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A complete system of hydrodynamic boundary conditions on the interface of solid and 
superfluid 3He-4He solutions is formulated. This system takes into account the finite ,He 
concentration in both the liquid and the solid pheses. The spectrum and damping of the 
melting-crystallization waves are analyzed. The Cerenkov contribution of the thermal melting- 
crystallization waves and of the Rayleigh waves to the impurity part of the Kapitza thermal 
resistance is calculated. The inverse effect associated with the possibility of resonant excitation 
by an internal impurity second sound wave of surface Rayleigh and crystallization waves is 
also considered. 

The interface between solid and superfluid 4He is an 
unparalleled object for the investigation of dynamic surface 
phenomena. Interest in this interface is due above all to its 
anomalously high mobility, predicted by Andreev and Par- 
shin.' This prediction was later experimentally confirmed in 
a number of studies. Keshishev, Parshin, and Babkin2 inves- 
tigated the spectrum and damping of the melting-crystalli- 
zation waves. Castaign and No~ieres ,~  Castaign, Balibar, 
and L a r ~ c h e , ~  and Grigor'ev, Dyumin, and Svatko5 studied 
the conversion of sound passing through such an interface. 
Maris and H ~ b e r , ~  Puech et al.,' and Wolf et ~ 1 . ~  measured 
the Kaptiza thermal resistance at the interface between heli- 
um and He 11. Finally, Graf, Bowley, and Maris9.'0 recently 
investigated the influence of a small amount of 3He impurity 
on the mobility of the interface and on its thermal resistance. 
It was established in these experiments, in particular, that at 
low temperature the interface of crystals with dimensions L 
larger than the capillary constant aozO. 14 cm and with 3He 
concentration up to remains highly mobile. This may 
seem to contradict the results of Landau et al." who ob- 
served visually an increase of the relative flat surface fraction 
on small (L -ao) crystals when a low-concentration 
( - impurity is added. Qualitative arguments by Cas- 
taing et a1.,I2 however, attribute this phenomenon to the fact 
that adsorption of the ,He impurity on the surface lowers the 
surface rigidity E = a + d 'a/dp and thereby also the sizes 
of the rounded sections. For large crystals (Lsa , ) ,  how- 
ever, the role of surface energy in the establishment of the 
equilibrium shape is small compared with that of gravity, so 
that when a low-concentration impurity is added an appre- 
ciable fraction of the boundary remains highly rn~b i l e . ' ~  In 
Refs. 9 and 10 the authors have also proposed for the interac- 
tion of 3He with the interface a theoretical model involving a 
macroscopically extended wave function of the impurity 
quasiparticle, and using the assumption that all the 3He is 
drawn to the interface that is set oscillating by the thermal 
phonons. This assumption is in fact equivalent to neglect of 
the equilibrium "freezing-in" (penetration) of the impurity 
in the solid phase. It can be deduced from the experiments of 

Anufriev, Lopatik, and SebedashI3 and also from the stratifi- 
cation curves for the solid and liquid solutions at pressure 
Pz25 atm,14.15 that the equilibrium concentation of the im- 
purity in the solid solution is indeed negligible compared 
with the concentation in the liquid at temperatures T >  0.3 
K. At T-0.4-0.5 K, however, the equilibrium impurity 
densities in the solid and liquid phases become comparable 
in order of magnitude. 

We derive here a complete system of hydrodynamic 
boundary conditions on the interface of solid and superfluid 
3He-4He solutions in the phonon temperature region T 5  0.5 
K. These conditions take into account the finite 3He concen- 
tration in both the liquid and solid phases. The system con- 
tains two more equations than in the case of the interface of 
pure solid and liquid 4He (Refs. 2, 16-19), viz., conserva- 
tion of the number of impurity particles and thermodynamic 
equilibrium in the impurity component. We emphasize that 
the system is self-consistent (in the sense that the equations 
and variables are equal in number) only if account is taken of 
the dissipative mechanism of heat and impurity transport. It 
extends also the known boundary conditions for weak-non- 
equilibrium processes on the interface of classical solid and 
liquid solutionsZ0 to include the quantum case of low tem- 
peratures and a superfluid liquid phase. The resulting 
boundary conditions are used to analyze the influence of the 
impurity on the damping of the melting-crystallization 
waves. 

We propose also a mechanism different from that of 
Refs. 9 and 10 for the heat transfer from a4He crystal to a gas 
of 3He quasiparticle. This mechanism consists of energy 
transfer from a phonon in the solid to a second-sound quan- 
tum in the liquid solution. In a sufficiently large temperature 
interval and at relatively low densities, second sound consti- 
tutes a wave of coupled temperature and concentration oscil- 
lations of an ideal nondegenerate 3He-quasiparticle gas (sec- 
ond sound is sound in an impuriton gas)." The impurity 
contribution to the Kapitza thermal conductivity a,, of this 
interface is threfore proportional to the small coefficient of 
conversion of first-sound energy in the solid into second- 
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sound energy in the liquid solution. Calculation shows that 
this coefficient is independent of frequency and its order of 
magnitude is such that it can be extrapolated to the high- 
frequency region of the ballistic regime of tbs impurity oscil- 
lations. This mechanism is in fact similar to Khalatnikov's 
well-known22 mechanism of energy exchange between the 
phonons of a solid and the He I1 phonons. 

We point out in the second part of the paper that, in 
view of the ordering of the phase velocities of the first and 
second sound, the second-sound wave can resonantly excite 
in the system Rayleigh waves and melting-crystallization 
waves. This leads accordingly to the appearance of two dif- 
ferent angles beyond the critical value, near which the ener- 
gy reflection coefficient differs noticeably from unity. 

Lastly, we obtain the contribution of the kerenkov 
emission of second-sound quanta by the thermal crystalliza- 
tion oscillations of the boundary and by the Rayleigh waves 
in the impurity component of the Kaptiza thermal conduc- 
tivity a,, . Since the thermal crystallization waves have near 
T 2 0.1 K a linear dispersion due to the effective 
this contribution has the same dependence on temperature 
and concentration, and the same order of magnitude, as the 
contribution, investigated in Refs. 9 and 10, from the direct 
energy transfer from the bulk thermal phonon to the impuri- 
ty subsystem. 

BOUNDARY CONDITIONS ON THE INTERFACE OF SOLID 
AND SUPERFLUID JHe-4He SOLUTIONS 

To derive the boundary conditions, we use, in the linear 
approximation, the expressions for the bulk fluxes of matter 
j'''2), impurity j:'*", momentum II,!jv2', and entropy f "P~). 

The superscripts 1 and 2 refer to the solid and liquid phases, 
respectively. The fluxes in the liquid phase are of the form22 

where p, p,, p ,  , v, , v,, P, a ,  and T have the meaning stan- 
dard in superfluid hydrodynamics, c is the molar concentra- 
tion of the impurity, and x ,  is the thermal conductivity of the 
solution. 

It follows from theroretical and experimental data that 
in the temperature and concentration region under consider- 
ation, T-0.1-0.5 K, c2- 10-3-10-4, the influence of diffu- 
sion, including heat and mass diffusion, is negligible in the 
liquid phase compared with the thermal conductivity, and 
will hereafter be neglected. Recall that the expression for the 
normal density and entropy of a weak nondegenerate super- 
fluid solution are of the form 

(if both the impurity and the phonon subsystems oscillate in 
the hydrodynamic regime), 

where pEh, ugh are the phonon contributions to the normal 
density and to the entropy, m, is the mass of the 4He atom, 

and m* is the effective mass of the 3He atom in the solution. 
The expressions ( 1 ) for the fluxes are in accord with the 

law E, + div Q, = 0 of energy conservation in the liquid. In 
the limit of low concentations we have 

E ,= -P ,+~ ,T~~~+  p,"' p(2'+$' P 2 ~ 2 r  

(4) 
Q , = ~ : ' )  j2+p:2) j:,' +T2f2, 

where pi2) is the chemical potential of the solvent per unit 
mass of pure4He and p?' is the chemical potential of the 
solute. For a weakly nondegenerate solution we have 

pi2) ( P ,  T, cz) =p?) (P, T) - (Tim,) c2, 
(5) 

+ - In c,. ( 3 
We neglect in ( 5 ) the small thermal expansion of the solu- 
tion. In Eq. (5),  pi2'(P,T) is the chemical potential of pure 
4He and Y',) is the binding energy of one impurity atom in 
liquid 4He. 

Note that the hydrodynamic description is valid in the 
liquid phase for frequencies lower than all the characteristic 
reciprocal relaxation times in the system. In the temperature 
and concentration region under consideration we have the 
following frequency ordering 

for the phonon-phonon, phonon-impurity, and impurity- 
impurity relaxation, respectively. At T S  0.5 K, however, we 
have c, - 10-4-10-3, i.e., hydrodynamics is valid up to quite 
high frequencies, w - 1/~!:' - 10'-10' s- ', in that region 
where the impurities and their scattering by one another are 
of principal significance for the thermodynamics and forma- 
tion of second-sound waves. 

Let us dwell in somewhat greater detail on the expres- 
sions for the bulk fluxes in the solid phase. The possibility of 
a complete hydrodynamic description, particularly of intro- 
ducing a single temperature for the impurity and phonon 
subsystems, implies satisfaction of the condition COT,!$ < 1 
(the impurity-thermalization condition). We emphasize 
that at the temperatures and concentrations considered, the 
following relation holds between the respective relaxation 

for an impurity on a phonon, a phonon on an impurity, a 
phonon on a phonon with umklapp, and normal scattering of 
a phonon by a phonon on account of anharmonicity and of 
an impurity by an impurity due to band motion. At T-0.5 K 
we have 1 / ~ ~ ~ , ! - 1 0 ~ - 1 0 ~ ~ - '  and l / ~ $ , ~ ~ - l / < ~ , , ~  - lo6 s-'. When all these relations between the frequency 
and the relaxation times are satisfied, the bulk fluxes in the 
solid phase take the form 
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Expressions (6)  for the fluxes are in accord with the law of 
energy conservation in a solid: 

Bl+div Q,=O, 

E1=-Pl+p1u1T,+CL4~1~p(1~+ps~1~p(1)~(i)+o~~*~~*/2, (7) 

Q1=p4(')j(1)+ps(1)js(1)+Tlfl+~*.liIr, 

where flk = u, - 1/3u,Sik /3 is the deviator of the stress 
tensor, PI =Po - 1/3aI1/3, Po is the equilibrium pressure 
on the melting curve, and Dl  and x ,  are the diffusion and 
heat-conduction coefficients. We point out that in our range 
of temperatures and concentrations the coefficient Dl is de- 
termined mainly by impurity-impurity collisions for itiner- 
ant motion (self-diffusion). Introduction of this coefficient 
in our equation is justified because the impurity bandwidth is 
A ( T, meaning high probability of impurity scattering with 
quasimomentum transfer to the crystal lattice (umklapp). 

In the limit of low concentrations we have in (6)  and 
(7)  

ol=ulph- (cl/m4)ln c,, 

p,(') (P, T, cl) =p,(') (P, T) - (Tim,) cl, (8)  
p3(~)=y(~)  (P, T=O) + (T/m,)ln c,. 

We have neglected here the small contribution to the ther- 
modynamics from the slow itinerant impurity [the effective 
itinerant velocity is v ,  -Ad /A( (T/m8) 'I2, where d is the 
distance between the atoms]. The last circumstance leads to 
a difference between the expressions for p, in the solid and 
superfluid solutions in Eqs. ( 5 ) and (8). 

To derive the boundry conditions, we use the conserva- 
tion of the total energy, with the surface energy taken in the 
form28 

where z is the direction of the normal to the unperturbed 
interface (the crystal occupies the half-space z <0, Q,, Q,, 
E,,andE,aredefinedbyexpressions ( I ) ,  (4), (6),and (7).  
$ and Og are the surface-energy density and flux, and 
8 = ( ~ $ 1 .  

Since we shall not be interested in effects due to adsorp- 
tion of the impurity and to its diffusion over the surface, a 
detailed definition of the surface (using the condition that 
either the total surface or its impurity part vanish) is imma- 
terial. In Eq. (9) we have 

&=go (T) +1/ZMe,j~2+1/ztf~vE,gY1 

where Me, is tge effective surface mass connected, for exam- 
ple, with the restructuring of the short-range order on the 
crystal-liquid Z,, = as,, + 6' 2a/6'v,pv is 
the surface rigidity tensor, Og = -ZPB{,{ (Ref. 28), 
Vint = u, + & (U is the elastic-displacement vector), and { is 
the displacement of the atom-rough interface in addition to 
the elastic displacement. 

From the condition that the total-energy consevation 
law agree with the equations for mass conservation 

j~l)-plVint =j:')- PZ Vint 

and impurity conservation 

and from the law of increase of surface entropy 

we obtain the form of the surface dissipative function R,,, : 

+ ( F ~ ~ ) - P / ~ ' ~ ) (  ji;) -plcl Vint )I+ ( T ~ - T ~ )  (fii) - p ( l ) ~ ( l )  v,,,~ 1. 

(14) 
We have neglected in ( 10)-(14) the surface fluxes of mass, 
impurity mass, momentum, and entropy, and have set the 
surface temperature equal to those in the interior. In Eq. 
(13), To is the equilibrium temperature on the melting 
curve. 

From the requirement that the surface dissipative func- 
tion be positive-definite we obtain the following generaliza- 
tion of the condition for the thermodynamic phase equilibri- 
um: 

(1) (2)  
[p. -Uc + ( f i f ' i , t f ~ - ~ T B ~ T ~ p i ) / p l ~ = ( j ~ l )  -plKnt  )/K4, 

(1) ( 2 )  (11.8 -13 )= (j:zl)-bI~l Vint )/K39 

We disregard here for simplicity the off-diagonal elements of 
the Onsager matrix of the kinetic surface coefficients. In the 
phenomena under consideration the off-diagonal kinetic-co- 
efficient matrix elements (which are smaller than the diag- 
onal ones, since the surface dissipative function is positive- 
definite) only renormalizes the effects connected with the 
diagonal elements, and does not lead to qualitatively new 
results. 

In ( 15), R ,  is the Kapitza thermal resistance (it is de- 
termined by energy transfer from the interface to the quasi- 
particle gas). In the case of a superfluid solution, the total 
thermal conductivity us of the interface is a sum of two con- 
tributions, us= from the phonons and us, from the impuri- 
ties. The phonon contribution us, a T is determined at low 
temperatures ( T S  0.2 K )  by capillary effects, viz., the sur- 
face rigidity Z and the effective surface mass M,,. It was 
investigated in Refs. 6 and 24. The impurity contribution to 
the heat conduction of the interface will be discussed below. 

In Eq. ( 15), l/K4 is the reciprocal crystal-growth coef- 
ficient (relative to the solvent). In quantum crystals it is 
determined mainly by the momentum transfer from the qua- 
siparticle gas to the interface. 1.17.18 If the drift velocities of 
the impurity and of the phonons do not coincide with the 
interface velocity (as is the case when the impurity has a 
finite ability to freeze into the solid phase), the 1/K4, just 
like us, is a sum of two contributions-from the impurities 
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and from the phonons. The phonon contribution 
1/K Fhl apEhcliq /p2 a T4 (where cliq is the speed of sound in 
the liquid) was investigated experimentally in Ref. 2. The 
impurity contribution 

was estimated in Ref. 12. Lastly, l/K, has the meaning of the 
coefficient of crystal growth relative to the solute. A similar 
coefficient was introduced for the growth of a classical crys- 
tal, e.g., in Ref. 16. A possible estimate of its value for the 
interface considered will be given below. When viscosity of 
the liquid is taken into account, one more condition must be 
met, equality of the tangential components of the velocity of 
the normal excitations in the liquid to the lattice velocity 
up = vnp. In addition, Eqs. ( 12) and ( 14) acquire terms 
connected with the viscous-stress tensors. For the phenome- 
na considered below, however, viscosity is insignificant and 
will be neglected. 

We discuss now the system ( lo)-( 13) and ( 15) (con- 
sisting of eight equations) to determine whether the number 
of boundary conditions equals the number of independent 
modes. These are first and second sounds, and the purely 
dissipative heat-conduction mode having at c2- a 
spectrum iw,,, = 3x2k 2/5p2C'2' (C(2' is the heat capacity 
per unit mass of the liquid), in which the temperature and 
the concentation oscillate. If allowance were made for diffu- 
sion, the spectrum of this mode would be determined by the 
effective thermal conductivity x, (see Ref. 22). There is no 
such mode in pure He 11, and the heat conduction influences 
only the second-sound damping Im w,, = 1/5x2k 2/p2C(2). 
The presence of an independent heat-conduction mode in 
the solution is very clearly due to the appearance of an inde- 
pendent variable-the concentration (wIII -0 as c2 -0 and 
at D2 = 0). 

Four independent modes exist in the solid. These are 
two first sounds (longitudinal and transverse), a heat con- 
duction mode iw = xlk2/p,C$' (if wr, < 1) or a second- 
sound wave in the phonon gas (if wr, > 1 ), and last, a diffu- 
sion mode iw = Dlk 2. 

We emphasize that in view of the relation D,<x, /  
plC"), the heat-conduction and diffusion modes interact 
very weakly even when thermal diffusion is taken into ac- 
count. Therefore the stringent impurity-thermalization con- 
dition wriik' < 1 is, generally speaking, not mandatory for 
the hydrodynamic scheme being considered. Hydrodynamic 
treatment of diffusion and heat conduction in a solid is thus 
actually valid up to frequencies o < 1/<$2 S: l/r,jl), i.e., to 
w- lo6 s-'. The eighth independent variable is the addi- 
tional-recrystallization displacement 6 of the interface. The 
number of independent variables is therefore equal to the 
number of the boundary conditions. 

DAMPING OF MELTING-CRYSTALLIZATION WAVES 

The specific property of the interphase boundary in 
question is that three surface modes exist on it: melting-crys- 
tallization waves (in which 6 and j'2' oscillate), Rayleigh 
waves (in which u and 6 oscillate), and surface second 
sound, whose velocity is close to that of the bulk second 

sound in He I1 (in which coupled oscillations of the tem- 
perature and concentration take place) (see Ref. 29). 

Using the derived boundary conditions, let us examine 
how a low concentration of 3He impurity influences the 
damping of the crystallization waves. 

The spectrum of the melting-crystallization waves is of 
the form 

where k is the wave number of the surface wave. 
At T-0.4-0.5 K the impurity, in both the liquid and 

solid phase, makes a larger contribution to the thermody- 
namics than the phonons. The imaginary part of the wave 
spectrum can therefore be written in this case in the form 

The first three terms in the right-hand side of ( 17) are re- 
sponsible for the surface dissipation, and the fourth for the 
bulk dissipation. Estimates show that for 

(where Cliq and u,, are the velocities of the first and second 
sounds in the liquid, and ai is the impurity part of the en- 
tropy) the main contribution to the damping is made by the 
bulk dissipation. Note that from the damping of the crystal- 
lization waves one can determine independently through ex- 
periment the impurity distribution coefficient c,/c2, which is 
a function only of temperature and pressure in weak solu- 
tions. 

We point out that if the impurity concentration is de- 
creased in each of the phases,the heat-conduction contribu- 
tion to the imaginary part of (16) at a fixed temperature is 
determined by the phonons and differs from zero. If, how- 
ever, the inequality ( 18) is reversed, the damping is deter- 
mined mainly by surface dissipation. Note that for T-0.4- 
0.5 K and starting with a concentration c2- the imagi- 
nary part of the spectrum becomes of the same order as the 
real part (for frequencies w 5 lo5 s- I). 

Equation ( 16) was obtained under the assumption 

1 1  0 
R K " . ( ~ - ~ ) ,  R K ~ - -  kuI12pC(') ' 

1 T ci2 TcZ2 
(19) 
c 1 - ( D , O ) ' ~  < - -=G ( :) '1n2 - . 

K3 pmc, ' K 3  m i 2 k ( x 1 + x 2 )  C2 

If the first inequality of (19) is violated, there is no flow of 
entropy through the interface, i.e., 

We emphasize that in the case of pure He 11, i.e., for 
w,,, = 0, the dissipative term in the liquid-phase entropy 
flux turns out to be small and we arrive at the "stringent" 
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hydrodynamic boundary condition u,, = Vin, used in Refs. 
17 and 18. When the third and fourth inequalities of ( 19) are 
violated, there is no impurity flux through the interface, i.e., 

which is also equivalent, for the liquid phase, to the condi- 
tion u,, = Kn, . In this case the imaginary part of the crystal- 
lization-wave spectrum is given by 

i.e., it is determined at very low frequencies by the diffusion 
coefficient Dl. Naturally, this contribution vanishes togeth- 
er with the impurity concentration in the solid phase. For the 
reciprocal of the growth coefficient in the solute we can ob- 
tain the estimate 

1 T 1,:'' T 1 ------ - 
K3 pmc, D1q pmcl ubq ' 

where the dimensionless parameter g < 1 plays the role of 
the effective coefficient of penetration from the solid into the 
liquid phase, and becomes much less than unity at tempera- 
tures T<0.3 K, when the ability of the impurity to freeze 
into the solid is low. We emphasize that the transition to the 
situation in which there are no entropy and impurity fluxes 
through the interface can be described not only kinetically 
but thermodynamically. The transition occurs at 

Estimates show that both inequalities in (20) hold at the 
same temperatures T-0.1-0.2 K. At these temperatures the 
solid can be regarded as free of impurities and phonons, i.e., 
it can be described by the elasticity-theory equations for 
T=O. 

We note in conclusion that at low temperatures (when 
the impurity concentation c ,  in the solid phase is vanishingly 
small) the damping of the crystallization waves is deter- 
mined mainly by the phonon contribution, and the growth 
coefficient 1/K, is proportional to T 4  and is small. In this 
case a more important role can be assumed by the correc- 
tions (connected with the impurity concentration in the liq- 
uid phase) to the real part, and particularly by the effective 
decrease of the surface rigidity [see Eq. ( 16) I .  

ANOMALOUS REFLECTION OF SECOND SOUND FROM THE 
INTERFACE IN THE CASE OF INCIDENCE AT ANGLES 
GREATER THAN THE CRITICAL ANGLE 

At frequencies that are not too low, there exists in the 
system considered the following velocity ordering: 

where u, (w ) and CR are the phase velocities of the crystalli- 
zation and Rayleigh waves, and C, and Cl are the transverse 
and longitudinal sound velocities in the solid. A critical an- 
gle sin @,, = u,,/C, exists therefore for the incidence of sec- 
ond sound on the interface. In the absence of dissipation, if 
the second sound were to be incident at angles greater than 
critical, total internal reflection would be observed. At the 

same time, however, Rayleigh surface waves and melting- 
crystallization waves are present in addition to the bulk 
waves. If their frequency and wave-vector component tan- 
gent to the surface coincide with the corresponding param- 
eters of the bulk second-sound wave incident on the interface 
[this is permitted by relations (2 1 ) 1, the resonance condi- 
tion is met. The smaller Rayleigh angle (sin 8, = u,, /CR ) 
is independent of the frequency of the incident wave. The 
angle of resonant excitation of the crystallization waves is 
sin 8, = u,, [ A  p2/Z,pw] ' I 3  = u,, /u,. This angle be- 
comes real (sin @, < 1 ) only at sufficiently high frequencies, 
w -  lo7 s-' for T-0.4 K. 

Thus, the presence of a crystallization wave along with 
a Rayleigh wave in the system leads to the existence of two 
transcritical angles of anomalous reflection from the consid- 
ered interface. 

We emphasize that resonance can occur in an acoustic 
experiment only if dissipation is introduced into the system. 
When account is taken, for example, of surface dissipation, 
the law of energy conservation in a second-sound wave inci- 
dent on the interface at a transcritical angle takes the form 

where r,, = Iu',f: I 2 / I  UZ l 2  < 1 is the second-sound reflection 
coefficient, O,, > @,, is the incident angle, and R,,, > 0 is the 
surface dissipation function ( 14). Thus, surface dissipation 
can decrease noticeably the transmission coefficient. The 
bulk dissipative mechanisms considered in the preceding 
section can also renormalize the reflection coefficient for in- 
cidence at angles beyond critical. 

Transcritical surface-wave resonant-excitation angles 
exist also in pure He I1 at higher temperatures, T-0.8-1 K. 
They are caused by the lower velocity of the roton second 
sound, and hence by the possibility of satisfying the condi- 
tion u,, < C, (low-frequency crystallization waves are 
strongly damped at these temperatures). 

Note that Eq. (21) shows that Rayleigh waves cannot 
be excited on this interface by a first-sound wave in a liquid 
(in contrast to the case of an He 11-metal interface). 

IMPURITY CONTRIBUTION TO THE KAPITZA THERMAL 
RESISTANCE AT LOW TEMPERATURES 

Using the complete system of boundary conditions in 
the low-temperature limit T-0.1-0.2 K (c, (c,, a,,, (a,, 
u,, =: Knt ), we solve the acoustic problem of determining the 
coefficient of energy transfer by a first-sound wave from a 
solid to first- and second-sound waves in a liquid. For the 
simplest case of normal incidence of a longitudinal wave, 
this coefficient is equal to 

where 

Equation (22) contains a sum of two contributions. 
The first, t , , describes the energy-flux fraction transferred to 
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first sound in the liquid, and t ,, , the fraction transferred to 
second sound. In the range of temperatures and concentra- 
tionsp, which we are considering, uII  is determined by the 
impurity, and the coefficient t ,, is given by 

Equation (23) does not depend on frequency and does 
not contain the relaxation times T. The expression fort ,, can 
therefore be used to represent (in order of magnitude, at 
least) the efficiency with which a thermal phonon fiu - T is 
transferred to the impurity subsystem. The physical reason 
is that the Kapitza thermal resistance is determined by the 
energy transfer from the wall to the He I1 quasiparticles on 
the interface itself, so that R ,  depends little on the excitation 
mean free path I (on the relaxation time T) .  The path I deter- 
mines only the distance over which the temperature jump is 
formed (localized), and not the magnitude of this jump. We 
thus obtain the following estimate for the impurity contribu- 
tion to the thermal conductivity a,, of the interface. 

where C,: is the phonon part of the heat capacity of the 
solid and C, is the average sound velocity in the crystal. We 
point out that the resulting temperature and concentration 
dependences of a,, agree with the result of the model calcu- 
l a t i ~ n . ~ " ~  

[It  is curious that the energy fraction transferred to the 
impurity subsystem by longitudinal sound, obtained in Ref. 
10 within the framework of the present quantum-mechani- 
cal model (the case I = co ), differs from (23) (the case 
I = 0)  by no more than 20-25%.] 

We point out that t ,  of (22) determines the phonon 
contribution to the thermal conductivity of the interface 
(uSL ) . The latter, by virtue of the proportionality oft  , to w2, 
takes the form a,, a ( p/Ap)4T5. The total thermal conduc- 
tivity us = asL + a,, of the interface is an additive quanti- 
ty, a fact reflected in (22). At the temperatures and concen- 
trations considered, we have a,, <asL in view ofthe "extra" 
factor ( p/A p)2-  lo2. 

Note also there is also one more mechanism, not ac- 
counted for in the theoretical parts of Refs. 9 and 10, for heat 
transfer to thz impurity subsystem. This mechanism is con- 
nected with Cerenkov emission of second-sound quanta by 
the thermal crystallization oscillations of the interface and 
by the Rayleigh waves, and is similar to the contribution, 
considered by ~halatnikov,'%f the Rayleigh waves to the 
thermal resistance on an He 11-metal interface. In the tem- 
perature region considered, the thermal crystallization 
waves with w-T/fi- 10"' s - '  are estimated to have an 
acoustic spectrum (w -v, k ) .  The contribution of this 
mechanism to us, therefore has the same temperature and 
concentration dependences as the contribution from the 
bulk phonons of the solid, viz., e3 a C?T 71'( p/Ap)'. The 
exact expression for this contribution to us% for uM %uI1 is 

which is also of the same order as the results of Refs. 9 and 
10. We note in conclusion that the impurity part of the inter- 
face thermal conductivity also receives a contribution from 
Cerenkov emission of Rayleigh waves. This contribution is 
a:, cc c ~ T ~ / ' (  p/A p) '  just as for crysallization waves, and 
has the same order of magnitude. 
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