorma- 
lizable, and one can find the renormalization transformation 
of the Mayer function fk . We do not write out the corre- 
sponding formulas here, because they are rather involved, 
but the result of analyzing them is easily explained qualita- 
tively. In fact, since in the renormalization the size of an 
effective monomer increases, in essence we can say that the 
size of the potential well decreases. More precisely, one can 
proceed as follows: We expand fk in powers of k and study 
the renormalization transformations of the corresponding 
coefficients. It turns out that all contributions from positive 
powers of k tend stably to zero, whereas fk = , -8 is trans- 
formed in the manner described above for a point well. In the 
coil situation and at the transition point, when the renormal- 
ization can be continued up to the chain length, an external 
field of any form is renormalized to a 6-function field, pro- 
vided that the size of the coil is much greater than the size of 
the region of localization of the well. This also applies to a 
sufficiently small neighborhood of the transition point, 
where the characteristic loop length is still much greater 
than the size of the well. From this, first of all, it follows that 
for an arbitrary potential q ( x )  the critical temperature T,., 
of the coil-globule transition in an infinite chain is deter- 
mined by the formula 

wherefl,, for each dimensionality d of space is given by the 
expression (22). Furthermore, it is clear that the immediate 
neighborhood of the transition temperature can also be de- 
scribed in terms of the single parameter P= f, = , ; here the 
condition for applicability of a renormalizability of a renor- 
malization-group approach that operates by approximating 
the potential well is 

[D is the size of the well; compare ( 3 )  1. If the first inequality 
is violated, it is not at all appropriate to speak of the coil and 
globule as different states. If, on the other hand, the second 
inequality is violated, a theory of the Lifshitz type3 becomes 
applicable (ground-state dominance) and, moreover, it be- 
comes meaningless to regard the well as a point well. Thus, 
the point-well concept, associated with the replacement 
fk - f, = , = 8 ,  has, in essence, the same region of applica- 
bility as the entire renormalization-group approach. 

The above is illustrated by the flow diagram given in 
Fig. 4. In this figure each point represents schematically a 
certain functional form of the potential p(x)  of the external 
field and a certain value of the temperature T; in other 
words, each point corresponds to a Mayer function f (x) .  
The flow lines show how different Mayer functions are 
transformed into each other under the renormalizations. 
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FIG. 4. Schematic representation of the renormalization-group flow dia- 
gram in the functional space of potentials of the external field. The line aa' 
is the hypersurface of potentials concentrated in a vanishingly small re- 
gionofspace,forwhichexp( - p(x) /T)  = 1 +PS(x).Thelinebb'is the 
hypersurface of potentials for which ,8 = f, = , = P ,, . The point Cis the 
"coil" stable fixed point; it is the image of the potential p ( x )  = 0 for d)2 
and exp( - q(x ) /T)  = 1 - [ (2  - d)/h,]S(x) ford<: 2. The point Ois 
a saddle point for solutions of the renormalization-group equations, for 
exp( - p(x) /T)  = 1 +P,,G(x). 

The thick line bb ' depicts schematically the hypersurface of 
all possible potentials at the critical temperature. On this 
hypersurface there is a stable fixed point 0, which corre- 
sponds to a &function well withp = P,, . As usual, this point 
is a saddle point, because in the direction across this hyper- 
surface it is unstable as a fixed point. For example, the flow 
along the line aa' of point potentials is illustrated by Fig. 3, in 
which the instability of the point /? = P,, is clearly visible. 

5. CALCULATION OF THE THERMODYNAMIC 
CHARACTERISTICS 

Carrying out (where this is possible-see above) the 
renormalization up to the full chain lengths = N, we obtain 
the possibility, by applying the recurrence transformation 
(4) once, of finding immediately the distribution of the end 
link of the chain: 

In fact, since the beginning of the chain is clamped at the 
origin, i.e., G'O'(x) = S(x)  or G F )  = 1, and, according to 
(101, 

normalizing the relation (4)  we have 

In particular, the mean square size of a chain, 

is found to be simply equal to the coefficient of xZ in formula 
(27). Substituting into this the result (21 ) of the renormal- 
ization-group analysis forp(s  = N), we find 

for d > 2, and 

for d < 2. We recall that these results are applicable for 
0 < p  ,, . For p >  fit, they are applicable for relatively short 
chains, for which N (  A ( P) - 1 ) 4 1. For a point well, A for 
the given p is found from formula (23), and, if 0 is close to 
0 ,, , it is not difficult to obtain 

(for brevity we do not give here the analogous formula for 
the case d < 2). Comparing (29) with (28), we can see that 
p from formula (28) is expressed in terms of just one 
combination of parameters N(A - 1 ). Of course, the gen- 
eral scaling property is manifested in this, inasmuch as the 
loop length (A - I)- '  is the only characteristic length 
along the chain. Taking into account that the result is appli- 
cable for N(A - 1) 4 1, we write it in the form 

Finally, for P > 0 ,, and N(  A - 1 ) % 1 the usual theory 
of globules (ground-state dominance), according to which 

is applicable. We note that in this regime as well R/NU~ is 
determined by the combination N(A - 1). It is not difficult 
to see that the formulas (30) and (31) match smoothly at 
N(A-  11-1. 

Besides the mean-square size of a chain, we can 
also calculate all its other thermodynamic characteristics, 
For example, it is easy to see that the free energy per mon- 
omer is equal to f = - TNa2/ R; the degree of absorption 
(the fraction of particles situation inside the potential well) 
is equal to 9 = - p ( d  /dB) (Nu2/ R), and so on. 

Thus, the renormalization-group method does indeed 
make it possible to investigate fully the behavior of finite 
chains in the region of the coil-globule transition. In fact, 
however, the problem of a point potential well can be solved 
exactly, and this is done in the Appendix. Although the solu- 
tion has a fairly complicated form, the results of a numerical 
analysis of it are given in Fig. 5, in which they are compared 
with the results (28)-(30) from this paper. In view of the 
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FIG. 5. Comparison of the results of a numerical determination of the 
contraction coefficient R Z/NaZ of the chain on the basis of formula (A2) 
with the results ofa calculation ofthis quantity using formulas (28)-(30) 
(the solid lines) ford = 3 and different values ofS: e) /3 = 1.0</3,,; 0 )  
8= 1.17 =@,,; A ) @ =  1.40>8,,. 

relatively cumbersome nature of the exact solution and the 
complexity of the renormalization-group approach de- 
scribed above, it is worthwhile to describe also a qualitative 
derivation of the principal results. 

6. DERIVATION OF THE PRINCIPAL RESULTS FROM 
SIMPLE SCALING CONSIDERATIONS 

We return to the qualitative language of the first sec- 
tion. If the temperature is below the critical temperature, a 
characteristic loop length should exist; we denote it by I, and 
the thermodyanamic properties can depend only on the ratio 
N / I .  For example, the ratio of the size of a globule to the 
unperturbed size of a coil can be written in the form 

If N )  I, the situation is globular; i.e., R should not de- 
pend on N, and, consequently, f(x) -x- ' for x % 1, which 
corresponds to R - la2 [cf. (3 1 ) 1. 

On the other hand, if the exernal field is so weak that it 
scarcely perturbs the conformation of the coil, the deviation 
ofR *from the ideal size Nu2 is easily estimated-it is propor- 
tional simply to the number of monomers of the Gaussian 
coil that are situated by chance in the region of the potential 
well: 

This result agrees exactly with (28) for smallfl. Since, final- 
ly, the loop length 1 should depend on the differencep - fl ,, , 
comparing (32) and (33) we obtain 

Hence, f (x)  z 1 - const x - 'd - 2)'2 for x 4 1, and this for- 
mula coincides with the result (28). Thus, from scaling con- 
siderations we can find not only all three asymptotic forms 
(28), (30), and (31) for the chain size, but also the order to 
the transition in an infinite chain. 

APPENDIX 

Here we shall describe very briefly how the method of 
generating functions can be used to express exactly in the 
form of an integral the partition function of a polymer of 

arbitrary length N is a point external field. Analogous calcu- 
lations for several other modes are contained, e.g., in Ref. 15. 

First of all, it is easily verified that the partition function 
2, = JG, (x)ddx of a t-link chain can be represented in the 
form 

Next, for the quantities G, (x = 0) it is easy to set up the 
following Dyson equation: 

where G jo'(x) is the Green's function of a free coil (for 
fl = 0). If we set up the generating function 

OD 

G (s) = sfGl (x=O), 
1-0 

it is easy to obtain a linear algebraic equation for it, and to 
find, finally, 

where 

Gc0) (s) = (2n) -' sgk/ (I-sg.) ddk. (A31 

and the contour of integration, as usual, should not enclose 
any singularities of the function G(s). 

For large t the integral (A3) is determined by the pole 
of G(s), at which 1 - BG "'(s) = 0 (the approximation of 
ground-state dominance). It  can be said that in the present 
work we have carried through an analysis of the integral 
(A2) for values of t  such that a contribution is made to the 
integral not only by the residue at the indicated pole but also 
by the integration along the edges of the cut due to the 
branch point of G "'(s) at s = 1. 
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